
 − 1 −

 1. I_n_t_r_o_d_u_c_t_i_o_n_

 These notes describe release information for the IRIX 6.2
 Diagnostics option.

 Note: The 6.2 Diagnostics option applies to the POWER
 CHALLENGE 10000, POWER Onyx InfiniteReality 10000,
 POWER CHALLENGE, POWER Onyx RealityEngine, POWER Onyx
 Extreme, CHALLENGE, Onyx InfiniteReality, Onyx
 RealityEngine, Onyx Extreme, IRIS Crimson systems.

 These notes do not apply to the POWER Series systems or to
 Professional Series systems.

 Note: Packaged with these release notes is a separate sheet
 that contains the Software License Agreement. This
 software is provided to you solely under the terms
 and conditions of the Software License Agreement.
 Please take a few moments to review the Agreement.

 − 2 −

 This document contains the following chapters:

 1. Introduction

 2. Installation Information

 3. Changes and Additions

 4. Known Problems and Workarounds

 5. Bug Fixes

 Appendix A, POWER CHALLENGE/Onyx/Onyx Extreme Standalone
 i_d_e_.

 Appendix B, describes the CHALLENGE/Onyx Standalone i_d_e_
 tests.

 Appendix C, describes the IP17 Crimson Standalone
 Diagnostics.

 1.1 R_e_l_e_a_s_e__I_d_e_n_t_i_f_i_c_a_t_i_o_n__I_n_f_o_r_m_a_t_i_o_n_

 Following is the release identification information for the
 IRIX 6.2 Diagnostics:

 Software Option Product Diagnostics

 Version 6.2
 Marketing Code SC4−DIAG−6.2
 (CD−ROM)

 System Software Requirements IRIX 6.2

 1.2 O_n_l_i_n_e__R_e_l_e_a_s_e__N_o_t_e_s_

 After you install the online documentation for a product
 (the r_e_l_n_o_t_e_s_ subsystem), you can view the release notes on
 your screen.

 If you have a graphics system, select ‘‘Release Notes’’ from
 the Help submenu of the Toolchest. This displays the
 g_r_e_l_n_o_t_e_s_(1) graphical browser for the online release notes.

 Refer to the g_r_e_l_n_o_t_e_s_(1) reference page (man page) for
 information on options to this command.

 − 3 −

 If you have a non−graphics system, you can use the r_e_l_n_o_t_e_s_
 command. Refer to the r_e_l_n_o_t_e_s_(1) for accessing the online
 release notes.

 1.3 O_n_l_i_n_e__M_a_n__P_a_g_e_s_

 Printed copies of the reference pages (man pages) are n_o_t_
 included in this release of the diagnostics. You can view
 the man pages online by typing:

 man c_o_m_m_a_n_d_n_a_m_e_

 1.4 P_r_o_d_u_c_t__S_u_p_p_o_r_t_

 Silicon Graphics, Inc., provides a comprehensive product
 support maintenance program for its products.

 If you are in the U.S. or Canada and would like support for
 your Silicon Graphics products, contact the Technical
 Assistance Center at
 1−800−800−4SGI.

 If you are outside these areas, contact the Silicon Graphics
 subsidiary or authorized distributor in your country.

 − 1 −

 2. I_n_s_t_a_l_l_a_t_i_o_n__I_n_f_o_r_m_a_t_i_o_n_

 This chapter lists supplemental information to the I_R_I_S_
 S_o_f_t_w_a_r_e_ I_n_s_t_a_l_l_a_t_i_o_n_ G_u_i_d_e_. The information listed here is
 product−specific; use it with the Installation Guide to
 install this product.

 2.1 D_i_a_g_n_o_s_t_i_c_s__S_u_b_s_y_s_t_e_m_s_

 The Diagnostics include these subsystems:

 d_i_a_g_.m_a_n_.d_i_a_g_ This subsystem contains manual pages for
 Diagnostics.

 d_i_a_g_.m_a_n_.r_e_l_n_o_t_e_s_ This subsystem contains release notes
 for Diagnostics.

 d_i_a_g_.s_w_.a_s_o_ This subsystem contains ASO Diagnostics
 software.

 d_i_a_g_.s_w_.a_t_m_ This subsystem contains ATM Diagnostics
 software.

 d_i_a_g_.s_w_.d_i_a_g_ This subsystem contains Base Diagnostics
 software.

 d_i_a_g_.s_w_.e_p_l_e_x_ This subsystem contains E−Plex
 Diagnostics software.

 d_i_a_g_.s_w_.f_d_d_i_ This subsystem contains FDDI−MEZ
 Diagnostics software.

 d_i_a_g_.s_w_.h_i_p_p_i_ This subsystem contains HIPPI
 Diagnostics software.

 d_i_a_g_.s_w_.m_c_o_ This subsystem contains Multi−Channel
 Option Diagnostics software.

 − 2 −

 2.2 D_i_a_g_n_o_s_t_i_c_s__S_u_b_s_y_s_t_e_m__D_i_s_k__S_p_a_c_e__R_e_q_u_i_r_e_m_e_n_t_s_

 This section lists the subsystems (and their sizes) of the
 Diagnostics option.

 If you are installing this option for the first time, the
 subsystems marked ‘‘default’’ are the ones that are
 installed if you use the ‘‘go’’ menu item. To install a
 different set of subsystems, use the ‘‘install,’’
 ‘‘remove,’’ ‘‘keep,’’ and ‘‘step’’ commands in i_n_s_t_ to
 customize the list of subsystems to be installed, then
 select the ‘‘go’’ menu item.

 Note: The listed subsystem sizes are approximate for a
 Power Challenge Onyx system. Refer to the I_R_I_S_
 S_o_f_t_w_a_r_e_ I_n_s_t_a_l_l_a_t_i_o_n_ G_u_i_d_e_ for information on
 finding exact sizes.

 Subsystem Name Subsystem Size
 (512−byte blocks)

 d_i_a_g_.m_a_n_.d_i_a_g_ (default) 304
 d_i_a_g_.m_a_n_.r_e_l_n_o_t_e_s_ (default) 88

 d_i_a_g_.s_w_.a_s_o_ (default) 1092
 d_i_a_g_.s_w_.a_t_m_ (default) 216

 d_i_a_g_.s_w_.d_i_a_g_ (default) 100712
 d_i_a_g_.s_w_.e_p_l_e_x_ (default) 136

 d_i_a_g_.s_w_.f_d_d_i_ (default) 200
 d_i_a_g_.s_w_.h_i_p_p_i_ (default) 452

 d_i_a_g_.s_w_.m_c_o_ (default) 488

 2.3 I_n_s_t_a_l_l_a_t_i_o_n__M_e_t_h_o_d_

 All of the subsystems for Diagnostics can be installed using
 IRIX. You do not need to use the miniroot. Refer to the
 I_R_I_S_ S_o_f_t_w_a_r_e_ I_n_s_t_a_l_l_a_t_i_o_n_ G_u_i_d_e_ for complete installation
 instructions.

 In this release, standalone diagnostics can be booted from
 the diagnostics CD−ROM. Using the standard CD−ROM
 installation procedure, with the CD−ROM drive at SCSI ID 5
 (for example), you can boot i_d_e_ as follows:

 For CHALLENGE/Onyx InfiniteReality/Onyx/Onyx Extreme − IP19:
 dksc(0,5,8)sashARCS dksc(0,5,7)stand/ide.IP19

 − 3 −

 For POWER CHALLENGE/POWER Onyx/POWER Onyx Extreme − IP21:
 dksc(0,5,8)sash64 dksc(0,5,7)stand/ide.IP21

 For CHALLENGE 10000/Onyx InfiniteReality 10000 − IP25:
 dksc(0,5,8)sash64 dksc(0,5,7)stand/ide.IP25

 2.4 P_r_e_r_e_q_u_i_s_i_t_e_s_

 To run the 6.2 Diagnostics, your workstation must be running
 IRIX release 6.2.

 2.5 O_t_h_e_r__I_n_s_t_a_l_l_a_t_i_o_n__I_n_f_o_r_m_a_t_i_o_n_

 The screen−compare gold files that contain the checksums of
 the images are installed by default. (Checksums are the
 files that are used for comparison with the generated screen
 images to determine whether each of the images is properly
 and correctly generated.) Gold files help detect the
 presence of failing graphics subsystems, and isolate the
 span(s) circuitry in which the failure occurs. The default
 screen−compare gold files should be sufficient for the vast
 majority of diagnostics requirements.

 The screen−compare gold files that contain the full images
 used in the Screen Compare tests are in the d_i_a_g_.s_w_.n_o_s_h_i_p_
 subsystem (Silicon Graphics [SGI] internal use only)
 subsystem for installation. By using /u_s_r_/d_i_a_g_s_/b_i_n_/f_b_t_o_o_l_,
 you can compare failing screen−compare images with the full
 screen−compare gold files, and highlight the differences
 graphically.

 Please note that the d_i_a_g_.s_w_.n_o_s_h_i_p_ subsystem might require
 up to 46000 blocks of disk space, and so might not be
 suitable for systems other than internal SGI repair
 stations.

 − 4 −

 − 1 −

 3. C_h_a_n_g_e_s__a_n_d__A_d_d_i_t_i_o_n_s_

 This release of the Diagnostics option installs on the
 CHALLENGE 10000, Oynx InfiniteReality 10000, POWER
 CHALLENGE, POWER Onyx, POWER Onyx Extreme, CHALLENGE, Onyx
 InfiniteReality, Onyx RealityEngine, Onyx Extreme, and IRIX
 Crimson systems.

 The IRIX diagnostics user interface and operation are
 largely unchanged from the previous release. The
 diagnostics have the same ‘‘look and feel’’ as the server
 and graphics diagnostics in the IRIX 5.3 and 6.1 releases.

 If you install the diagnostics on a RealityEngine2, or VTX
 system with Multi−Channel Option, please refer to the
 M_u_l_t_i_−C_h_a_n_n_e_l_ O_p_t_i_o_n_ O_w_n_e_r_’s_ G_u_i_d_e_ (Document number 007−
 1812−030) and M_u_l_t_i_−C_h_a_n_n_e_l_ O_p_t_i_o_n_ I_n_s_t_a_l_l_a_t_i_o_n_ I_n_s_t_r_u_c_t_i_o_n_s_
 (Document number 108−7047−020) for detailed information.

 3.1 S_t_a_n_d_a_l_o_n_e_ C_P_U_ D_i_a_g_n_o_s_t_i_c_s_−P_O_W_E_R_ C_H_A_L_L_E_N_G_E_/O_n_y_x_/O_n_y_x_
 E_x_t_r_e_m_e_

 A total of 7 standalone tests are available to test the IP21
 hardware in this release. These tests are built around a
 small diagnostic kernel called DK. When loaded on the
 system, the d_k_ diagnostics reside in the /s_t_a_n_d_ directory.
 Each test can be invoked by itself using the boot command
 listed in the table below. The d_k__a_l_l_ command can be used to
 invoke all these tests in sequence. Some of these tests run
 in mp mode. All output is to the ASCII console. These
 diagnostics are accessed from the PROM monitor with the
 following sequence:

 boot dksc(1,1,0)/stand/<dk_test>

 |d_k_ s_u_i_t_e_ |
 |_C_o_m_m_a_n_d_________D_e_s_c_r_i_p_t_i_o_n____________________B_o_o_t__C_o_m_m_a_n_d______________|
 |gparity gparity random stress test boot /stand/gparity |
 |gparity_addr gparity address stress test boot /stand/gparity_addr |
 |dcache dcache stress test boot /stand/dcache |
 |wgatherer write gatherer stress test boot /stand/wgatherer |
 |gcache3 gcache stress test boot /stand/gcache3 |
 |gcache4 gcache stress test boot /stand/gcache4 |
 |gcache4_10 more gcache stress test boot /stand/gcache4_10 |
 |dk_all all of the above boot /stand/dk_all |
 |___|

 Note: Due to the mp nature of the tests, some errors may
 point to incorrect slices. It is recommended that if
 these errors occur, CPU slices should be disabled and

 − 2 −

 the test rerun to isolate the failing slice.
 3.2 S_t_a_n_d_a_l_o_n_e_ C_P_U_ D_i_a_g_n_o_s_t_i_c_s_−C_H_A_L_L_E_N_G_E_ 1_0_0_0_0_/O_n_y_x_
 I_n_f_i_n_i_t_e_R_e_a_l_i_t_y_ 1_0_0_0_0_

 A total of 5 standalone tests are available to test the IP25
 hardware in this release. These tests are built around a
 micro diagnostic kernel called MDK. When loaded on the
 system, the m_d_k_ diagnostics reside in the /s_t_a_n_d_ directory.
 Each test can be invoked by itself using the boot command
 listed in the table below. Some of these tests run in mp
 mode. All output is to the ASCII console. These
 diagnostics are accessed from the PROM monitor with the
 following sequence:

 boot dksc(1,1,0)/stand/<mdk_test>

 __
 |m_d_k_ s_u_i_t_e_ |
 |_C_o_m_m_a_n_d_______D_e_s_c_r_i_p_t_i_o_n_______________________B_o_o_t__C_o_m_m_a_n_d____________|
 |pcache primary cache stress test boot /stand/pcache |
 |cerr_tpath more primary cache test boot /stand/cerr_tpath |
 |alu ALU stress test boot /stand/alu |
 |tlb TLB stress test boot /stand/tlb |
 |sbkiller random instruction stress test boot /stand/sbkiller |
 |__|

 3.3 S_y_s_t_e_m__D_i_a_g_n_o_s_t_i_c_s__U_s_e_r__I_n_t_e_r_f_a_c_e_

 The user interface has largely remained the same as in the
 previous release. This basic user interface is menu−driven
 and has the same ‘‘look and feel’’ as in previous releases.

 The major features of the user interface are:

 o The type of g2aphics platform (for example,
 RealityEngine) is determined upon login (2s d_i_a_g_), and
 you are prompted by a query (RealityEngine example
 shown):

 RealityEngineII Graphics: Pipe 0 5−span system
 Automatically run RealityEngine diagnostics? (y or n)

 − 3 −

 o A top−level diagnostics menu appears on the screen if
 you type y.

 The following items are usually included in the top−
 level menus for a system with graphics installed:

 − Selection of graphics pipe for testing.

 − Selection of full or quick system check.

 − Selection of full or quick server check.

 − Selection of full or quick graphics check.

 − Selection of board−level graphics diagnostics.

 − Selection of video, network and I/O options check.

 − Selection of automatic demos.
 The following example shows the RealityEngine2 top−
 level menu (the top−level menu is slightly different on
 different platforms):

 RealityEngine/Onyx SYSTEMS DIAGNOSTICS TEST TIME (hr:min)
 −−

 (Average test time based on a 32MB RealityEngine/Onyx 5−span
 system)

 1− Pipe Select
 2− Quick System check 0:26
 3− Full System check 1:08/loop
 4− Quick Server check 0:30
 5− Full Server check 0:40/loop
 6− Quick Graphics check 0:19
 7− Full Graphics check 0:22
 8− GE10 Board Diagnostics Menu
 9− RM4/RM5 Board Diagnostics Menu
 10− DG2 Board Diagnostics Menu
 11− CRC System Screen Compares 0:12
 12− System(Video/Network/IO) Options Menu
 13− View Results of diagnostic tests Menu
 14− Automatically run selected Graphics Demos
 15− EXIT RealityEngine Systems Diagnostics

 Please choose an item (1−15) >

 A top−level diagnostics menu is also provided for
 server and Extreme systems.

 − 4 −

 Note: All graphics diagnostics must be run using an
 ASCII terminal (or equivalent) that is connected
 to one of the serial ports. The graphics
 diagnostics (‘‘Full System Check’’ or ‘‘Quick
 System Check’’) inevitably fail if run from the
 graphics console.

 − 5 −

 o When selecting any of the system or server check tests,
 you are asked to provide the system name for the
 Ethernet test. If a null entry is made, the Ethernet
 test is skipped. If you select the full system check,
 you are asked to enter the loop count (the loop count
 defaults to 8 when a null entry is made). If you
 select the full server check, you are asked to enter
 the loop count (the loop count defaults to 20 when a
 null entry is made).

 o When selecting graphics board−level tests, a secondary
 menu is available for selecting:

 − Quick check of the board

 − Full check of the board

 − Run a specific test

 These tests are executed on the selected single
 graphics pipe only.

 o When selecting the ‘‘System (Video/Network/IO) Options
 Check’’ menu item, a new secondary menu is displayed
 for selecting:

 − Sirius Video Option Menu

 − Multi−Channel Option Menu

 − HIPPI Option Test

 − ASO Option Test

 − ATM Option Test

 − FDDI Option Test

 − I/O Options Menu

 − 6 −

 o When selecting the ‘‘Sirius Video Options Menu’’ item
 and the Sirius Video Option is detected, a new menu is
 displayed for selecting:

 − Run IDE Loop (IDE arg)

 − Run JTAG Connectivity (JTAG) Tests

 − Run Autocal

 − Run Clock calibration

 − Run Digital Functional (FUNC) Tests

 − Run Analog (vo2_analog.csh) Tests

 − Run IDE & Functional (FULL) Tests

 − Initialize EEPROM & S/N entry

 − Run Blending Tests

 − Run VLAN Functional Tests

 − Run PAB1 Tests

 − Run VO2 GNG Cal & PreScreen Tests

 The above Sirius tests are currently not in the 6.2
 Diagnostics package. To successfully start and run
 these tests, the s_i_r_i_u_s_ and s_i_r_i_u_s__n_o_s_h_i_p_ software must
 be installed first.

 o When selecting the ‘‘Multi−Channel Options Menu’’ item
 and the Multi−Channel Option is detected, the menu
 shown in section 3.7 is displayed. Please refer to
 section 3.7 for further detail.

 − 7 −

 o When selecting the ‘‘I/O Options Menu’’ menu item, a
 secondary menu is displayed for selecting:

 − Full check of system options

 − 1/4−inch cartridge/DAT tape test

 − 1/2−inch tape test

 − Printer test (IKON board)

 − 6−port test

 − Exabyte (8 mm Tape) test

 − CDROM test

 − DLT (sled/desk top/stacker) test

 During automatic testing of system options, you can now
 skip testing a defective tape drive or a tape drive
 with no tape inside. If the specified tape drive is
 not recognized, you are notified. For each tape test,
 you can specify the number of test loops or use the
 default of 2 loops.

 − 8 −

 3.4 E_r_r_o_r__L_o_g__F_i_l_e_s_

 Log files are created by various scripts for recording the
 progress of each execution and any errors that might occur
 during execution. These files should be examined after each
 execution for errors. Before the scripts start executing
 the diagnostics, the existence of these log files is checked
 and they are erased if present. All log files are located
 in /u_s_r_/t_m_p_ and they are listed as follows:

 o q_u_i_c_k_s_y_s_.l_o_g_ − created for quick system check

 o f_u_l_l_s_y_s_.l_o_g_(0_,1_,2_) − created for full system check on
 the selected graphics pipe

 o q_u_i_c_k_s_v_r_.l_o_g_ − created for quick server check

 o f_u_l_l_s_v_r_.l_o_g_ − created for full server check

 o q_u_i_c_k_g_r_.l_o_g_(0_,1_,2_) − created for the quick graphics
 check on the selected graphics pipe

 o f_u_l_l_g_r_.l_o_g_(0_,1_,2_) − created for the full graphics check
 on the selected graphics pipe

 o i_d_e_.l_o_g_(0_,1_,2_) − created for the i_d_e_ tests on the
 selected graphics pipe

 o o_p_t_i_o_n_s_.l_o_g_ − created for options testing

 o p_r_e_.e_l_o_g_ − created for quick system check with errors
 only

 o r_u_n_.e_l_o_g_ − created for full system check with errors
 only

 − 9 −

 o For RealityEngine2 and VTX systems:

 − g_e_1_0_.l_o_g_(0_,1_,2_) − created for the ge10 tests on
 the selected graphics pipe

 − r_m_4_.l_o_g_(0_,1_,2_) − created for the rm4/rm5 tests on
 the selected graphics pipe

 − d_g_2_.l_o_g_(0_,1_,2_) − created for the dg2 tests on the
 selected graphics pipe

 − v_s_2_.l_o_g_(0_,1_,2_) − created for the Multi−Channel
 Option tests on the selected graphics pipe

 − (H_o_s_t_n_a_m_e_).c_r_c_.l_o_g_(0_,1_,2_) − created for screen−
 compares on the selected graphics pipe

 − c_c_o_m_p_l_o_o_p_.l_o_g_(0_,1_,2_) − created for screen−compares
 on the selected graphics pipe

 3.5 S_y_s_t_e_m_ D_i_a_g_n_o_s_t_i_c_s_−P_O_W_E_R_ C_H_A_L_L_E_N_G_E_, P_O_W_E_R_ O_n_y_x_, a_n_d_
 P_O_W_E_R_ O_n_y_x_ E_x_t_r_e_m_e_

 3.5.1 M_e_m_o_r_y__T_e_s_t_s_ The existing system level memory tests
 invoked by crash1 (memmain) and crash7 (memaddr.BIT) have
 been revised to lock the test area in memory so it doesn’t
 get swapped to disk during the test.

 A new test, tagram, is now also invoked by crash1. This test
 will run on each CPU and test the cache_tag RAMs by writing
 and reading several locations from each page of memory.

 − 10 −

 3.5.2 O_S__T_e_s_t__S_u_i_t_e_s_ A group of OS Test Suites have been
 added to the full system check to test the 64 bit
 functionality in the system.

 a_w_a_l_k_ − address walk test

 u_t_l_b_ − measure u_t_l_b_m_i_s_s_ performance

 t_l_b_t_h_r_a_s_h_ − thrash 2nd level tlb

 k_i_d_s_ − fork and sproc memory test

 c_c_t_e_s_t_ − test the sync register support of the CC chip

 i_o_ − test SCSI ports, serial and parallel ports, network
 operations

 i_u__t_e_s_t_ − quick test for the IP21 IU

 n_e_t_s_t_r_e_s_s_ − HIPPI, FDDI, and EFAST tests
 The SCSI port tests are normally turned off since they’re
 destructive for mounted logical volumes on SCSI disks and
 any unmounted SCSI disks. To enable the SCSI port tests,
 type the following before selecting full system check:

 setenv MFG_ONLY

 − 11 −

 3.5.3 R_A_I_D__S_u_p_p_o_r_t_ This release of the diagnostics
 supports the testing of RAID configurations. Before running
 the RAID scripts, be sure to mount all filesystems you don’t
 want overwritten. The RAID tests destroy all data on RAID
 disks that are not mounted as part of a filesystem.

 To run the RAID scripts, first type:

 setenv MFG_ONLY

 to turn on the scripts. If you want to run the scripts
 without user confirmation, type:

 setenv OK_TO_TRASH

 SGI does n_o_t_ recommend that you run the RAID scripts with
 the OK_TO_TRASH variable set.

 Once you have set the environment variables, type:

 mfg.raid.start

 to actually run the tests. The RAID scripts verify that the
 RAID−specific hardware and software are functioning. The
 media on the RAID disks can also be tested by running the
 d_i_s_k_r_a_n_d_.s_t_a_r_t_ script and using the same environment
 variables (MFG_ONLY, OK_TO_TRASH) as m_f_g_.r_a_i_d_.s_t_a_r_t_.
 d_i_s_k_r_a_n_d_.s_t_a_r_t_ runs on all unmounted disks on your system,
 whether or not they are RAID disks, so be very careful when
 using this script.

 Again, these tests destroy the data on non−mounted disks so
 be very careful when using these tests.

 − 12 −

 3.6 R_e_a_l_i_t_y_E_n_g_i_n_e_2__a_n_d__V_T_X__D_i_a_g_n_o_s_t_i_c_s_

 For all RealityEngine2 and VTX platforms, the following
 items from the top menu can now be performed on a pre−
 selected pipe:

 Full system check
 CRC screen compares
 Automatic demos

 To select a pipe, choose item 1 from the top menu.

 Some new tests have been added for this release. All the
 diagnostics for GE10/GE10V, RM4/RM5, and DG2 are listed in
 the following tables with brief descriptions of their
 operations.

 3.6.1 g_e_1_0__(_G_E_1_0_/_G_E_1_0_V__i_d_e__T_e_s_t_)_ The following GE10
 diagnostics are listed in the order they are run when full
 system check or full graphics check is selected.

 Note: In this section, information for ‘‘GE10’’ applies as
 well to the GE10V board.

 __
 |_i_d_e__C_o_m_m_a_n_d______T_e_s_t__N_u_m_b_e_r____D_e_s_c_r_i_p_t_i_o_n_________G_F_X__B_o_a_r_d__|
 |PIO_regs 310 FCG(GE10)/PIO GE10 |
 | reg test |
 |JTAG_control 300 CP2/GEs JTAG GE10 |
 | connectivity |
 | test |
 |geconnect 320 GEs connectivity GE10 |
 | test |
 |PIO_fifo_regs 330 PIO FIFO GE10 |
 | registers test |
 |__|
 |CP_ucode_scan 360 CP2 SRAM scan GE10 |
 | test |
 |PB_scan 390 GEF diagnostic GE10 |
 | registers scan |
 | test |
 |GEF_scan 460 GEF GE10 |
 | functionality |
 |__|

 − 13 −

 __
 |_i_d_e__C_o_m_m_a_n_d______T_e_s_t__N_u_m_b_e_r____D_e_s_c_r_i_p_t_i_o_n_________G_F_X__B_o_a_r_d__|
 |PB_PIO 400 PB/PIO GE10 |
 | connectivity |
 | test |
 |PB_dram_PIO 410 GEF DRAM GE10 |
 | validity test |
 |PIO_PIO 420 CP2/GEF/host GE10 |
 | full |
 | connectivity |
 | test |
 |ODMA_swap 440 ODMA/host swap GE10 |
 | functionality |
 | test |
 |ODMA 450 ODMA/host GE10 |
 | functionality |
 | test |
 |__|
 |GEF_PIO 470 GEF GE10 |
 | functionality |
 | test |
 |GEF_conv_ODMA 480 GEF GE10 |
 | functionality |
 | test |
 |GEF_ODMA 490 GEF GE10 |
 | functionality |
 | test |
 |GE_intr 510 GE10/GE10V GE10 |
 |__|
 |IDMA_ODMA 520 IDMA/ODMA GE10 |
 | functionality |
 | test |
 |IDMA_PIO 530 IDMA GE10 |
 | functionality |
 | test |
 |FCG_func 550 FCG functional GE10 |
 | Test |
 |CP2_func 560 CP2 functional GE10 |
 | Test |
 |I860_func 590 I860 functional GE10 |
 | Test |
 |__|

 − 14 −

 3.6.2 r_m_4__(_R_M_4_/_R_M_5__i_d_e__T_e_s_t_)_ The following RM4/RM5 i_d_e_
 tests are listed in the order they are run when full system
 check or full graphics check is selected:

 __
 |_i_d_e__C_o_m_m_a_n_d____T_e_s_t__N_u_m_b_e_r____D_e_s_c_r_i_p_t_i_o_n_________G_F_X__B_o_a_r_d__|
 |rmreset 100 Reset the RM4/RM5 |
 | RM4/RM5 |
 |__|
 |rmconfig 101 Configuration RM4/RM5 |
 | verification |
 |__|
 |rmconnect 102−109 Connectivity RM4/RM5 |
 | test |
 |__|
 |rmreadback 111 IMP/IB readback RM4/RM5 |
 |__|
 |rmreset 100 Reset the RM4/RM5 |
 | RM4/RM5 |
 |__|
 |syscon 119−121 TBus/RBus RM4/RM5 |
 | connectivity |
 |__|
 |rmtbus 110 TBus signature RM4/RM5 |
 | test |
 |__|
 |rmimp 115 IMP signature RM4/RM5 |
 |__|
 |rmimpmem 112−114 IMP RM4/RM5 |
 | (framebuffer) |
 | memory test |
 |__|
 |rmtexmem 116−118 TA/TD (texture) RM4/RM5 |
 |__|

 − 15 −

 3.6.3 d_g_2__(_D_G_2__i_d_e__T_e_s_t_)_ The following DG2 i_d_e_ tests are
 listed in the order they are run when full system check or
 full graphics check is selected:

 |_i_d_e__C_o_m_m_a_n_d_____T_e_s_t__N_u_m_b_e_r____D_e_s_c_r_i_p_t_i_o_n_________G_F_X__B_o_a_r_d__|
 |dg_init 10 Initialization DG2 |
 | test |
 |___|
 |dg_connect 10 JTAG DG2 |
 | connectivity |
 |___|
 |dg_fma 10 Function manager DG2 |
 | SRAM test |
 |___|
 |___|
 |dg_regs 10 Register test DG2 |
 |___|
 |dg_init 10 Initialization DG2 |
 |___|
 |dg_list 10 HV list test DG2 |
 |___|
 |___|
 |dg_xilinx 10 Xilinx load− DG2 |
 | read−verify test |
 |___|
 |dg_xmapmem 10 Xmap−only memory DG2 |
 |___|
 |dg_xmapcrc 10 Xmap CRC test DG2 |
 |___|
 |dg_xmapdata 10 Xmap−>DAC DG2 |
 |___|
 |dg_promcheck 10 EEPROM header DG2 |
 | and checksum |
 | verification |
 | test |
 |___|

 − 16 −

 3.7 M_u_l_t_i_−_C_h_a_n_n_e_l__O_p_t_i_o_n__(_V_S_2_)__D_i_a_g_n_o_s_t_i_c_s_

 Multi−Channel Option diagnostics are included in the 6.0.1
 Diagnostics. To run MCO diagnostics, do not run
 RealityEngine diagnostics when prompted after logging in as
 d_i_a_g_. Instead, enter vs2 a_t_ t_h_e_ d_i_a_g_ p_r_o_m_p_t_. A_ m_e_n_u_ s_i_m_i_l_a_r_
 t_o_ t_h_e_ f_o_l_l_o_w_i_n_g_ m_e_n_u_ i_s_ d_i_s_p_l_a_y_e_d_ o_n_ t_h_e_ s_c_r_e_e_n_:

 RealityEngine Multi−Channel Option Diagnostics − Test Time(mi:se)
 −−−
 (these average test times are based on 10−span RE/Onyx systems)

 1− Pipe Select
 2− Quick Check of MCO................................... 1:35
 3− Full Check of MCO.................................... 10:45
 4− MCO Board Initialization Test........................ 0:20
 5− MCO Register Test.................................... 0:40
 6− MCO DAC Test... 0:35
 7− MCO Read DAC Test Register........................... 0:30
 8− MCO Load Gamma Constant.............................. 0:25
 9− MCO XILINX Test...................................... 0:35
 10− MCO VOF Loader....................................... 0:40
 11− MCO Data Path Test................................... 7:00
 12− View Test Output
 13− EXIT from menu

 Please choose an item (1−13) >

 T_h_i_s_ m_e_n_u_ l_i_s_t_s_ a_l_l_ t_h_e_ M_C_O_ d_i_a_g_n_o_s_t_i_c_s_ a_v_a_i_l_a_b_l_e_ i_n_ t_h_i_s_
 r_e_l_e_a_s_e_. F_o_r_ d_e_t_a_i_l_e_d_ d_e_s_c_r_i_p_t_i_o_n_s_ o_f_ t_h_e_s_e_ t_e_s_t_s_, r_e_f_e_r_ t_o_
 t_h_e_ o_n_l_i_n_e_ r_e_f_e_r_e_n_c_e_ p_a_g_e_s_ (m_a_n_ p_a_g_e_s_) f_o_r_ e_a_c_h_ t_e_s_t_. M_C_O_
 d_i_a_g_n_o_s_t_i_c_s_ t_e_s_t_ d_e_s_c_r_i_p_t_i_o_n_s_ a_r_e_ a_l_s_o_ i_n_c_l_u_d_e_d_ i_n_ t_h_e_
 M_u_l_t_i_−C_h_a_n_n_e_l_ O_p_t_i_o_n_ I_n_s_t_a_l_l_a_t_i_o_n_ I_n_s_t_r_u_c_t_i_o_n_s_.

 In a multi−pipe MCO configuration system, test(s) run on the
 default pipe 0, and test results are logged in
 /u_s_r_/t_m_p_/v_s_2_.l_o_g_0_.

 If you wish to run MCO diagnostic test(s) on a pipe other
 than pipe 0, you need to use ‘‘Pipe Select’’ to switch to
 the desired pipe number. For example, to look at the test
 output for pipe 2, choose the ‘‘Pipe Select’’ option from
 the menu, then specify pipe 2 before choosing item 12,
 ‘‘View Test Output.’’

 − 17 −

 3.8 O_n_y_x__E_x_t_r_e_m_e__D_i_a_g_n_o_s_t_i_c_s_

 All the diagnostics for the Extreme graphics are listed in
 the tables with brief descriptions of their operations.

 3.8.1 g_r_2__(_G_R_2__i_d_e__T_e_s_t_)_ GR2 diagnostics are run on the
 POWER Onyx Extreme systems.

 |_i_d_e__C_o_m_m_a_n_d_______T_e_s_t__N_u_m_b_e_r____D_e_s_c_r_i_p_t_i_o_n_________G_F_X__B_o_a_r_d__|
 |gr2_reset 1503 GR2 reset test GR2 |
 |gr2_videoclk 1505 Select specified GR2 |
 | video clock |
 |gr2_unstall NA Unstall HQ2/GE7 GR2 |
 | and set hq ucode |
 | PC to 0 |
 |gr2_inithq 1560 Initialize HQ2 GR2 |
 | internal |
 | registers |
 |gr2_wrfifo 1550 Write FIFO token GR2 |
 | number |
 |___|
 |gr2_tram 2120 General memory GR2 |
 | test program |
 |gr2_fgbgram 2130 Read/write to GR2 |
 |___|
 |gr2_rdram 2110 Read specified GR2 |
 | locations from |
 | RAM |
 |___|
 |gr2_wrram 2100 Write to GR2 |
 | locations in RAM |
 |gr2_rdram12 2140 Read RAM1/2 of GR2 |
 | GE7 |
 |gr2_xcol 1130 Check XMAP5 GR2 |
 |___|
 |gr2_txmap 1140 Test XMAP5 GR2 |
 | functions |
 |gr2_txmap_clut 1150 Test color GR2 |
 | lookup table |
 |gr2_wrx 1100 Write to XMAP5 GR2 |
 |gr2_rdx 1120 Read from XMAP5 GR2 |
 |___|

 − 18 −

 _i_d_e__C_o_m_m_a_n_d_______T_e_s_t__N_u_m_b_e_r____D_e_s_c_r_i_p_t_i_o_n_________G_F_X__B_o_a_r_d__ |
 gr2_xrgb 1110 |rite RGB value GR2 |
 gr2_lt 1520 |oad timing GR2 |
 |ables |
 gr2_lr 1525 |nitialize VC1 GR2 |
 |fter timing |
 |able set by |
 |r2_lt |
 gr2_initvc1 1530 |oad timing GR2 |
 |ables into VC1 |
 gr2_vc1reg 1720 |est VC1 GR2 |
 |egister |
 gr2_vc1_sram 1740 |est VC1 SRAM GR2 |
 gr2_rvc1 1710 |ead VC1 GR2 |
 |egister |
 ________________________________|_____________________________ |
 gr2_wvc1 1700 |rite VC1 GR2 |
 |egister |
 gr2_tvc1 1730 |ead/write to GR2 |
 |C1 registers |
 gr2_initclock 1515 |nitialize clock GR2 |
 |enerator |
 gr2_vinitdac 900 |nitialize RAM GR2 |
 |AC |
 ___ |
 gr2_vrgb 930 |rite RGB values GR2 |
 |o DAC |
 gr2_vwrdac 920 |rite values to GR2 |
 |ACs |
 ________________________________|_____________________________ |
 gr2_vrddac 940 |ead value from GR2 |
 ___ |
 gr2_vtestdac 910 |rite/read GR2 |
 |alues to DACs |
 gr2_wrhqint 1540 |rite HQ2 GR2 |
 |nternal |
 |egisters |
 ________________________________|_____________________________ |
 gr2_rdhqint 1545 |ead HQ2 GR2 |
 |nternal |
 ___ |
 gr2_wrconfig 1500 |et board GR2 |
 |onfiguration |
 |egister |
 gr2_genlock 1510 |urn Genlock on GR2 |
 |r off |
 |est VM2 |
 |itplanes |

 − 19 −

 |gr2_bp 300 GR2 |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |

 − 20 −

 |___|
 |gr2_zb 310 Test ZB4 z− GR2 |
 | buffer |
 |gr2_load_ucode 1570 Load GE/HQ GR2 |
 | microcode |
 |gr2_shram 600 Test the shram GR2 |
 |gr2_ram12 601 Test internal GE GR2 |
 |___|

 __
 |_i_d_e__C_o_m_m_a_n_d______T_e_s_t__N_u_m_b_e_r____D_e_s_c_r_i_p_t_i_o_n_________G_F_X__B_o_a_r_d__|
 |gr2_seedrom 602 Test the seed GR2 |
 | ROM |
 |gr2_sqrom 603 Test the square GR2 |
 | root of ROM |
 |gr2_gebus 604 Test the ring GR2 |
 | bus in GE7 |
 |gr2_gefloat 606 Test the GR2 |
 | integer/floating |
 | point operations |
 | for GE7 |
 |gr2_ge7fifo 605 Test the GE RE GR2 |
 | FIFO |
 |gr2_geseq 609 Test the GE GR2 |
 | sequencer logic |
 |gr2_gefpucond 608 Test the GE FPU GR2 |
 | condition flags |
 |gr2_gespfcond 607 Test the GE7 SPF GR2 |
 | condition modes |
 |gr2_ge7test 600 Test full GE7 GR2 |
 |__|
 |gr2_hq2test 100 Test HQ2 GR2 |
 |gr2_getVBver 1580 Check video back GR2 |
 | end version |
 |__|

 3.9 I_n_f_i_n_i_t_e_R_e_a_l_i_t_y__D_i_a_g_n_o_s_t_i_c_s_

 The diagnostics for InfiniteReality are not part of the 6.2
 diagnostics release. It can be installed as part of the 6.2
 e_o_e_ subsystem software. Please refer to the on−line man
 page, i_r_s_a_u_d_i_t_, for the full detail on the InfiniteReality
 diagnostics.

 3.10 D_i_a_g_n_o_s_t_i_c_s__f_o_r__N_e_t_w_o_r_k__a_n_d__A_u_d_i_o__O_p_t_i_o_n_s_

 These diagnostics are newly added to the 6.2 Diagnostics
 package. Currently, these diagnostics can be selected from
 the ‘‘System (Video/Network/IO) Options’’ menu.

 − 21 −

 3.10.1 X_P_I__F_D_D_I__D_i_a_g_n_o_s_t_i_c_s_ The following commands are
 available for testing the XPI FDDI option.

 − d_a_n_g_ − Writes and reads the DANG registers. Please
 refer to the man page for more detail.

 − f_i_r_s_t_ − Downloads and executes diagnostic firmware for
 testing the XPI FDDI option. Please refer to the man
 page for more detail.

 − m_a_c_.c_h_e_c_k_ − Verifies and assign addresses to the XPI
 FDDI option. Please refer to the man page for more
 detail.

 3.10.2 A_S_O__D_i_a_g_n_o_s_t_i_c_s_ Please refer to the on−line man
 page, s_a_m_z_d_i_a_g_s_ for the full detail on the diagnostics for
 the ASO option.

 3.10.3 E_P_L_E_X__D_i_a_g_n_o_s_t_i_c_s_ Please refer to the on−line man
 page, e_p_d_i_a_g_s_ for the full detail on the diagnostics for the
 EPLEX option.

 3.10.4 H_I_P_P_I__D_i_a_g_n_o_s_t_i_c_s_ The following commands are
 available for testing the HIPPI option.

 − b_l_a_s_t_ − Sends 1 gigabyte of random data through the
 HIPPI board and measures the time of data transfer.
 Please refer to the man page for more detail.

 − d_m_a__t_e_s_t_ − Writes and reads source and destination
 memories using the DMA transfer engines. Please refer
 to the man page for more detail.

 − m_e_m__t_e_s_t_ − Reads the ID register located on the F chip
 for the HIPPI board; reads the VMECC chip configuration
 register; reads the VMECC error cause register. Writes,
 reads and compares random data for the selected memory
 areas (source or destination or both) with/without
 parity. Also does an address test. Please refer to the
 man page for more detail.

 − r_a_w_d_i_ − Writes random data packets through the HIPPI
 interface; reads them back and compares for data
 integrity problems. Please refer to the man page for
 more detail.

 − r_a_w_d_i_2_ − Performs the same operations as r_a_w_d_i_ and
 further randomize the size of the packets. Please refer
 to the man page for more detail.

 − 22 −

 − s_t_r_e_s_s__a_1_6_ − Reads the ID register located on the F
 chip for the HIPPI board; reads the VMECC chip
 configuration register. Writes and reads the VMECC
 location 0x4000 in the small window space checking for
 data miscompares. Please refer to the man page for
 more detail.

 − s_t_r_e_s_s__f_c_i_ − Reads the ID register located on the F
 chip for the HIPPI board; reads the VMECC chip
 configuration register. Writes and reads the VMECC
 location 0x1014 in the small window space checking for
 data miscompares. Please refer to the man page for
 more detail.

 − 1 −

 4. K_n_o_w_n__P_r_o_b_l_e_m_s__a_n_d__W_o_r_k_a_r_o_u_n_d_s_

 4.1 S_t_a_n_d_a_l_o_n_e_ D_i_a_g_n_o_s_t_i_c_s_−P_O_W_E_R_ C_H_A_L_L_E_N_G_E_/O_n_y_x_/O_n_y_x_
 E_x_t_r_e_m_e_

 o The SCSI tests only test the primary SCSI bus on the
 master IO4.

 o The Standalone Diagnostics can only be booted on the
 serial port of IP19 systems with RealityEngine2
 graphics. Attempts to boot in the graphics textport
 will hang. Use "setenv console d<CR> init<CR>" from
 the prom menu before booting Standalone Diagnostics.

 4.2 S_y_s_t_e_m__D_i_a_g_n_o_s_t_i_c_s_−_P_O_W_E_R__C_H_A_L_L_E_N_G_E_/_O_n_y_x_/_O_n_y_x__E_x_t_r_e_m_e_

 o The diagnostics login script calls /u_s_r_/g_f_x_/s_t_o_p_g_f_x_ to
 bring the system graphics to a known state before
 testing. Remotely logging in as d_i_a_g_ onto a system
 running diagnostics in the presence of X_s_g_i_ and running
 diagnostics automatically causes the ongoing graphics
 test to fail.

 To check the state of a system running diagnostics, log
 in as g_u_e_s_t_ or r_o_o_t_, which does not cause this problem.

 o On a busy network, the crash5 script may lose up to 10%
 of the network packets due to excessive traffic on the
 net. This is not usually a problem with the hardware in
 the system, but is due to a busy network. If the crash5
 script indicates packet losses, manually ping the
 remote system to verify that you are able to
 communicate with it. If you are able to ping the system
 with no packet loss, it indicates that the previous
 failure was caused by a busy net and you can ignore the
 crash5 failure.

 4.3 R_e_a_l_i_t_y_E_n_g_i_n_e_2__a_n_d__V_T_X__D_i_a_g_n_o_s_t_i_c_s_

 o When running the RealityEngine2 and VTX board−level
 tests, typing <Ctrl−C> to halt i_d_e_ might hang i_d_e_. If
 you encounter this problem, reboot the system to get
 rid of the i_d_e_ process. This bug is intermittent.

 − 2 −

 4.4 O_n_y_x__E_x_t_r_e_m_e__D_i_a_g_n_o_s_t_i_c_s_

 o The screen compares may hang if the DANG i_d_e_ tests are
 previously executed. If you encounter this problem,
 reboot the system and run the screen compares again.

 − 1 −

 5. B_u_g__F_i_x_e_s_

 5.1 S_t_a_n_d_a_l_o_n_e_ D_i_a_g_n_o_s_t_i_c_s_−C_H_A_L_L_E_N_G_E_, O_n_y_x_, a_n_d_ O_n_y_x_
 E_x_t_r_e_m_e_

 o The e_p_c__p_l_p_t_e_s_t_ test no longer times out waiting for
 PPORT DMA interrupt. (#286933)

 o The c_a_c_h_e_4_8_ and c_a_c_h_e_4_9_ tests no longer complains about
 no hint messages when it fails. (#287056)

 o The s_c_s_i__a_l_l_ test no longer hangs intermittently.
 (#316908)

 o IP25 Standalone i_d_e_ no longer has boot problems.
 (#411925)

 o Standalone i_d_e_ no longer hangs during boot on dual−IO4
 systems. (#411929)

 o Memory tests no longer hang on systems with RE
 graphics. (#411930)

 o d_a_n_g__m_d_m_a_ works on IP25 systems with Extreme graphics.
 (#427033)

 o Standalone i_d_e_ no longer prints failure messages for
 SCIP controllers on startup. (#431517)

 − 1 −

 1. P_O_W_E_R__C_H_A_L_L_E_N_G_E_/_O_n_y_x_/_O_n_y_x__E_x_t_r_e_m_e__S_t_a_n_d_a_l_o_n_e__i_d_e_

 Note: Starting with the 6.2 Diagnostics release, the
 standalone i_d_e_ no longer resides in the /stand
 directory. It now resides in the /usr/stand
 directory. The command to boot i_d_e_ is: b_o_o_t_
 /u_s_r_/s_t_a_n_d_/i_d_e_.

 This appendix includes detailed descriptions of the POWER
 CHALLENGE/Onyx/Onyx Extreme Standalone i_d_e_ tests, organized
 by board type.

 The POWER CHALLENGE standalone i_d_e_ is based on the Personal
 IRIS/IRIS Indigo i_d_e_ rather than on the POWER Series i_d_e_.
 As such, the user interface is similar to the IRIX−level
 graphical i_d_e_, which was originally based on the same code.

 Although tests can be invoked individually, usually prepared
 test scripts are run, ensuring more complete coverage while
 requiring less typing.

 At the most basic level, the standalone i_d_e_ user interface
 is simple−individual tests and scripts can be run by typing
 their name at the command line. Although looping, condition
 execution, report verbosity level changing, user
 programmability, and many other advanced features are
 available, there is no need to master the advanced features
 to test the system completely.

 Upon starting, i_d_e_ prints a list of available test scripts,
 then waits at the command line for user input. At this
 point, a command or script name can be typed to run a test,
 or you can type help for more information. The h_e_l_p_ command
 without parameters returns the message:

 help [all | commands | sets | loop | ifthen | cmd | dbg]

 − 2 −

 h_e_l_p_ with a parameter−h_e_l_p_ c_o_m_m_a_n_d_s_, for example−gives more
 information on the chosen topic. In the example given, i_d_e_
 prints a list of all available i_d_e_ commands, a list long
 enough to require several screens of information. If the
 output requires more than one screen to display, the h_e_l_p_
 command pauses at the bottom of each screen until you press
 the space bar or <Return> key.

 Report levels determine the amount of information each test
 prints to the screen when run. The default report level of
 2 usually prints the name of the test and whether it passed
 or failed. As you increase the report level, the amount of
 information returned increases. The report level range is 1
 (least information) to 5 (debug level−almost too much
 information). To change the report level, type
 report=<l_e_v_e_l_#> at the command line. For example, r_e_p_o_r_t_=5_
 sets reporting to its most verbose. Unless tests fail and
 more information is needed, the default level of 2 is
 probably the most useful.

 Although more complex looping structures are available (see
 h_e_l_p_ l_o_o_p_ for more information), the only two needed for
 most test situations are the r_e_p_e_a_t_ and w_h_i_l_e_ commands.

 r_e_p_e_a_t_ is easier to use−type repeat <c_o_u_n_t_#> <c_o_m_m_a_n_d_> and
 <c_o_m_m_a_n_d_> is executed <c_o_u_n_t_#> times. The command line
 r_e_p_e_a_t_ 5_ m_e_m_3_ runs the m_e_m_3_ command 5 times.

 w_h_i_l_e_ has the form while (c_o_n_d_i_t_i_o_n_) <c_o_m_m_a_n_d_>. c_o_n_d_i_t_i_o_n_
 is a numeric value; it means that as long as c_o_n_d_i_t_i_o_n_ is
 non−zero, <c_o_m_m_a_n_d_> executes again and again. The w_h_i_l_e_
 command is especially useful for scope loops. Although it
 can terminate if c_o_n_d_i_t_i_o_n_ goes non−zero, the most common
 use of w_h_i_l_e_ ignores that possibility by setting c_o_n_d_i_t_i_o_n_
 to a constant. For example, w_h_i_l_e_ (1_) m_e_m_3_ repeats the m_e_m_3_
 command until you turn off the power or press the <Ctrl−C>
 key.

 One of the nicer features of i_d_e_ is that for looping
 purposes, commands can be grouped−i_d_e_ treats both c_o_m_m_a_n_d_
 and {c_o_m_m_a_n_d_1_; c_o_m_m_a_n_d_2_; c_o_m_m_a_n_d_3_} as a single command. For
 example, the command r_e_p_e_a_t_ 1_0_ {m_e_m_2_; m_e_m_3_; m_e_m_1_} loops 10
 times, each time running the m_e_m_2_, m_e_m_3_, and m_e_m_1_ tests in
 the order given.

 − 3 −

 Although all examples so far have used individual test
 commands, test scripts, each calling several individual test
 commands, can be treated in the same way. r_e_p_e_a_t_ 5_ i_o__a_l_l_
 runs the i_o__a_l_l_ script 5 times. In general, you use test
 scripts to test an individual board or subsystem thoroughly,
 running the individual tests only if a failure occurs. The
 currently defined test scripts are summarized below.

 MC3 (MEMORY) Board The memory board has the test scripts
 m_e_m_a_l_l_ and m_e_m_f_a_s_t_. The names are largely
 self−explanatory; m_e_m_f_a_s_t_ tests memory
 reasonably quickly, while m_e_m_a_l_l_ is more
 complete but requires longer to finish.

 IO4 (I/O) Board The I/O tests run quickly enough that there
 is only one script defined (i_o__a_l_l_). It runs
 all the IO4 tests, working from the Ebus
 connector outward.

 System Testing Besides the individual board scripts, there
 is a master script, e_v_e_r_e_s_t__a_l_l_, that runs
 everything; it incorporates the m_e_m_a_l_l_,
 and i_o__a_l_l_ scripts. A faster script,
 e_v__q_u_i_c_k_, is also available−it runs the quick
 version of the various board−level tests,
 providing coverage nearly as complete as
 e_v_e_r_e_s_t__a_l_l_ in a fraction of the time.

 In case you are unsure which tests to run, the s_c_r_i_p_t_s_
 command reprints the list of available scripts given when
 i_d_e_ is started, giving you both the other script names and
 short descriptions of their purpose.

 In this release, the error logging feature is supported. i_d_e_
 now keeps pass/fail counters for all tests and displays them
 when d_u_m_p_l_o_g_ is entered at the prompt. The command c_l_e_a_r_l_o_g_
 can be used to clear the pass/fail counters to zeros. To
 display/modify the current setting of error logging, use the
 command e_r_r_l_o_g_. Error logging is turned on by default.

 − 4 −

 1.1 M_C_3__i_d_e__G_u_i_d_e_

 To run the MC3 i_d_e_ diagnostics:

 o Boot i_d_e_

 o The default report level is 2. Set the report level by
 typing the following:

 report=#

 where # is any number from 1 to 5.

 level 5 Debugging messages displayed. Don’t need
 this much detail.

 level 4 Prints out memory locations as they are
 written. Selecting this level slows down
 testing time.

 level 3 Prints out 1−line functional
 descriptions within tests. This is
 probably the most useful level for
 general use.

 level 2 Print out only errors, titles, and
 pass/fail.

 level 1 Print out only titles and pass/fail.

 Level n_ prints out all messages for level n_ and below.

 o Set the modes of operations for running the tests:

 − qmode [on | off]

 For the memory tests, quick mode tests every n_th
 byte instead of every byte, where n_ varies from 96
 to 7680 depending upon the test. The goal in
 quick mode is to test 16 GB in about 10 minutes−
 and this is accomplished by testing every n_th
 byte. n_ varies depending upon how fast or slow a
 test was timed to run.

 − 5 −

 − c_on_error [on | off]

 For the memory tests, the ‘‘on’’ setting continues
 the test even when an error has been encountered.
 Setting the mode to ‘‘off’’ stops the tests after
 the first error.

 o Run m_e_m_a_l_l_ and m_e_m_f_a_s_t_.

 These are two defined commands. m_e_m_a_l_l_ runs in normal
 mode while m_e_m_f_a_s_t_ runs in quick mode. m_e_m_a_l_l_ runs all
 commands (m_e_m_a_l_l_: m_e_m_1_, m_e_m_2_, m_e_m_3_, m_e_m_4_, m_e_m_5_, m_e_m_8_,
 m_e_m_9_, m_e_m_1_0_, m_e_m_1_6_ in this order), while m_e_m_f_a_s_t_ runs
 just the faster tests (m_e_m_f_a_s_t_: m_e_m_3_, m_e_m_5_, m_e_m_8_, m_e_m_9_,
 m_e_m_1_0_, m_e_m_1_6_ in this order).

 o There are currently 15 memory tests/commands. They are
 explained below:

 −−−

 mem1 − Read the mc3 configuration registers (real fast)

 The following registers are probed:

 reg test description
 −−− −−−

 00 Read the BankEnable
 01 Read BoardType
 02 Read RevLevel
 03 Read AccessControl: endianness, subBlockOrder, ebus=64bitsOrNot
 04 Read MemoryErrorInterrupt
 05 Read EBUSErrorInterrupt
 06 Read BIST result
 07 Read DRSC timeout
 0a Read LeafControlEnable
 Read leaf regs 10−24, 30−33 (leaf0), 50−64, 70−73 (leaf1)

 mem1 is similar to mem14, which is the pod−mode dmc command.

 − 6 −

 −−−

 mem2 − Memory sockets connection test (similar to IP17’s
 mem1) (real fast)

 The memory sockets connection test writes patterns to the
 first 2 KB of each configured leaf and then reads them back.
 By writing 2 KB, all SIMMs are ensured of being written to
 regardless of the interleaving factor specified.

 If the pattern read back does not match, the socket is
 assumed to have a connection problem.

 −−−

 mem3 − Walking address test (similar to IP17’s mem2)
 (veryrealreal fast)

 This is a traditional test that checks for shorts and opens
 on the address lines. Address lines that are greater or
 equal to the most significant address lines of the memory
 bounds are not tested. Testing is done by byte read/writes
 from first_address up to last_address.

 −−−

 mem4 − Write/read data patterns (similar to IP17’s mem3)
 (slow)

 This test does word read/writes of all−1’s and all−0’s
 patterns. It shows if all addresses appear to be writable,
 and that all bits may be set to both 1 and 0. However, it
 provides no address error or adjacent−bits−shorted
 detection. The flow is as follows:

 (w0), u(r0,w1), d(r1,w5a), u(r5a,ra5), d(ra5)−word and byte
 (read as: write 0 to all locations, read 0 and write 1 to
 all locations in ascending order, read 1 and write 5a to all
 locations in descending order, read 5a and write a5 to all
 locations in ascending order, read a5 from all locations in
 descending order)

 mem13 does byte read/writes in the same pattern. These
 tests are separate because the byte read/writes take a long
 time.

 − 7 −

 −−−

 mem5 − Address in address memory test (slow)

 This is a traditional, heuristic, rule−of−thumb, ‘‘address−
 in−address’’ memory test. It also puts the complement of
 the address in the address, and makes passes in both
 ascending and descending addressing order. There are both
 full−memory store−then−check passes, as well as read−after−
 write passes (with complementing).

 −−−

 mem7 − MarchX (slow)

 This test is described in van de Goor’s book, T_e_s_t_i_n_g_
 S_e_m_i_c_o_n_d_u_c_t_o_r_ M_e_m_o_r_i_e_s_, and has the following flow:

 (w0), u(r0,w1), d(r1,w0), (r0)

 It detects address decoder faults, stuck−at faults,
 transition faults, coupling faults, and inversion coupling
 faults (see van de Goor for definitions).

 −−−

 mem8 − MarchY (slow)

 This test is described in van de Goor’s book, T_e_s_t_i_n_g_
 S_e_m_i_c_o_n_d_u_c_t_o_r_ M_e_m_o_r_i_e_s_, and has the following flow:

 (w0), u(r0,w1,r1), d(r1,w0,r0), (r0)

 It detects address decoder faults, stuck−at faults,
 transition faults, coupling faults, and linked transition
 faults (see van de Goor for definitions).

 −−−

 mem9 − Memory with ecc test (similar to IP17’s mem6) (slow)

 This test writes to memory via uncached space and reads
 back through cached space (ECC exceptions enabled). Although
 it provides a simple level of ECC checking, its main
 function is to verify that cached and uncached memory
 addresses are accessing the same area of physical memory.
 The test values used are address−in−address and inverted
 address−in−address patterns, so a certain amount of address
 uniqueness checking is done as well.

 − 8 −

 −−−

 mem10 − Cache write−through memory test (similar to IP17’s
 mem9) (slow)

 This is a traditional, heuristic, rule−of−thumb, ‘‘address−
 in−address’’ memory test. It also puts the complement of
 the address in the address, making passes in ascending order
 only. All of memory is stored and then checked. All reads
 and writes are made through K0 seg, so the reads and writes
 are cached. However, since the size of main memory exceeds
 the cache sizes, all data is written to main memory and then
 read back. This is not a particularly thorough test, and it
 depends upon a good cache to function correctly, but it is
 fast, at least compared to the other full−memory tests.

 −−−

 mem11 − User−specified pattern/location write/read test
 (similar to IP17’s mem7)

 Type mem11 without any arguments to see the usage.

 Usage: mem11 [−b|h|w] [−r] [−l] [−c] [−v 0xpattern] RANGE

 This test allows the technician to fill a range of memory
 with a specified test value and read it back, done as a
 series of byte (−b), half−word (−h), or word (−w) writes and
 reads. If the −v option is not used to select the test
 pattern, an address−in−address pattern is used instead. −r
 does read−only and does not do any writes. −l loops forever.
 −c runs in cached memory space; the default is to run in
 uncached space.

 − 9 −

 −−−

 mem12 − Decode a bad address into slot, leaf, bank, simm

 Usage: mem12 [−a 0xaddress] [−b xxxxx] [−s x]

 −b expects a hex number showing which bits are bad. For
 example, if bits 0 and 2 are bad, enter −b 0x5
 −s 1, 2, or 4 for byte, half−word, or word
 −b defaults to 0x0 and −s defaults to 4

 For example, to decode address 0x4000 with bad bits 0 and 2
 and it’s a word, type:

 mem12 −a 0x4000 −b 0x5 −s 4

 −−−

 mem16 − Knaizuk Hartmann Memory Test (3 min/ 128 MB)

 This algorithm is used to perform a fast but non−exhaustive
 memory test. It will test a memory subsystem for stuck−at
 faults in both the address lines as well as the data
 locations. The algorithm breaks up the memory to be tested
 into 3 partitions. Partition 0 consists of memory locations
 0, 3, 6...; partition 1 consists of memory locations 1, 4,
 7...; and partition 2 consists of locations 2, 5, 8
 The partitions are filled with either an all 1’s pattern or
 an all 0’s pattern. By varying the order in which the
 partitions are filled and then checked, this algorithm
 manages to check all combinations of possible stuck−at
 faults.

 −−−

 ena_bnk, dis_bnk − enable/disable one bank at a time

 Interactively asks the user for slot, leaf, and bank to act
 on. Do not run dis_bnk unless you know what you are doing.
 Otherwise, you will most likely hang the system.

 1.2 I_O_4__I_D_E__G_u_i_d_e_

 o Boot i_d_e_

 o The default report level is 2. Set the report level by
 typing the following:

 report=#

 where # is any number from 1 to 5.

 − 10 −

 level 5 Debugging messages displayed. Don’t need
 this much detail.

 level 4 Prints out memory locations as they are
 written. Selecting this level slows down
 testing time.

 level 3 Prints out 1−line functional
 descriptions within tests. This is
 probably the most useful level for
 general use.

 level 2 Print out only errors, titles, and
 pass/fail.

 level 1 Print out only titles and pass/fail.

 Level n_ prints out all messages for level n_ and below.

 o Set the modes of operations for running the tests:

 − qmode [on | off]

 All current IO4 tests run fast enough that there
 is no difference between quick and long test modes
 for the IO4. If the total elapsed time for
 running all IO4 tests ever exceeds 10 minutes,
 quick mode will be enabled for the IO4.

 − c_on_error [on | off]

 For the IO4 tests, the ‘‘on’’ setting continues
 the test even when an error has been encountered.
 Setting the mode to ‘‘off’’ stops the tests after
 the first error.

 o Run i_o__a_l_l_.

 This command runs all working/known bug−free IO4 tests
 that do not require human intervention. Any mostly
 working but possibly buggy tests, as well as any tests
 requiring a human to interpret the results, are not
 included.

 o There are currently tests for the following areas of
 the IO4 board: IO4 interface, VME adapter, SCSI
 adapter, and EPC adapter.

 The detailed tests are listed below.

 − 11 −

 1.2.1 I_O_4__I_n_t_e_r_f_a_c_e_ −−−−−−−−−
 −−

 io4_regtest − read/write test of IO4 registers

 This is a basic read/write test for the IO4 registers. It
 does tests and address−in−address testing for:

 IO4_CONF_LW
 IO4_CONF_SW
 IO4_CONF_ADAP
 IO4_CONF_INTRVECTOR
 IO4_CONF_GFXCOMMAND
 IO4_CONF_ETIMEOUT
 IO4_CONF_RTIMEOUT
 IO4_CONF_INTRMASK

 Although these are not the only IO4 registers, they are the
 only ones that may safely be read/write tested.

 − 12 −

 −−−

 io4_pioerr − IO4 PIO bus error test

 Attempts to generate an error interrupt by attempting a
 write to IO adapter 0 (nonexistent). This tests the IO4
 error−generation capability and the IO4−to−IP error path.

 −−−

 mapram_test − Read/Write test of IO4 map ram

 As the name implies, tests the IO4 mapping RAM as a small
 memory array.

 Tests memory with pattern read/write, address−in−address,
 and marching 1’s test patterns.

 1.2.2 V_M_E__A_d_a_p_t_e_r_ −−−−−−−−−
 −−

 fregs − Test VMECC registers

 Basic Read/Write test for the F Chip registers, running
 through large window space. Verifies operation for:

 FCHIP_VERSION_NUMBER
 FCHIP_MASTER_ID
 FCHIP_INTR_MAP
 FCHIP_FIFO_DEPTH
 FCHIP_FCI_ERROR_CMND
 FCHIP_TLB_BASE
 FCHIP_ORDER_READ_RESP
 FCHIP_DMA_TIMEOUT
 FCHIP_INTR_MASK
 FCHIP_INTR_SET_MASK
 FCHIP_INTR_RESET_MASK
 FCHIP_SW_FCI_RESET
 FCHIP_IBUS_ERROR_CMND
 FCHIP_TLB_FLUSH
 FCHIP_ERROR
 FCHIP_ERROR_CLEAR
 FCHIP_TLB_IO 0 − 7
 FCHIP_TLB_EBUS 0 − 7

 (32 registers currently tested)

 −−−

 vmeregs − Test VMECC registers

 − 13 −

 Basic Read/Write test for the VMECC registers. Verifies
 operation for:

 VMECC_RMWMASK
 VMECC_RMWSET
 VMECC_RMWADDR
 VMECC_RMWAM
 VMECC_RMWTRIG
 VMECC_ERRADDRVME
 VMECC_ERRXTRAVME
 VMECC_ERRORCAUSES
 VMECC_ERRCAUSECLR
 VMECC_DMAVADDR
 VMECC_DMAEADDR
 VMECC_DMABCNT
 VMECC_DMAPARMS
 VMECC_CONFIG
 VMECC_A64SLVMATCH
 VMECC_A64MASTER
 VMECC_VECTORERROR
 VMECC_VECTORIRQ 1 − 7
 VMECC_VECTORDMAENG
 VMECC_VECTORAUX0
 VMECC_VECTORAUX1
 VMECC_IACK 1 − 7
 VMECC_INT_ENABLE
 VMECC_INT_REQUESTSM
 VMECC_INT_ENABLESET
 VMECC_INT_ENABLECLR
 VMECC_PIOTIMER
 0x1388
 0x1390
 0x1398
 0x13A0
 0x13A8
 0x13B0
 0x13B8
 0x13C0
 0x13C8
 0x13D0
 0x13D8
 0x13E0
 0x13E8
 0x13F0
 0x13F8

 (54 registers currently tested)

 −−−

 − 14 −

 vmeintr − Test VMECC self interrupts

 Places a handler on the appropriate vector and forces the
 VMECC to generate an interrupt. Checks to make sure that
 the interrupt both reaches the CPU and activates the proper
 handler.

 −−−

 vmeberr − Test VMECC bus errors

 This test ensures that the VMECC can time out for all
 sections of A24/A32 addresses.

 First, A24 addressing is used. All sections except one are
 made to respond as slaves, and a PIO access to the non−
 responding slave section is done. This should generate a
 timeout.

 This procedure is repeated for all 16 sections of the A32
 addressing range.

 −−−

 vmedma − Test VMECC DMA Engine

 Transfers data between controller memory and host memory by
 DMA; no disk data is involved (and no disk need be
 connected).

 The controller imposes some constraints on what can be done
 with this test: it transfers only a single sector (512
 bytes).

 −−−

 cddata − CDSIO board internal/external data loopback test

 Does loopback testing of all channels of the CDSIO 6−port
 board. Pretty much a direct port of the IP5 family version
 of this test.

 −−−

 cdintr − Test CDSIO interrupts

 Generates interrupts on the CDSIO board and verifies that
 they reach the CPU. Again, a direct port of the IO5 family
 test.

 − 15 −

 1.2.3 S_C_S_I__A_d_a_p_t_e_r_ −−−−−−−−−
 −−

 s1_regtest − Register Read/Write test for s1 chip

 This is a basic Read/Write test for the S1 chip registers.
 It does tests and address−in−address testing for:

 S1_INTF_R_SEQ_REGS 0 − 0xF
 S1_INTF_R_OP_BR_0
 S1_INTF_R_OP_BR_1
 S1_INTF_W_SEQ_REGS 0 − 0xF
 S1_INTF_W_OP_BR_0
 S1_INTF_W_OP_BR_1

 (36 registers currently tested)

 Although these are not the only S1 registers, they are the
 only ones that may safely be used by Read/Write tests.

 −−−

 regs_95a − Register read/write test for wd95a chip

 This is a basic read/write test for the wd95a chip
 registers. In setup mode, the test writes a’s and 5’s to the
 Sleep Countdown register while all other registers are just
 read. In normal mode, all registers are read and no
 registers are written. While there are many registers, the
 Sleep Countdown register was the only register where it was
 safe to write values.

 −−−

 scsi_intr − SCSI interrupt test

 This tests the wd95a’s ability to send an interrupt to the
 CPU and have the system respond correctly. The wd95a is
 programmed to interrupt upon a SCSI reset command. The reset
 command is sent and then the system is checked to make sure
 it correctly ‘‘saw’’ the interrupt.

 −−−

 epc_regtest − Register Read/Write test for epc chip

 Basic Read/Write test for the EPC chip registers, including
 the Parallel Port registers. Registers tested:

 EPC_IIDDUART0
 EPC_IIDDUART1

 − 16 −

 EPC_IIDENET
 EPC_IIDPROFTIM
 EPC_IIDSPARE
 EPC_IIDPPORT
 EPC_IIDERROR
 EPC_EADDR0
 EPC_EADDR1
 EPC_EADDR2
 EPC_EADDR3
 EPC_EADDR4
 EPC_EADDR5
 EPC_TCMD
 EPC_RCMD
 EPC_TBASELO
 EPC_TBASEHI
 EPC_TLIMIT
 EPC_TTOP
 EPC_TITIMER
 EPC_RBASELO
 EPC_RBASEHI
 EPC_RLIMIT
 EPC_RTOP
 EPC_RITIMER
 EPC_PPBASELO
 EPC_PPBASEHI
 EPC_PPLEN
 EPC_PPCTRL

 This is a good basic test for the Parallel Port; for more
 thorough testing, a test fixture is required.

 −−−

 epc_nvram − NVRAM Read/Write test

 Does Read/Write pattern and address−in−address testing for
 all the NVRAM accessible to the EPC chip. Although the
 NVRAM is physically on the RTC chip, it occupies a separate
 address space and is accessed differently; hence, the
 separate test.

 −−−

 epc_rtcreg − RTC register/NVRAM Read/Write test

 Read/Write test for the RTC registers and the small amount
 of NVRAM in the RTC address space portion of the RTC chip.
 Registers tested:

 NVR_SEC
 NVR_SECALRM

 − 17 −

 NVR_MI
 NVR_MINALRM
 NVR_HOUR
 NVR_HOURALRM
 NVR_WEEKDAY
 NVR_DAY
 NVR_MONTH
 NVR_YEAR

 NVRAM tested is in the address range 0xE − 0x3F.

 − 18 −

 −−−

 epc_rtcinc − RTC clock increment test

 Tests the ability of the RTC chip to handle time−of−day
 transitions. Sets the RTC to a known time and date (last
 second of the year), waits one second, and checks to make
 certain that the time and date have changed correctly.

 −−−

 epc_rtcint − RTC Interrupt generation test

 Tests to make certain that the RTC can correctly generate
 Alarm, Periodic, and Update interrupts. Validates the path
 from the RTC chip to the IP board’s master CPU.

 −−−

 duart_loopback − Duart loopback test

 Attempts to configure and test all available serial ports.
 Does loopback testing at all baud rates for each port
 tested. Normally uses internal loopback, but if invoked
 with "duart_loopback −e" assumes that an external loopback
 fixture is being used.

 −−−

 enet_xmit − Ethernet transmit/receive test (with internal
 loopback on)

 Transmits 9 packets and receives them with the LXT internal
 loopback mode on. The transmit and receive status bytes are
 checked against expected values, and the data in each byte
 of each packet is verified against what was expected. The
 following is a short description of each of the 9 packets:

 packet 0: 50 data bytes, walk 0 through the bytes
 packet 1: 50 data bytes, walk 1 through the bytes
 packet 2: 50 data bytes, alternating 55’s and aa’s in alternating bytes
 packet 3: 60 data bytes, alternating 0’s and ff’s in alternating bytes
 packet 4: 50 data bytes, all 55’s
 packet 5: 1 data byte, short packet
 packet 6: 130 data bytes, decrementing pattern starting with ff
 packet 7: 3 data bytes, short packet
 packet 8: 130 data bytes, decrementing pattern starting with cc

 −−−

 − 19 −

 enet_colctr − Read ethernet collision counters Test

 Transmits the same 9 packets as enet_xmit but with LXT and
 EDLC in normal mode so packets actually go out onto the net.
 The user is given instructions to run t_t_c_p_ −r_ −s_ on one
 other system and t_t_c_p_ −t_ −s_ <m_a_c_h_i_n_e_ #1_> on sytem #2 in
 UNIXr. Then, by running this test, collisions occur and the
 collision counter counts are displayed after each packet is
 sent. There is not really a fail status in this test unless
 the packets cannot be transmitted. The test fails if the
 collision counter counts being displayed never increment.

 −−−

 epc_plptest − Parallel Port Write Test

 Fills a buffer with printable characters and attempts to DMA
 it out the parallel port. Detects the presense of a
 printer; if a printer is present, configures the port to use
 the ‘‘BUSY’’ mode and writes to the printer using BUSY
 handshaking to prevent buffer overrun. If no printer is
 present, uses the ‘‘SACK’’ mode and writes as fast as the
 DMA engine sends characters.

 If a printer is present, it detects printer errors and
 reports them; in all cases, it detects DMA timeout errors or
 failure to generate the DMA completion interrupt.

 If an external printer is present, these characters should
 be printed out:

 !"#$%&’()*+,−./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_

 −−−

 1.2.4 D_A_N_G__A_d_a_p_t_e_r_ −−−−−−−−−
 −−

 dang_regtest − DANG Register Read/Write Test

 This test does read/write verification of all DANG PIO
 registers that are safely writable (some, such as the Master
 DMA start register or the interrupt mask register, are not).

 Runs a series of bit−pattern tests, marching ones and zeros,
 and address−in−address patterns on the DANG chip PIO
 registers. For this test to function correctly, the basic
 DANG Ibus interface must be working.

 Patterns used:

 − 20 −

 0x0
 0xFFFFFFFF
 0x55555555
 0xAAAAAAAA
 0xA5A5A5A5
 0x5A5A5A5A
 Marching 1’s (32 patterns) − 0x1, 0x2, . . . 0x80000000
 Marching 0’s (32 patterns) − 0xFFFFFFFE, 0xFFFFFFFD, . .
 . 0x7FFFFFFF
 Address in Address
 Inverse Address in Address

 Registers currently tested:

 DANG_UPPER_GIO_ADDR
 DANG_MIDDLE_GIO_ADDR
 DANG_BIG_ENDIAN
 DANG_GIO64
 DANG_PIPELINED
 DANG_GIORESET
 DANG_AUDIO_ACTIVE
 DANG_AUDIO_SLOT
 DANG_PIO_WG_WRTHRU
 DANG_DMAM_MAX_OUTST
 DANG_DMAM_CACHE_LINECNT
 DANG_DMAS_MAX_OUTST
 DANG_DMAS_CACHE_LINECNT
 DANG_INTR_ERROR
 DANG_INTR_GIO_0
 DANG_INTR_GIO_1
 DANG_INTR_GIO_2
 DANG_INTR_DMAM_COMPLETE
 DANG_INTR_PRIV_ERR
 DANG_INTR_PAUSE
 DANG_INTR_BREAK
 DANG_WG_LOWATER
 DANG_WG_HIWATER
 DANG_WG_FULL
 DANG_WG_PRIV_LOADDR
 DANG_WG_PRIV_HIADDR
 DANG_WG_GIO_UPPER
 DANG_WG_GIO_STREAM
 DANG_WG_PAUSE
 DANG_WG_STREAM_ALWAYS

 Sample Error Messages:

 Exception Accessing DANG chip!
 Failed to set DANG Intr mask. Expected: 0 Got: 1f
 Failed testing DANG register DANG_WG_FULL. Expected 400
 Got 4F0

 − 21 −

 Failed DANG reg address test. Reg: DANG_WG_FULL
 Expected: 52018
 Got: 0

 −−−

 dang_gr2ram − GIO Bus/Gr2 Shared Ram Test

 This test is designed to stress the GIO bus interface and
 prove that the basic GIO bus read/write functionality is
 present. As such, although it requires a working Express
 graphics board, dang_gr2ram only stresses the Express shared
 RAM area.

 Like dang_regtest, dang_gr2ram runs a series of bit−
 patterns, marching ones and zeros, and address−in−address
 tests, though its target this time is the entire Express
 shared RAM area.

 dang_gr2ram stresses the DANG’s Ibus interface, the basic
 DANG IO configuration, the DANG GIO bus interface, and the
 GIO bus data/address lines in addition to the Express shared
 RAM.

 − 22 −

 Patterns used:

 0x0
 0xFFFFFFFF
 0x55555555
 0xAAAAAAAA
 0xA5A5A5A5
 0x5A5A5A5A
 Marching 1’s (32 patterns) − 0x1, 0x2, . . . 0x80000000
 Marching 0’s (32 patterns) − 0xFFFFFFFE, 0xFFFFFFFD, . .
 . 0x7FFFFFFF
 Address in Address
 Inverse Address in Address

 Sample Error Messages:

 Failed Gr2 shared ram test. Index: 0x400 Expected:
 0x55555555 Got: 0x5A

 −−−

 dang_mdma − DANG Master DMA Module Test

 The DMA Master module test has a reasonably simple basic
 design: set up a Master DMA transfer either to or from the
 Gr2 RAM space, verify that it completed and the DMA complete
 interrupt was generated, and validate the transferred data.

 To fully test the DMA module, however, requires that all the
 corner cases are covered, which requires many different
 transfers in a variety of DMA modes.

 Currently, the dang_mdma test has 38 test cases, covering
 GIO bus dynamic and static address modes, transfers to and
 from the Gr2, data patterns, address−in−address data,
 single−line, multi−line, and multi−page transfers, transfers
 with no offset or stride, transfers with offset or stride,
 transfers with both offset and stride, etc.

 dang_mdma stresses the DANG’s Ibus interface, the basic DANG
 IO configuration, the DANG GIO bus interface, the Express
 shared RAM area, and the Dang DMA Master Interrupt logic as
 well as the DANG Master DMA module proper.

 − 23 −

 One cache line static address tests

 host to gr2, 0x55555555
 gr2 to host, 0xAAAAAAAA

 One cache line data tests

 host to gr2, 0x55555555
 host to gr2, 0xAAAAAAAA
 host to gr2, 0xFFFFFFFF
 gr2 to host, 0x55555555
 gr2 to host, 0xAAAAAAAA
 gr2 to host, 0xFFFFFFFF

 One partial cache line static address tests

 host to gr2, 0x55555555
 gr2 to host, 0xAAAAAAAA

 One partial cache line data tests

 host to gr2, 0x55555555
 host to gr2, 0xAAAAAAAA
 host to gr2, 0xFFFFFFFF
 gr2 to host, 0x55555555
 gr2 to host, 0xAAAAAAAA
 gr2 to host, 0xFFFFFFFF

 One cache line address tests

 host to gr2, address in address
 host to gr2, inverse address in address
 gr2 to host, address in address
 gr2 to host, inverse address in address

 One partial cache line address tests

 host to gr2, address in address
 host to gr2, inverse address in address
 gr2 to host, address in address
 gr2 to host, inverse address in address

 Multiple block data tests using stride and offset

 host to gr2, 0x55555555 (stride)
 gr2 to host, 0xAAAAAAAA (stride)
 host to gr2, 0x55555555 (stride+offset)
 gr2 to host, 0xAAAAAAAA (stride+offset)

 Multiple block address tests using stride and offset

 − 24 −

 host to gr2, address in address (stride)
 gr2 to host, inverse address in address (stride)
 host to gr2, address in address (stride+offset)
 gr2 to host, inverse address in address (stride+offset)

 Full data buffer static address tests

 host to gr2, 0x55555555
 gr2 to host, 0xAAAAAAAA

 Full data buffer data tests

 host to gr2, 0x55555555
 gr2 to host, 0xAAAAAAAA

 Full data buffer address tests

 host to gr2, address in address
 gr2 to host, inverse address in address

 Sample Error Messages:

 data setup problem: small static pattern 1
 small static pattern 1: (H to G) timed out waiting for
 DANG interrupt
 xfer data, small static pattern 1 (H to G), line 0x1
 byte 0x1: src 0x55
 dest 0x5A
 small static pattern 2 (G to H) wrong interrupt level:
 was 20, sb 35
 small static pattern 3 (H to G) DMA xfer not complete

 − 25 −

 −−−

 dang_wg − DANG Write Gatherer Test

 The DANG write gatherer test, dang_wg, has three subtests,
 which test the WG FIFO RAM, the Host to DANG WG interface,
 and the WG interrupts.

 Since each subtest must be working for the next to function
 correctly, the subtests are run in the order given, and are
 not written to be run separately.

 The WG FIFO RAM tests runs bit patterns and address−in−
 address data through the FIFO and out to the Gr2 shared RAM
 area via the GIO bus. The test method is to use the
 DANG_WG_PAUSE register to pause output, fill the WG FIFO
 RAM, and then enable output. After the WG FIFO has drained,
 the data in the Gr2 shared RAM is verified.

 Patterns used:

 0x55555555
 0xAAAAAAAA
 0xFFFFFFFF
 0x5a5a5a5a
 0xa5a5a5a5
 0x0
 Address in Address
 Inverse Address in Address

 The Host to WG test sends data from the Host CPU’s write
 gatherer module using all four of the possible addressing
 modes (relative, absolute, streaming, and streaming always)
 and verifies that the data reaches the area of Gr2 shared
 RAM it was aimed at. Since the FIFO RAM has already been
 verified, the individual tests are less exhaustive.

 Patterns used:

 Relative Mode: Address in Address
 Absolute Mode: Inverse Address in Address
 Streaming Always Mode:0x5A5A5A5A
 Streaming Mode: 0xA5A5A5A5

 − 26 −

 Finally, the Interrupt tests use the Host to DANG WG
 interface to generate the FIFO high, FIFO full, FIFO low,
 and privilege violation interrupts. In each case, the data
 used to fill the buffer is verified after the interrupt has
 been generated.

 Pattern used:

 Address in Address

 dang_wg stresses the DANG’s Ibus interface, the basic DANG
 io configuration, the Write Gatherer FIFO RAM, the DANG GIO
 bus interface, the Express shared RAM area, and the WG
 Interrupt logic as well as the DANG Write Gatherer module
 proper.

 Sample Error Messages:

 DANG wg fifo not empty − had 23 words
 DANG wg fifo: bad word count − was 0x2ff, sb 0x3ff
 DANG fifo write through data error: addr 0x1000, was 0x0
 sb 0x55555555
 DANG host wg data error: addr 0x80, was 0x0 sb 0x80
 wrong dang wg interrupt level − was 0x20, sb 0x73
 dang wg interrupt bit bad − was 0x0, sb 0x4
 no wg fifo hi interrupt!
 no wg fifo low interrupt!
 no wg fifo full interrupt!
 no wg privileged interrupt!

 −−−

 dang_status − DANG Status display utility

 Displays the current state of the DANG chip. This is the
 same routine called by the DANG tests when an error is
 detected.

 When possible, status information is given both as numeric
 values and named states. An example status is:

 + dang_pio_err: 0x200
 + 11..8: dang_pio_err_version: 0x2
 + dang_dmam_status: 0x1
 + 0: dang_dma_stat_busy
 + 1: dang_dma_stat_dir: 0x0
 + dang_dmam_status, dma if 1 − ibus to fifo:
 dang_dma_if_idle <0>
 + dang_dmam_status, dma if 2 − fifi to gio :
 dang_dma_if_idle <0>
 + dang_dmam_status, dma if 3 − gio to fifo :

 − 27 −

 dang_dma_if_idle <0>
 + dang_dmam_status, dma if 4 − fifo to ibus:
 dang_dma_if_idle <0>
 + dang_dmam_err: 0x0
 + dang_dmas_status: 0x0
 + dang_dmas_status, dma if 1 − ibus to fifo:
 dang_dma_if_idle <0>
 + dang_dmas_status, dma if 2 − fifi to gio :
 dang_dma_if_idle <0>
 + dang_dmas_status, dma if 3 − gio to fifo :
 dang_dma_if_idle <0>
 + dang_dmas_status, dma if 4 − fifo to ibus:
 dang_dma_if_idle <0>
 + dang_dmas_err: 0x0
 + dang_intr_status: 0x408
 + 3: dang_istat_wg_flow
 + 10: dang_istat_giostat
 + dang_wg_status: 0x1
 + 0: dang_wgstat_idle
 + 4..3: dang_wgstat_fill: 0x0
 + 7..5: dang_wgstat_wext: 0x0
 + 9..8: dang_wgstat_drain: 0x0

 −−−

 dang_gr2read − Gr2 Read utility

 "dang_gr2read slot# adapter# gr2address"

 Reads an address on the GIO bus. A GIO bus "peek" routine.

 Requires IO4 slot number, dang adapter number, and Gr2
 offset (base of the Gr2 shared RAM area is offset 0).

 All numbers may be in decimal or hexadecimal − hex numbers
 should be preceded by "0x".

 "dang_gr2read 11 5 0" would read Gr2 location 0 on DANG
 adapter 5 of the IO4 board in slot 11; so would
 "dang_gr2read 0xb 5 0".

 − 28 −

 −−−

 dang_gr2write − Gr2 Write utility

 "dang_gr2read slot# adapter# gr2address pattern"

 Writes one word to a specified location in the GIO bus. The
 syntax is as given for dang_gr2read.

 "dang_gr2write 11 5 0 0x55555555" would write 0x55555555 hex
 to Gr2 location 0 on DANG adapter 5 of the IO4 board in slot
 11.

 −−−

 dang_gr2readloop

 "dang_gr2readloop slot# adapter# gr2address loopcount"

 dang_gr2writeloop

 "dang_gr2writeloop slot# adapter# gr2address pattern
 loopcount"

 Scope loop versions of the read and write utilities.
 dang_gr2readloop requires a loop count after the standard
 dang_gr2read parameters; similarly, dang_gr2writeloop
 requires a loop count following the standard dang_gr2write
 parameters.

 "dang_gr2writeloop 11 5 0 0x55555555 100000" would write
 0x55555555 to Gr2 location 0 on DANG adapter 5 of the IO4
 board in slot 11 one hundred thousand times.

 − 1 −

 2. C_H_A_L_L_E_N_G_E_/_O_n_y_x__S_t_a_n_d_a_l_o_n_e__i_d_e_

 Note: Starting with the 6.2 Diagnostics release, the
 standalone i_d_e_ no longer resides in the /stand
 directory. It now resides in the /usr/stand
 directory. The command to boot i_d_e_ is: b_o_o_t_
 /u_s_r_/s_t_a_n_d_/i_d_e_.

 This appendix includes detailed descriptions of the
 CHALLENGE/Onyx Standalone i_d_e_ tests, organized by board
 type.

 Note: Due to interactions with the graphics hardware, when
 i_d_e_ is run on the graphics console, all TLB tests
 skip TLB slots 0 and 1, and the t_l_b_9_ test is skipped
 entirely.
 The CHALLENGE standalone i_d_e_ is based on the Personal
 IRIS/Indigo i_d_e_ rather than on the POWER Series i_d_e_. As
 such, the user interface is similar to the IRIX−level
 graphical i_d_e_, which was originally based on the same code.

 Although tests can be invoked individually, usually prepared
 test scripts are run, ensuring more complete coverage while
 requiring less typing.

 At the most basic level, the standalone i_d_e_ user interface
 is simple−individual tests and scripts can be run by typing
 their name at the command line. Although looping, condition
 execution, report verbosity level changing, user
 programmability, and many other advanced features are
 available, there is no need to master the advanced features
 to completely test the system.

 Upon starting, i_d_e_ prints a list of available test scripts,
 then waits at the command line for user input. At this
 point, a command or script name can be typed to run a test,
 or you can type help for more information. The h_e_l_p_ command
 without parameters returns the message:

 help [all | commands | sets | loop | ifthen | cmd | dbg]

 − 2 −

 h_e_l_p_ with a parameter−h_e_l_p_ c_o_m_m_a_n_d_s_, for example−gives more
 information on the chosen topic. In the example given, i_d_e_
 prints a list of all available i_d_e_ commands, a list long
 enough to require several screens of information. If the
 output requires more than one screen to display, the h_e_l_p_
 command pauses at the bottom of each screen until you press
 the space bar or <Return> key.

 Report levels determine the amount if information each test
 prints to the screen when run. The default report level of
 2 usually prints the name of the test and whether it passed
 or failed. As you increase the report level, the amount of
 information returned increases. The report level range is 1
 (least information) to 5 (debug level−almost too much
 information). To change the report level, type
 report=<l_e_v_e_l_#> at the command line. For example, r_e_p_o_r_t_=5_
 sets reporting to its most verbose. Unless tests fail and
 more information is needed, the default level of 2 is
 probably the most useful.

 Although more complex looping structures are available (see
 h_e_l_p_ l_o_o_p_ for more information), the only two needed for
 most test situations are the r_e_p_e_a_t_ and w_h_i_l_e_ commands.

 r_e_p_e_a_t_ is easier to use−type repeat <c_o_u_n_t_#> <c_o_m_m_a_n_d_> and
 <c_o_m_m_a_n_d_> is executed <c_o_u_n_t_#> times. The command line
 r_e_p_e_a_t_ 5_ i_p_3_ runs the i_p_3_ command 5 times.

 w_h_i_l_e_ has the form while (c_o_n_d_i_t_i_o_n_) <c_o_m_m_a_n_d_>. c_o_n_d_i_t_i_o_n_
 is a numeric value; it means that as long as c_o_n_d_i_t_i_o_n_ is
 non−zero, <c_o_m_m_a_n_d_> will execute again and again. The w_h_i_l_e_
 command is especially useful for scope loops. Although it
 can terminate if c_o_n_d_i_t_i_o_n_ goes non−zero, the most common
 use of w_h_i_l_e_ ignores that possibility by setting c_o_n_d_i_t_i_o_n_
 to a constant. For example,w_h_i_l_e_ (1_) i_p_3_ repeats the i_p_3_
 command until you turn off the power or press the <Ctrl−C>
 key.

 One of the nicer features of i_d_e_ is that for looping
 purposes, commands can be grouped−i_d_e_ treats both c_o_m_m_a_n_d_
 and {c_o_m_m_a_n_d_1_; c_o_m_m_a_n_d_2_; c_o_m_m_a_n_d_3_} as a single command. For
 example, the command r_e_p_e_a_t_ 1_0_ {i_p_2_; f_p_u_3_; m_e_m_1_} loops 10
 times, each time running the i_p_2_, f_p_u_3_, and m_e_m_1_ tests in
 the order given.

 − 3 −

 Although all examples so far have used individual test
 commands, test scripts, each calling several individual test
 commands, can be treated in the same way. r_e_p_e_a_t_ 5_ i_o__a_l_l_
 runs the i_o__a_l_l_ script 5 times. In general, you use test
 scripts to test an individual board or subsystem thoroughly,
 running the individual tests only if a failure occurs. The
 currently defined test scripts are summarized below.

 IP19 (CPU) Board Currently, there are test scripts for the
 t_l_b_ (t_l_b_a_l_l_), the f_p_u_ (q_u_i_c_k_f_p_u_, f_p_u_a_l_l_), the
 c_a_c_h_e_ (q_u_i_c_k_c_a_c_h_e_, c_a_c_h_e_a_l_l_), and the i_p_
 support functionality (i_p_a_l_l_). To test the
 complete IP19 board, run i_p_1_9_ or q_u_i_c_k_i_p_1_9_.

 MC3 (MEMORY) Board The memory board has the test scripts
 m_e_m_a_l_l_ and m_e_m_f_a_s_t_. The names are largely
 self−explanatory; m_e_m_f_a_s_t_ tests memory
 reasonably quickly, while m_e_m_a_l_l_ is more
 complete but requires longer to finish.

 IO4 (I/O) Board The I/O tests run quickly enough that there
 is only one script defined (i_o__a_l_l_). It runs
 all the IO4 tests, working from the Ebus
 connector outward.

 System Testing Besides the individual board scripts, there
 is a master script, e_v_e_r_e_s_t__a_l_l_, that runs
 everything; it incorporates the i_p_1_9_,
 m_e_m_a_l_l_,and i_o__a_l_l_ scripts. Due primarily to
 the length of the cache and memory test
 components, this test takes several hours to
 complete. A faster script, e_v__q_u_i_c_k_, is also
 available−it runs the quick version of the
 various board−level tests, providing coverage
 nearly as complete as e_v_e_r_e_s_t__a_l_l_ in a
 fraction of the time.

 In case you are unsure which tests to run, the s_c_r_i_p_t_s_
 command reprints the list of available scripts given when
 i_d_e_ is started, giving you both the other script names and
 short descriptions of their purpose.

 In this release, the error logging feature is supported. i_d_e_
 now keeps pass/fail counters for all tests and displays them
 when d_u_m_p_l_o_g_ is entered at the prompt. The command c_l_e_a_r_l_o_g_
 can be used to clear the pass/fail counters to zeros. To
 display/modify the current setting of error logging, use the
 command e_r_r_l_o_g_. Error logging is turned on by default.

 − 4 −

 2.1 M_u_l_t_i_p_r_o_c_e_s_s_o_r__E_x_e_c_u_t_i_o_n_

 In this release, the multiprocessor support designed into
 the standalone i_d_e_ is enabled.

 The i_p_, t_l_b_, c_a_c_h_e_, and f_p_u_ tests can be run on all enabled
 CPUs serially without selecting each CPU individually. To
 invoke these tests for multiprocessors, the m_p_ command is
 provided. The CPU selection for multiprocessor diagnostics
 execution is stored and managed through a global set of CPUs
 called r_u_n_c_p_u_s_. The CPU set can be modified using the
 r_u_n_a_l_l_, r_u_n_o_n_, and r_u_n_e_x_c_p_ commands. All enabled CPUs are
 selected by default when i_d_e_ is loaded.

 To see which CPUs are selected at any time, the command
 r_u_n_m_o_d_e_ displays the current contents of r_u_n_c_p_u_s_.

 Caution: A_f_t_e_r_ e_x_i_t_i_n_g_ i_d_e_, a_l_w_a_y_s_ r_e_s_e_t_ t_h_e_ s_y_s_t_e_m_
 h_a_r_d_w_a_r_e_ b_e_f_o_r_e_ r_e_b_o_o_t_i_n_g_ i_d_e_, b_o_o_t_i_n_g_ o_t_h_e_r_
 s_t_a_n_d_a_l_o_n_e_ t_o_o_l_s_, o_r_ b_o_o_t_i_n_g_ I_R_I_X_.

 − 5 −

 2_.2_ I_P_1_9__i_d_e__G_u_i_d_e_

 To run the IP19 i_d_e_ diagnostics:

 o Boot i_d_e_

 o The default report level is 2. Set the report level by
 typing the following:

 report=#

 where # is any number from 1 to 5.

 level 5 Debugging messages displayed. Don’t need
 this much detail.

 level 4 Prints out memory locations as they are
 written. Selecting this level slows down
 testing time.

 level 3 Prints out 1−line functional
 descriptions within tests. This is
 probably the most useful level for
 general use.

 − 6 −

 level 2 Print out only errors, titles, and
 pass/fail.

 level 1 Print out only titles and pass/fail.

 Level n_ prints out all messages for level n_ and below.

 o There are currently 4 classes of IP19 tests: IP, TLB,
 FPU, and CACHE.

 tlb(1 − 9) Tests the TLB in R4K.

 fpu(1 − 14) Tests the FPU in R4K.

 cache(1 − 48) Tests the primary and secondary
 cache for R4K.

 cache49 Short version of cache48.

 cstate(0 − 21) Individual cache state tests in
 cache48.

 ip(1 − 9) Tests IP19 components not covered
 by TLB, FPU, and CACHE.

 Note: These test command tokens can be used to invoke
 each test individually on the master CPU slice.
 See below for the procedure to start execution
 of IP19 tests on multiple processors.

 o For MP execution, the IDE defaults to run on all
 enabled CPU slices. To edit this global set of CPUs
 (called r_u_n_c_p_u_s_), the following scripts are provided:

 runadmin Displays all scripts that alter ’runcpus’

 runmode Displays the current contents fo ’runcpus’

 runall Run on all enabled CPU slices

 runon i Run on CPU slice i only

 runexcp i Run on all enabled CPU slices except CPU
 slice i

 addslice i Add CPU slice i

 rmslice i Remove CPU slice i

 In addition, the following scripts are provided to
 operate solely on the CPU slices specified for the

 − 7 −

 global set r_u_n_c_p_u_s_.

 i_p_a_l_l_ Invokes tests ip1 through ip9.

 t_l_b_a_l_l_ Invokes tests tlb1 through tlb9.

 f_p_u_a_l_l_ Invokes tests fpu1 through fpu14.

 c_a_c_h_e_a_l_l_ Invokes tests cache1 through cache48.

 i_p_1_9_ Invokes all IP, TLB, FPU, and CACHE tests.

 q_u_i_c_k_f_p_u_ Invokes tests fpu1 through fpu13, skipping
 fpu14.

 q_u_i_c_k_c_a_c_h_e_ Invokes tests cache1 through cache44, then
 cache47 and cache49, skipping cache45, 46,
 and 48.

 q_u_i_c_k_i_p_1_9_ Invokes i_p_a_l_l_, t_l_b_a_l_l_, q_u_i_c_k_f_p_u_, q_u_i_c_k_c_a_c_h_e_
 and some memory tests−m_e_m_3_, m_e_m_6_, and m_e_m_1_0_.
 Finally, a script is implemented to facilitate debug
 and repair using IP19 test:

 m_p_ ‘‘T_E_S_T_’’ Invokes TEST on the CPU slices in the
 global set, r_u_n_c_p_u_s_.

 Note TEST must be a test command token recognized by
 IDE. It cannot be a built−in script command. For
 example, m_p_ ‘‘t_l_b_a_l_l_’’ is not legal and will
 cause internal IDE errors.

 − 8 −

 o In the 5.1.2 release, the following scripts are
 implemented:

 m_p_s_t_r_e_s_s_
 This script makes use of several test modules
 specifically written to perform functions required
 for testing cache coherency in a multiple
 processor environment of upto 8 CPUs. The
 following test modules are intended for use only
 by the ’mpstress’ script:

 mpinval invalidates all caches

 mpmem_wr initialize
 cached/uncached memory

 mpmem_rd verifies cache/uncached
 memory

 mpchk_cstate verifies cache state

 Any use of these test modules outside of the
 ’mpstress’ scripts within IDE may produce
 unpredictable results.

 m_p_c_a_c_h_e_s_z_ [1_ | 4_]
 This script verifies the installation of 1 or 4 MB
 scache. It is useful for verification of the
 actual scache size against the desired scache size
 which is assumed to have been correctly written to
 the EAROM for the boot master CPU. If the actual
 scache size does not match the desired scache
 size, it is reported as an error and the desired
 scache size will be automatically written to the
 EAROM for the failed CPU. The contents of EAROMs
 for CPUs other than the boot master are not easily
 reversible so it is important to enter the correct
 value for the desired scache size when invoking
 ’mpcachesz’. Problems may also arise if a mixture
 of 1 MB and 4 MB scache are present in the same
 system.

 o To find out the results after running IP19 tests, use
 the following built−in commands:

 dump_log Displays cumulative results for each test

 clear_log Clears cumulative results for all tests

 errlog [ON/OFF] Displays, sets/resets cumulative error
 logging

 − 9 −

 o A brief description of each test and the possible
 errors are provided below for your reference. The
 number preceding each error message identifies each
 error uniquely and its format should be interpreted as
 follows:

 01ccnnn 01 − the board ID for IP19
 cc − the hint for failed component(s)

 01 − A chip
 02 − D chip
 03 − CC chip
 04 − Primary cache
 05 − Secondary cache
 06 − R4400
 07 − Primary or secondary cache
 08 − TLB
 09 − FRU

 nnn − the error ID"

 − 10 −

 −−−

 ip1 (local_regtest) − Check CC local registers

 Basic write/read test for the local registers. The registers
 tested are limited to the following:

 EV_WGDST Write gatherer destination
 EV_WGCNTRL Write gatherer control
 EV_IP0 Interrupts 63 − 0
 EV_IP1 Interrupts 127 − 64
 EV_CEL Current execution level
 EV_IGRMASK Interrupt group mask
 EV_ILE Interrupt level enable
 EV_ERTOIP Error/timeout interrupt
 EV_ECCSB_DIS ECC single−bit error disable

 The read−only registers are read and their contents are
 reported. These registers are:

 EV_SPNUM Slot/Processor info
 EV_SYSCONFIG System configuration
 EV_HPIL Highest pending interrupt level
 EV_RO_COMPARE RTC compare
 EV_RTC Real time clock
 EV_WGCOUNT Write gatherer count

 Possible error:

 0103001: Local register %s R/W error : Wrote 0x%llx Read 0x%llx

 −−−

 ip2 (cfig_regtest) − Check configuration registers

 Basic write/read test for the configuration registers. The
 registers tested are limited to the following:

 EV_PGBRDEN Write gatherer destination
 EV_PROC_DATARATE Write gatherer control
 EV_WGRETRY_TOUT Interrupts 63 − 0
 EV_CACHE_SZ Interrupts 127 − 64
 EV_CMPREG0 − 3 Timer comparator registers

 Note that the timer comparator registers are checked via the
 read−only RTC compare register.

 Possible error:

 0103002: Configuration register %s R/W error : Wrote 0x%llx
 Read 0x%llx

 − 11 −

 −−−

 ip3 (bustags_reg) − Check bus tags

 This test calculates the size of bus tag space based on the
 size of the secondary cache. Then it performs basic
 write/read test on the bus tags.

 Possible error:

 0103003: Bus tag addr 0x%x R/W error : Wrote 0x%x Read 0x%x

 −−−

 ip4 (counter) − Check R4K count/compare test

 This test performs a basic write/read test on the R4K
 compare register first. Then it generates an interrupt
 using the R4K count and compare registers.

 Possible errors:

 0106001: Compare register data error : Expected 0x%x Got 0x%x
 0106002: Incorrect contents in count register : Expected 0x%x Got 0x%x
 0106003: Phantom count/compare interrupt received
 0106004: No count/compare interrupt received : Count 0x%x Compare 0x%x

 −−−

 ip5 (intr_level0) − Check IP19 level 0 interrupt

 This test generates level 0 interrupts at different priority
 values and execution levels. It also checks multiple level 0
 interrupts occurring at the same time.

 − 12 −

 Possible errors:

 0103004: Level 0 interrupt pending failure : Priority 0x%x IP0 0x%llx IP1
 0x%llx
 0103005: Level 0 highest priority interrupt level failure : HPIL 0x%llx
 0103006: Level 0 interrupt not indicated in Cause register 0x%x
 0103007: Level 0 interrupt pending not cleared : IP0 0x%llx IP1 0x%llx
 0103008: Level 0 highest priority interrupt level not cleared : HPIL 0x%llx
 0103009: Level 0 interrupt pending not cleared in Cause register : Cause 0x%x
 010300a: Level 0 current exec level mismatch : Wrote 0x%llx Read 0x%llx
 010300b: Level 0 interrupt not detected when priority >= CEL : Cause 0x%
 010300c: Level 0 interrupt detected when priority < CEL : Cause 0x%x
 010300d: Level 0 interrupt pending not cleared : Cause 0x%x
 010300e: Level 0 highest priority interrupt level incorrect : Expected 0x7f Got
 0x%llx
 010300f: Level 0 multiple interrupt pending incorrectly indicated : Expected
 0x6000000000000009 Got 0x%llx
 0103010: Level 0 multiple interrupt pending incorrectly indicated : Expected
 0x9000000000000006 Got 0x%llx
 0103011: Level 0 multiple interrupt pending not cleared : IP0 0x%llx
 0103012: Level 0 multiple interrupt pending not cleared : IP1 0x%llx
 0103013: Level 0 multiple interrupt HPIL not cleared : HPIL 0x%llx
 0103014: Level 0 multiple interrupt Cause not cleared : Cause 0x%x
 0103015: Level 0 interrupt did not occur : Priority 0x%x

 −−−

 ip6 (intr_level3) − Check IP19 level 3 interrupt

 This test generates level 3 interrupts using the EV_ERTOIP
 register.

 Possible errors:

 0103016: Level 3 interrupt pending not detected in CAUSE
 0103017: Interrupting error not detected in ERTOIP
 0103018: Level 3 interrupt pending not cleared in Cause : Cause 0x%x
 0103019: ERTOIP not cleared via write to CERTOIP : ERTOIP 0xllx
 010301a: Level 3 interrupt did not occur : ERTOIP 0x%llx

 − 13 −

 −−−

 ip7 (intr_timer) − Check IP19 RTSC and interval timer

 This test generates level 1 interrupt by writing a value
 into the EV_CMPREG configuration registers so that the RTSC
 will reach this value and interrupt the processor.

 Possible errors:

 010301b: Invalid timer interrupt occurred
 010301c: Interval timer interrupt did not occur
 010301d: Timer interrupt pending not cleared in Cause : Cause 0x%x

 −−−

 ip8 (intr_group) − Check IP19 processor group interrupt

 This test generated level 0 interrupts using different
 processor groups at different priority levels including
 broadcast interrupts.

 Possible errors:

 010301e: Group interrupt pending not set correctly in EV_IP0 : Expected 0x%llx
 Got 0x%llx
 010301f: Group highest priority interrupt level failure : HPIL 0x%llx
 0103020: Group interrupt not indicated in Cause register 0x%x
 0103021: Group interrupt pending not cleared : IP0 0x%llx IP1 0x%llx
 0103022: Group highest priority interrupt level not cleared : HPIL 0x%llx
 0103023: Group interrupt pending not cleared in Cause register : Cause 0x%x
 0103024: Group interrupt did not occur : group 0x%x priority 0x%x
 0103025: Group interrupt pending not cleared in Cause : Cause 0x%x

 −−−

 ip9 (wr_gatherer) − Check IP19 write gatherer

 This test exercise the write gatherer on each IP19 by
 performing writes of command−only, mixed command/data and
 data−only streams to the two
 32−word buffers of the write gatherer. The data streams are
 each flushed either manually or automatically to memory for
 verification.

 − 14 −

 Possible errors:

 0103026: Write gatherer command only write : addr 0x%x expected 0x%x got
 0x%x
 0103027: write gatherer mixed write : addr 0x%x expected 0x%x got 0x%x
 0103028: Write gatherer data only write : addr 0x%x expected 0x%x got 0x%x

 −−−

 tlb1 (tlb_ram) − Test R4K TLB as RAM

 Tests the TLB as a small memory array. Checks to see if all
 the read/write bits can be toggled and that all undefined
 bits read back zero.

 Possible errors:

 0108001: TLBHI entry %d R/W error: Wrote 0x%x Read 0x%x
 0108002: TLBLO even entry %d R/W error: Wrote 0x%x Read 0x%x
 0108003: TLBLO odd entry %d R/W error: Wrote 0x%x Read 0x%x

 −−−

 tlb2 (tlb_probe) − Check TLB functionality

 Sets up all the TLB slots and then probes them with matching
 addresses. Checks to ensure that there is a response for
 each valid address.

 Possible error:

 0108018: TLB probe error : Expected entry %d Got entry %d
 vpnum %d addr 0x%x

 −−−

 tlb3 (tlb_xlate) − Check TLB address translation

 Tests for correct virtual to physical translation via mapped
 TLB entries. Sets the virtual address to user segment and
 uncached.

 Possible errors:

 010801b: TLB entry %d unexpected exception for addr 0x%x
 010801c: TLB entry %d translation error at addr 0x%x : Wrote %d Read %d

 − 15 −

 −−−

 tlb4 (tlb_valid) − Check TLB valid exception

 Tests to see if TLB invalid accesses generate exceptions.
 Maps the TLB entries to invalid addresses in k2seg and
 attempts to access them.

 Possible errors:

 0108016: TLB entry %d invalid exception VADDR error : Expected 0x%x Got
 0x%x
 0108017: TLB entry %d invalid exception didn’t occur

 −−−

 tlb5 (tlb_mod) − Check TLB modification exception

 This test sets up the TLB to map each page as non−writable,
 then attempts to write to each of the mapped pages. It
 verifies that an exception is generated for each write
 attempt.

 Possible errors:

 010800b: TLB %s entry %d mod exception VADDR error : Expected 0x%x Got
 0x%x
 010800c: TLB %s entry %d mod exception didn’t occur
 010800d: TLB %s entry %d unexpected exception during mod
 010800e: TLB %s entry %d mod error : Wrote 0x%x Read 0x%x

 −−−

 tlb6 (tlb_pid) − Check TLB refill exception

 Tests each TLB slot by attempting access with both matching
 and non−matching process ID. It verifies that matching pid
 accesses are allowed and non−matching pid accesses generate
 exceptions.

 Possible errors:

 0108015: TLB %s entry %d unexpected exception with matching pid 0x%x
 0108016: TLB %s entry %d refill exception VADDR error : Expected 0x%x Got
 0x%x
 0108017: TLB %s entry %d refill exception didn’t occur

 − 16 −

 −−−

 tlb7 (tlb_g) − Check global bit in TLB entry

 Sets up all the TLB slots to allow global access, then
 attempts access on all slots with a variety of different pid
 settings. This test passes only if no invalid access
 exceptions occur.

 Possible error:

 010801d: Unexpected exception occurred during global access

 −−−

 tlb8 (tlb_c) − Check C bits in TLB entry

 Attempts to access TLB−mapped memory in both cached and
 uncached modes. Tests all slots by writing and reading back
 a pattern, first in cached mode, then in uncached mode. This
 test checks basic functionality, and does not attempt to
 detect cached/uncached interactions.

 Possible errors:

 010800f: Exception during cached write to 0x%x
 0108010: Cached write to 0x%x failed
 0108011: TLB %s entry %d cached mode exception
 0108012: TLB %s entry %d cached R/W error : Wrote 0x%x Read 0x%x
 0108013: TLB %s entry %d uncached mode exception
 0108014: TLB %s entry %d uncached R/W error : Wrote 0x%x Read 0x%x

 −−−

 tlb9 (tlb_mapuc) − Check cached/uncached TLB access

 Checks that both cached and uncached mapped access work
 without interfering with each other. This test aims at
 detecting the R4000 mapped uncached writeback bug. The
 method used is to set up 2 TLB entries for the same page of
 physical memory, one using cached access and the other using
 uncached. A write is done via each of the TLB entries,
 followed by a read. If the R4000 cache is working properly,
 the test will be able to read back the correct (different)
 pattern for each access mode, since the code avoids flushing
 the cache to main memory. If the bug is present, the same
 value will be read back via both cached and uncached access.
 The writes are done in both cached − uncached and uncached −
 cached orders.

 − 17 −

 Possible errors:

 0108004: TLB %s entry %d cached/uncached W exception
 0108005: TLB %s entry %d cached/uncached W error : Wrote 0x%x Read
 0x%x
 0108006: TLB %s entry %d uncached/cached W exception
 0108007: TLB %s entry %d uncached/cached W error : Wrote 0x%x Read
 0x%x
 0108008: TLB %s entry %d uncached/cached RW exception
 0108009: TLB %s entry %d uncached/cached RW error : Wrote 0x%x Read
 0x%x
 010800a: TLB %s entry %d uncached/cached RWR error : Wrote 0x%x Read
 0x%x

 −−−

 fpu1 (fpregs) − fpu register test

 This test simply writes and reads the FPU registers,
 reporting any readback errors.

 Possible errors:

 010901e: FP register %d data error : Expected 0x%x Got 0x%x
 010901f: FP register %d inverted data error : Expected 0x%x Got 0x%x

 −−−

 fpu2 (fpmem) − fpu load/store mem test

 This test loads FPU from memory and stores memory from FPU.

 Possible errors:

 010901c: Load/store FP reg %d data error : Expected 0x%x Got 0x%x
 010901d: Load/store FP reg %d inverted data error : Expected 0x%x, Got
 0x%x

 − 18 −

 −−−

 fpu3 (faddsubs) − fpu add/subtract(single precision)

 Tests addition and subtraction using simple single precision
 arithmetic.

 Possible errors:

 0109004: FP single add/sub result error : Expected 0x%x Got 0x%x
 0109005: FP single add/sub status error : Expected 0 Got 0x%x
 0109006: Fixed to single conversion failed : Before 0x%x After 0x%x

 −−−

 fpu4 (faddsubd) − fpu add/subtract(double precision)

 Tests addition and subtraction using simple double precision
 arithmetic.

 Possible errors:

 0109001: FP double add/sub result error : Expected 0x%x Got 0x%x
 0109002: FP double add/sub status error : Expected 0 Got 0x%x
 0109003: Fixed to double conversion failed : Before 0x%x After 0x%x

 −−−

 fpu5 (fmuldivs) − fpu multiply/divide (single precision)

 Tests multiplication and division using simple single
 precision arithmetic.

 Possible errors:

 0109011: FP single divide result error : Expected 0x%x Got 0x%x
 0109012: FP single multiply result error : Expected 0x%x Got 0x%x

 −−−

 fpu6 (fmuldivd) − fpu multiply/divide (double precision)

 Tests multiplication and division using simple double
 precision arithmetic.

 Possible errors:

 010900f: FP double divide result error : Expected 0x%x Got 0x%x
 0109010: FP double multiply result error : Expected 0x%x Got 0x%x

 − 19 −

 −−−

 fpu7 (fmulsubs) − fpu multiply/subtract (single precision)

 Tests multiplication and subtraction using simple single
 precision arithmetic.

 Possible errors:

 0109016: FP single mul/div result error : Expected 0x%x Got 0x%x
 0109017: Fixed to single conversion failed : Before 0x%x After 0x%x
 0109018: FP single mul/div status error : 0x%x

 −−−

 fpu8 (fmulsubd) − fpu multiply/subtract (double precision)

 Tests multiplication and subtraction using simple double
 precision arithmetic.

 Possible errors:

 0109013: FP double mul/sub result error : Expected 0x%x Got 0x%x
 0109014: Fixed to double conversion failed : Before 0x%x After 0x%x
 0109015: FP double mul/div status error : 0x%x

 −−−

 fpu9 (finvalid) − fpu invalid test

 Simple test to see if an invalid operation exception can be
 generated. Divides 0.0 by itself to generate the exception.

 Possible errors:

 010900b: Invalid exception didn’t occur
 010900c: Invalid exception status error : 0x%x
 010900d: Invalid exception dividend error : Expected 0x%x Got 0x%x

 −−−

 fpu10 (fdivzero) − fpu divided by zero test

 Divides a non−zero value by 0.0. Unlike the previous test,
 the floating point status register is checked after the
 exception to make sure the divide by zero flag is set.

 Possible errors:

 − 20 −

 0109007: Divide by Zero exception status error : 0x%x
 0109008: Dividend conversion failed : Before 0x%x After 0x%x
 0109009: Divisor conversion failed : Before 0x%x After 0x%x

 −−−

 fpu11 (foverflow) − fpu overflow test

 Generates a single precision overflow by adding 2 at−the−
 limit large values. After the exception, the floating point
 status register is checked to make sure the overflow flag
 was set.

 Possible error:

 0109019: Overflow exception status error : 0x%x

 −−−

 fpu12 (funderflow) − fpu underflow test

 Generates a single precision overflow by dividing an at−
 the−limit small value by 2. After the exception, the
 floating point status register is checked to make sure the
 underflow flag was set.

 Possible errors:

 0109020: Exception other than Underflow in FCR31 : 0x%x
 0109021: Failed to generate Underflow Exception

 −−−

 fpu13 (finexact) − fpu inexact test

 Generates a single precision inexact conversion error by
 attempting to convert an integer value too large for a
 single precision representation into a single precision
 value. After the error, the floating point status register
 is checked to make sure the inexact conversion flag was set.

 Possible error:

 010900a: Inexact exception status error : 0x%x

 −−−

 fpu14 (fpcmput) − fpu computation test

 Given a list of "infinite" series, this test executes them a
 specified number of times and compares the result gotten at

 − 21 −

 run−time with an expected result. Discrepancies are
 reported. This is a slow test.

 Possible errors:

 010900e: FP computation unexpected exception : 0x%x
 010901a: Single precision %s error : Expected 0x%x Got 0x%x
 010901b: Double precision %s error : Expected 0x%x 0x%x Got 0x%x 0x%x

 −−−

 cache1 (Taghitst) − TAGHI Register Test

 This diag tests the data integrity of the taghi register. A
 sliding one and a sliding zero pattern are used.

 Possible errors:

 0104001: Taghi register failed walking one test
 Expected data: 0x%08x Actual data: 0x%08x
 0104002: Taghi register failed walking zero test
 Expected data: 0x%08x Actual data: 0x%08x

 −−−

 cache2 (Taglotst) − TAGLO Register Test

 This diag tests the data integrity of the taglo register. A
 sliding one and a sliding zero pattern are used.

 Possible errors:

 0104003: Taglo register failed walking one test
 Expected data: 0x%08x Actual data: 0x%08x
 0104004: Taglo register failed walking zero test
 Expected data: 0x%08x Actual data: 0x%08x

 − 22 −

 −−−

 cache3 (pdtagwlk) − Primary data TAG RAM data line Test

 This diag checks the data integrity of the primary data TAG
 RAM path using walking ones and walking zeros patterns.

 Possible error:

 0104005: D−cache tag ram data line error
 Failed walking one (or zero) test at 0x%08x
 Expected: 0x%08x Actual 0x%08x

 −−−

 cache4 (pdtagadr) − Primary data TAG RAM address line Test

 This diag tests the address lines to the primary data cache
 TAG RAM by sliding a one and then a zero on the address
 lines. This test assumes that the taglo register is in good
 working condition.

 Possible error:

 0104006: D−cache tag ram address line error
 Failed walking one (or zero) test at 0x%08x
 Expected: 0x%08x Actual 0x%08x

 −−−

 cache5 (PdTagKh) − Primary data TAG Knaizuk Hartmann Test

 This diag tests the data integrity of the primary data cache
 TAG RAM with the Knaizuk Hartmann algorithm. It treats the
 TAG RAM array as a ordinary memory array. The parity bit is
 not checked in this test.

 A note about the Knaizuk Hartmann Memory Test

 This algorithm is used to perform a fast but non−exhaustive
 memory test. It will test a memory subsystem for stuck−at
 faults in both the address lines as well as the data
 locations.

 The algorithm breaks up the memory to be tested into 3
 partitions. Partition 0 consists of memory locations 0, 3,
 6, ...; partition 1 consists of memory locations 1,4,7,...;
 partition 2 consists of locations 2,5,8... The partitions
 are

 − 23 −

 filled with either an all ones pattern or an all zeroes
 pattern. By varying the order in which the partitions are
 filled and then checked, this algorithm manages to check all
 combinations of possible stuck at faults.

 Possible errors:

 0104007: Partition 1 error after partition 0 set to 0xaaaaaaaa
 0104008: Partition 2 error after partition 1 set to 0xaaaaaaaa
 0104009: Partition 0 error after partition 1 set to 0xaaaaaaaa
 010400a: Partition 1 error after partition 1 set to 0xaaaaaaaa
 010400b: Partition 0 error after partition 0 set to 0x55555555
 010400c: Partition 2 error after partition 2 set to 0xaaaaaaaa

 For each of the above errors, the following additional
 information is also provided:

 Tag ram address: 0x%08x
 Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x

 −−−

 cache6 (pitagwlk) − Primary Instruction TAG RAM data line
 Test

 This diag checks the data integrity of the primary
 instruction cache TAG RAM path using a walking ones and
 zeros pattern.

 Possible error:

 010400d: I−cache tag ram data line error
 Failed sliding one (or zero) test at 0x%08x
 Expected: 0x%08x, Actual: 0x%08x

 −−−

 cache7 (pitagadr) − Primary Instruction TAG RAM address line
 Test

 This diag tests the address lines to the primary instruction
 cache TAG RAM by sliding a one and then a zero one the
 address lines. This test assumes that the taglo register is
 in good working condition.

 Possible error:

 010400e: I−cache tag ram address line error
 Failed sliding one (or zero) test at 0x%08x
 Expected: 0x%08x Actual 0x%08x

 − 24 −

 − 25 −

 −−−

 cache8 (PiTagKh) − Primary Instruction TAG RAM Knaizuk
 Hartmann Test

 This diag tests the data integrity of the primary
 instruction cache TAG RAM with the Knaizuk Hartmann
 algorithm. It treats the TAG RAM array as a ordinary memory
 array. The parity bit is not checked in this test.

 Possible errors:

 010400f: Partition 1 error after partition 0 set to 0xaaaaaaaa
 0104010: Partition 2 error after partition 1 set to 0xaaaaaaaa
 0104011: Partition 0 error after partition 1 set to 0xaaaaaaaa
 0104012: Partition 1 error after partition 1 set to 0xaaaaaaaa
 0104013: Partition 0 error after partition 0 set to 0x55555555
 0104014: Partition 2 error after partition 2 set to 0xaaaaaaaa

 For each of the above errors, the following additional
 information is provided:

 Tag ram index address: 0x%08x
 Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x

 −−−

 cache9 (sd_tagwlk) − Secondary TAG data path Test

 Checks the data integrity of the Secondary data TAG RAM path
 using a walking ones/zeros pattern.

 Possible error:

 0105015: Secondary Data TAG RAM Path Error
 on sliding one (or zero) pattern
 TAG RAM Location 0x%x
 Expected 0x%x Actual= 0x%x XOR= 0x%x

 −−−

 cache10 (sd_tagaddr) − Secondary TAG address Test

 Checks the address integrity to the Primary Data TAG RAM by
 using a walking address.

 − 26 −

 Possible error:

 0105016: Secondary Data TAG Address Error
 TAG RAM Location 0x%x
 Expected 0x%x Actual= 0x%x XOR= 0x%x

 −−−

 cache11 (sd_tagkh) − Secondary TAG RAM Knaizuk Hartmann Test

 This diag tests the data integrity of the secondary data
 cache TAG RAM with the Knaizuk Hartmann algorithm. It treats
 the TAG RAM array as a ordinary memory array. The parity bit
 is not checked in this test.

 Possible error:

 0105017: Secondary Data TAG ram data Error
 Address %x, error code %d
 expected %x, actual %x, XOR %x

 −−−

 cache12 (d_tagparity) − Primary Data TAG RAM parity Test

 This diag tests the functionality of the parity bit in the
 primary data cache tag. For each tag, a stream of one’s and
 zero’s are shifted into the tag to check if the parity bit
 change state accordingly.

 Possible error:

 0104018: D−cache tag ram parity bit error
 Tag ram address: 0x%08x expected content: 0x%08x
 Taglo: 0x%08x expected parity: 0x%x actual parity: 0x%x

 −−−

 cache13 (d_tagcmp) − Primary Data TAG comparator Test

 This diag tests the comparator at the D−cache tag for hit
 and miss detection. For each tag, set the ptag field with
 the values which will cause a cache hit for the Kseg0
 address of 0x80002000 to 0x9fffffff. The values used are a
 walking one or a walking zero pattern. This will ensure only
 one bit location is tested at the comparator. The cache op
 Hit Invalidate is used to check for cache hit and miss
 situations.

 − 27 −

 Possible errors:

 0104019: D−cache tag comparator did not detect a miss
 0104020: D−cache tag comparator did not detect a hit

 For each of the above errors, the following additional
 information are provided:

 Tag ram address: 0x%08x
 PTag field of tag: 0x%06x comparing with PFN: 0x%06x

 −−−

 cache14 (d_tagfunct) − Primary Data TAG functionality Test

 This diag tests the functionality of the data cache tag.
 Kseg0 addresses are used to load the cache from memory. The
 ptag and the cache state field are checked to see if they
 are holding expected values. Virtual addresses 0x80000000,
 0x80002000, 0x80004000, 0x80008000, ... 0x90000000 are used
 as the baseaddress of an 8k page which is mapped to the
 cache. The ptag and state of each cache line are checked
 against the expected value.

 Possible errors:

 0104021: D−cache tag functional error in PTAG field
 PTag field does not contain correct tag bits
 Cache line address: 0x%08x
 Expected PTag: 0x%06x
 Actual PTag: 0x%06x
 TAGLO Register %x
 Re−read DTAG %x
 0104022: D−cache tag functional cache state error
 Cache line address: 0x%08x
 Expected cache state: 0x%08x
 Actual cache state: 0x%08x
 TAGLO Register %x
 Re−read DTAG %x

 −−−

 cache15 (d_slide_data) − Primary Data RAM data line Test

 This diag tests the data lines to the primary data cache. A
 sliding one and a sliding zero data pattern is written into
 the first location of the D−cache to check if each data line
 can be toggled individually.

 − 28 −

 Possible errors:

 0107023: D−cache data ram data lines failed walking one test
 Addr: 0x%08x Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x
 0107024: D−cache data ram data lines failed walking zero test
 Addr: 0x%08x Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x

 −−−

 cache16 (d_slide_addr) − Primary Data RAM address line Test

 This diag tests the address lines to the primary data cache.
 Each address line to the data cache is toggled once
 individually by sliding a one and then a zero across the
 address lines.

 Possible errors:

 0107025: D−cache data ram address lines failed walking one tes
 Addr: 0x%08x Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x
 0107026: D−cache data ram address lines failed walking zero test
 Addr: 0x%08x Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x

 −−−

 cache17 (d_kh) − Primary Data RAM Knaizuk Hartmann Test

 This diag tests the data integrity of the D−cache with the
 Knaizuk Hartmann algorithm. Data pattern 0x55555555 and
 0xaaaaaaaa are used.

 Possible errors:

 0107027: Partition 1 error after partition 0 set to 0xaaaaaaaa
 0107028: Partition 2 error after partition 1 set to 0xaaaaaaaa
 0107029: Partition 0 error after partition 1 set to 0xaaaaaaaa
 010702a: Partition 1 error after partition 1 set to 0xaaaaaaaa
 010702b: Partition 0 error after partition 0 set to 0x55555555
 010702c: Partition 2 error after partition 2 set to 0xaaaaaaaa

 For each of the above errors, the following additional
 information is provided:

 Cache address: 0x%08x
 Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x

 − 29 −

 −−−

 cache18 (dsd_wlk) − Primary/Secondary Data path Test

 Test the data path from memory through the secondary cache
 and to the Primary Data Cache.

 Possible errors:

 010702d: Data Path Error from Memory−>Secondary−>Primary Data
 Address %x, expected %x, actual %x, Xor %x
 010702e: Data Path Error from Primary −>Secondary−>Memory Data
 Address %x, Expected %x, Actual %x, Xor %x

 −−−

 cache19 (sd_aina) − Secondary Data RAM (address in address)
 Test

 Performs an address in address test on the secondary data
 cache.

 Possible errors:

 010502f: Secondary Memory Error on pattern 1
 Address %08x
 expected %08x, actual %08x, XOR %08x
 0105030: Secondary Memory Error on pattern 2
 Address %08x
 expected %08x, actual %08x, XOR %08x

 −−−

 cache20 (d_function) − Primary Data functionality Test

 This diag tests the functionality of the entire data cache.
 It checks the block fill, write back on a dirty line
 replacement, and no write back on a clean line replacement
 function of the data cache lines.

 − 30 −

 Possible errors:

 0104031: D−cache block fill error 1
 Cache contains incorrect data
 Cache Address: 0x%08x
 Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x
 0104032: D−cache block fill error 2
 Cache contains incorrect data
 Cache Address: 0x%08x
 Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x
 0104033: D−cache block write back error 1
 Memory contains incorrect data
 Cache Address: 0x%08x
 Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x
 0104034: D−cache block fill error 3
 Cache contains incorrect data
 Cache Address: 0x%08x
 Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x
 0104035: D−cache block write back error 2
 Memory content is altered
 Write back happened on a clean line
 Cache Address: 0x%08x
 Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x

 −−−

 cache21 (d_parity) − Primary Data parity generation Test

 This diag tests the parity bit generation of the D−cache
 data ram.

 Possible error:

 0104036: D−cache parity generation error
 error %x
 Cache byte address: 0x%08x data:0x%02x
 Parity bit position: 0x%02x
 Expected parity: 0x%02x Actual parity:0x%02x

 −−−

 cache22 (i_tagparity) − Primary Instruction TAG RAM parity
 bit Test

 This diag tests the functionality of the parity bit in the
 primary I−cache tag. For each tag, the parity bit is tested
 to respond to each bit change in the tag.

 − 31 −

 Possible error:

 0104037: I−cache tag ram parity bit error
 Tag ram address: 0x%08x expected content: 0x%08x
 Taglo: 0x%08x expected parity: 0x%x actual parity: 0x%x

 −−−

 cache23 (i_tagcmp) − Primary Instruction TAG RAM comparator
 Test

 This diag tests the comparator at the I−cache tag for hit
 and miss detection.

 Possible errors:

 0104038: I−cache tag comparator did not detect a miss (walking l)
 0104039: I−cache tag comparator did not detect a hit (walking 1)
 010403a: I−cache tag comparator did not detect a miss (walking zero)
 010403d: I−cache tag comparator did not detect a hit (walking zero)

 For each of the above errors, the following additional
 information is provided:

 Tag ram address: 0x%08x
 PTag field of tag: 0x%06x comparing with PFN: 0x%06x

 −−−

 cache24 (i_tagfunct) − Primary Instruction TAG functionality
 Test

 This diag tests the functionality of the instruction cache
 tag. Kseg0 addresses are used to load the cache from memory.
 This will test if the cache is functional on the cachable
 memory space. After each 8k segment of memory is loaded into
 the cache. The ptag and the cache state field are checked to
 see if they are holding expected values. Virtual addresses
 0x80000000, 0x80002000, 0x80004000, 0x80008000, ...,
 0x90000000 are used as the base address of each 8k page
 which is mapped to the cache. The ptag and cache state of
 each cache line are checked against the expected value.

 − 32 −

 Possible errors:

 010403b: I−cache tag functional error in PTAG field
 PTag field does not contain correct tag bits
 Cache line address: 0x%08x
 Expected PTag: 0x%06x
 Actual PTag: 0x%06x
 010403c: I−cache tag functional cache state error
 Cache state not correct
 Cache line address: 0x%08x
 Expected cache state: 0x%08x
 Actual cache state: 0x%08x

 −−−

 cache25 (i_slide_data) − Primary Instruction data RAM data
 line Test

 This diag checks the data lines to the I−cache data ram by
 sliding a one and zero bit across the bus.

 Possible errors:

 010403f: I−cache data ram data lines failed walking one test
 Addr: 0x%08x Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x
 PITAG %x
 PDTAG %x
 STAG %x
 0104040: I−cache data ram data lines failed walking zero test
 Addr: 0x%08x Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x
 PTAG %x
 STAG %x

 −−−

 cache26 (i_aina) − Primary Instruction data RAM address in
 address Test

 Performs an address in address test on the primary
 instruction cache.

 Possible error:

 0107041: I−cache address in address error
 addr %x, exp %x, act %x, XOR %x

 − 33 −

 −−−

 cache27 (i_function) − Primary Instruction functionality
 Test

 This diag tests the functionality of the entire instruction
 cache. It checks the block fill and hit write back of the
 instruction cache lines.

 Possible error:

 0107042: I−cache block write back error
 Memory contains incorrect data
 Cache address: 0x%08x
 Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x
 Icache TAG = %x
 Scache TAG = %x

 −−−

 cache28 (i_parity) − Primary Instruction parity generation
 Test

 This diag tests the parity bit generation of the I−cache
 data ram.

 Possible error:

 0104043: I−cache parity generation error
 error %x
 Cache byte address: 0x%08x data:0x%02x
 Parity bit position: 0x%02
 Expected parity: 0x%02x Actual parity:0x%02x

 −−−

 cache29 (i_hitinv) − Primary Instruction Hit Invalidate Test

 This diag tests the Hit Invalidate cache op on the
 Instruction cache.

 − 34 −

 Possible errors:

 0104044: I−cache state error during initialization
 Cache state did not change to valid when filled from memory
 Cache line address: 0x%08x
 Expected cache state: 0x%08x Actual cache state: 0x%08x
 0104045: I−cache state error
 Hit Invalidate changed the line to invalid on a miss
 Cache line address: 0x%08x
 Miss address: 0x%08x
 Expected cache state: 0x%08x Actual cache state: 0x%08x
 0104046: I−cache state error on a Hit Invalidate Cache OP
 Hit Invalidate did not invalidate the line on a hit
 Cache line address: 0x%08x
 Expected cache state: 0x%08x Actual cache state: 0x%08x

 −−−

 cache30 (i_hitwb) − Primary Instruction Hit Writeback Test

 This diag tests the Hit Writeback cache op on the
 instruction cache.

 Possible errors:

 0104047: I−cache state error during initialization
 Cache state did not change to valid when filled from memory
 Cache line address: 0x%08x
 Expected cache state: 0x%08x Actual cache state: 0x%08x
 0104048: I−cache state error Hit writeback happened on a cache miss
 Cache line address: 0x%08x
 Miss address: 0x%08x
 0104049: I−cache Hit writeback did not happen on a cache hit
 Cache line address: 0x%08x
 expected %x, actual %x, XOR %x

 −−−

 cache31 (ECC_reg_tst) − ECC register Test

 This diag tests the data integrity of the ECC register. A
 sliding one and sliding zero pattern is used in this test.

 Possible errors:

 010404a: ECC register failed walking one test
 Expected data: 0x%08x Actual data: 0x%08x
 010404b: ECC register failed walking zero test
 Expected data: 0x%08x Actual data: 0x%08x

 −−−

 − 35 −

 cache32 (dd_hitinv) − Primary Data Hit Invalidate Test

 This diag tests the Hit Invalidate cache op on the data
 cache.

 Possible errors:

 010404c: D−cache state error during initialization
 Cache state did not change to valid when filled from memory
 Cache line address: 0x%08x
 Expected cache state: 0x%08x Actual cache state: 0x%08x
 010404d: D−cache state error
 Hit Invalidate changed the line to invalid on a miss
 Cache line address: 0x%08x
 Miss address: 0x%08x
 Expected cache state: 0x%08x Actual cache state: 0x%08x
 010404e: D−cache state error on a Hit Invalidate Cache OP
 Hit Invalidate did not invalidate the line on a hit
 Cache line address: 0x%08x
 Expected cache state: 0x%08x Actual cache state: 0x%08x

 −−−

 cache33 (d_hitwb) − Primary Data Hit Writeback Test

 This diag tests the Hit Writeback cache op on the data
 cache.

 − 36 −

 Possible errors:

 010404f: D−cache state error during initialization
 Cache state did not change to valid when filled from memory
 Cache line address: 0x%08x
 Expected cache state: 0x%08x Actual cache state: 0x%08x
 TAGLO Reg %x
 Re−Read dtag %x
 Re−Read stag %x
 0104050: D−cache state error Hit writeback happened on a clean exclusive line
 Cache line address: 0x%08x
 PTAG %x
 Scache TAG %x
 0104051: D−cache Hit writeback happened on a cache miss
 Cache line address: 0x%08x
 Miss address: 0x%08x
 PTAG %x
 Scache TAG %x
 0104052: D−cache Hit writeback did not happen on a cache hit
 Cache line address: 0x%08x
 PTAG %x
 Scache TAG %x
 0104053: D−cache Hit Writeback clears the write back bi
 Cache line address: 0x%08x

 −−−

 cache34 (d_dirtywbw) − Primary Data dirty writeback word
 Test

 This test verifies the block (4 words) write mode in data
 cache. It writes to K0 (0x80020000) cached space, causing
 the cache dirty. Then it replace the cache line by reading
 0x80022000, different cache line with same offset. This
 causes the data in 0x80020000 wrtie back to memory which now
 has the same data as in 0x80020000. Multiple cache lines
 are tested back to back.

 Possible errors:

 0104054: Unexpected Cache write through to memory
 addr %x, expected %x, actual %x, XOR %x
 Secondary TAG %x
 0104055: Cache writeback did not occur on a word store to a dirty line
 addr %x
 expected %x, actual %x, XOR %x
 Secondary TAG %x

 −−−

 − 37 −

 cache35 (d_refill) − Primary Data refill from Secondary
 Cache Test

 This test verifies the block write/read mode in data cache.
 It writes to K0 (0x80020000) cached space, causing the cache
 dirty. Then it replace the cache line by reading
 0x80022000, different cache line with same offset. This
 causes the data in primary data cache to be written back to
 the secondary. The address 0x80020000 is reread and
 compared. Should be a cache hit in the secondary.

 Possible errors:

 0104056: Unexpected Cache write through to memory
 addr = %x
 expected = %x, actual = %x, XOR %x
 Secondary TAG %x
 0104057: Secondary Cache miss, expected a cache hit
 addr = %x
 expected = %x, actual = %x, XOR = %x
 Data in memory = 0xdeadbeef
 Secondary TAG %x

 −−−

 cache36 (sd_dirtywbw) − Secondary Dirty Writeback (word)
 Test

 This test verifies the block (4 words) write mode in data
 cache. It writes to K0 (0x80020000) cached space, causing
 the cache dirty. Then it replace the cache line by reading
 0x80022000, different cache line with same offset. This
 causes the data in 0x80020000 wrtie back to secondary which
 now has the same data as in 0x80020000. A write to address
 0x80060000 will replace the

 − 38 −

 secondary lines, thus forcing a writeback from the Secondary
 Cache. Note, there is another flavor of this test
 d_dirtywbw.c which forces the writeback from the primary
 when the secondary line is replaced.

 Possible errors:

 0105058: Unexpected Cache write through to memory
 addr = %x
 expected = %x, actual = %x, XOR %x
 Secondary TAG %x
 0105059: Data read replaced a dirty line in Secondary
 Dirty line not written back to memory
 addr = %x
 expected = %x, actual = %x, XOR %x
 Secondary TAG %x

 −−−

 cache37 (sd_dirtywbh) − Secondary Dirty Writeback (halfword)
 Test

 This test verifies the block (4 words) write mode in data
 cache. It writes to K0 (0x80020000) cached space, causing
 the cache dirty. Then it replace the cache line by reading
 0x80022000, different cache line with same offset. This
 causes the data in 0x80020000 wrtie back to memory which now
 has the same data as in 0x80020000. Multiple cache lines
 are tested back to back. Half word transactions are tested.

 Possible errors:

 010505a: Unexpected Cache write through to memory on store halfword
 addr = %x
 expected = %4x, actual = %4x, XOR %4x
 Secondary TAG %
 010505b: Halfword read replaced a dirty line in Secondary, dirty line not written
 back to memory
 addr = %x
 expected = %4x, actual = %4x, XOR %4x
 Secondary TAG %x

 − 39 −

 −−−

 cache38 (sd_dirtywbb) − Secondary Dirty Writeback (byte)
 Test

 This test verifies the block (4 words) write mode in data
 cache. It writes to K0 (0x80020000) cached space, causing
 the cache dirty. Then it replace the cache line by reading
 0x80022000, different cache line with same offset. This
 causes the data in 0x80020000 wrtie back to memory which now
 has the same data as in 0x80020000. Multiple cache lines
 are tested back to back. Byte transactions are tested.

 Possible errors:

 010505c: Unexpected Cache write through to memory on store byte
 addr = %x
 expected = %2x, actual = %2x, XOR %2x
 Secondary TAG %x
 010505d: Byte read replaced a dirty line in Secondary, dirty line not written
 back to memory
 Dirty line not written back to memory
 addr = %x
 expected = %2x, actual = %2x, XOR %2x
 Secondary TAG %x

 −−−

 cache39 (sd_tagecc) − Secondary TAG ECC Test

 Checks the data integrity of the Secondary data tag ram path
 using a walking ones/zeros pattern.

 Possible errors:

 010505e: Secondary Data TAG RAM ECC Path error (walking one as data)
 TAG RAM Location 0x%x
 Expected 0x%x Actual= 0x%x XOR= 0x%x
 010505f: Secondary Data TAG RAM ECC Path error (walking zero as data)
 TAG RAM Location 0x%x
 Expected 0x%x Actual= 0x%x XOR= 0x%x

 − 40 −

 −−−

 cache40 (sdd_hitinv) − Secondary Hit Invalidate Test

 This test verifies the Hit Invalidate Cache operation.

 Possible errors:

 0105060: S−cache state error during initialization
 addr = %x
 expected = %x, actual = %x, XOR %x
 Secondary TAG %x
 0105061: S−Cache error during Primary Cache dirty line writeback to Scache
 0105062: S−Cache state error on a Hit Invalidate Cache OP
 0105063: Data written back to memory after a Hit Invalidate on the Secondary
 addr = %x
 expected = %x, actual = %x, XOR %x
 Secondary TAG %x
 0105064: S−Cache state error on a Hit Invalidate Cache OP
 0105065: Primary Cache TAG not invalid after a Hit Invalidate on the Scache
 addr %x
 Secondary TAG %x
 Primary TAG %x
 0105066: Data written back to memory after a Hit Invalidate on the Secondary
 addr = %x
 expected = %x, actual = %x, XOR %x
 Secondary TAG %x
 Primary TAG %x

 For errors 0105061, 0105062 and 0105064, the following
 additional information is provided:

 Error in Secondary Cache TAG State field
 OR Error in Secondary Cache TAG physical tag field
 OR Error in Secondary Cache TAG Virtual Address field
 Address 0x%08x10econdary TAG Data 0x%08x
 Expected Cache State: 0x%x = [STATE]

 STATE is one of the decoded cache states: Invalid, Clean
 Exclusive, Dirty Exclusive, Shared, and Dirty Shared.

 − 41 −

 −−−

 cache41 (sd_hitwb) − Secondary Hit Writeback Test

 This test verifies the Hit Writeback Cache operation. It
 verifies that the data can be written back from the
 Secondary or in the case where the primary data is more
 current that the data is written from the Primary to memory.
 Also checked is the fact that the cache lines are not
 invalidated as with the Hit Writeback Invalidate Cache Op.
 Instead in checks that the lines is set to the clean
 exclusive state.

 Possible errors:

 0105067: Initialization error, unexpected Cache write through to memory
 addr = %x
 expected = %x, actual = %x, XOR %x
 Secondary TAG %x
 0105068: SCache error during Primary Cache dirty line writeback to Scache
 0105069: Data not written back from Scache to Memory on Hit Writeback
 Cache OP
 addr = %x
 expected = %x, actual = %x, XOR %x
 Secondary TAG %x
 010506a: Initialization error, unexpected Cache write through to memory
 addr = %x
 expected = %x, actual = %x, XOR %x
 Secondary TAG %x
 010506b: SCache state error during Hit Writeback on S−Cache dirty line
 010506c: Error in Primary Cache TAG after a Hit Writeback cache Op on the
 SCache
 addr %x
 Expected cache state: Dirty Exclusive
 Primary Data TAG %x
 010506d: Data not written back from D−Cache to Memory on a Hit Writeback
 on the S−Cache
 addr = %x
 expected = %x, actual = %x, XOR %x
 Secondary TAG %x
 Primary Data TAG %x

 − 42 −

 For errors 0105068 and 010506b, the following additional
 information are provided:

 Error in Secondary Cache TAG State field
 OR Error in Secondary Cache TAG physical tag field
 OR Error in Secondary Cache TAG Virtual Address field
 Address 0x%08x10econdary TAG Data 0x%08x
 Expected Cache State: 0x%x = [STATE]

 STATE is one of the decoded cache states: Invalid, Clean
 Exclusive, Dirty Exclusive, Shared, and Dirty Shared.

 −−−

 cache42 (sd_hitwbinv) − Secondary Hit Writeback Invalidate
 Test

 This test verifies the Hit Writeback Invalidate Cache
 operation. It verifies that the data can be written back
 from the Secondary or in the case where the primary data is
 more current that the data is written from the Primary to
 memory. Also checked is the fact that the cache lines are
 invalidated.

 − 43 −

 Possible errors:

 010506e: Initialization error, unexpected Cache write through to memory
 addr = %x
 expected = %x, actual = %x, XOR %x
 Secondary TAG %x
 010506f: S−Cache TAG error after Hit Writeback Invalidate cacheo
 0105070: Data not written back from Scache to Memory after Hit Writeback
 Invalidate Cacheop
 addr = %x
 expected = %x, actual = %x, XOR %x
 Secondary TAG %x
 0105071: Initialization error, unexpected Cache write through to memory
 addr = %x
 expected = %x, actual = %x, XOR %x
 Secondary TAG %x
 0105072: S−Cache TAG error after Hit Writeback Invalidate cacheop, test case 2
 0105073: Error in Primary Cache TAG after a Hit Writeback Invalidate cacheop
 on the SCache
 addr %x
 Expected cache state: Invalid
 Primary Data TAG %x
 0105074: Data not written back from D−Cache to Memory on a Hit Writeback
 Invalidate on the S−Cache
 addr = %x
 expected = %x, actual = %x, XOR %x
 Secondary TAG %x
 Primary Data TAG %x

 For errors 010506f and 0105072, the following additional
 information are provided:

 Error in Secondary Cache TAG State field
 OR Error in Secondary Cache TAG physical tag field
 OR Error in Secondary Cache TAG Virtual Address field
 Address 0x%08x10econdary TAG Data 0x%08x
 Expected Cache State: 0x%x = [STATE]

 STATE is one of the decoded cache states: Invalid, Clean
 Exclusive, Dirty Exclusive, Shared, and Dirty Shared.

 − 44 −

 −−−

 cache43 (cluster) − Secondary Cluster Test

 Possible errors:

 0105075: SCache data incorrectly written to memory during a dirty writeback
 operation
 1st mem block
 Mem Address 0x%08x
 Expected 0x%08x, Actual 0x%08x, XOR 0x%08x
 0105076: SCache data incorrectly written to memory during a dirty writeback
 operation
 2nd mem block
 Mem Address 0x%08x
 Expected 0x%08x, Actual 0x%08x, XOR 0x%08x

 −−−

 cache44 (clusterwb) − Secondary Cluster Writeback Test

 Possible errors:

 0105077: SCache data incorrectly written to memory during a dirty writeback
 operation on 1st block
 Mem Address 0x%08x
 Expected 0x%08x, Actual 0x%08x, XOR 0x%08x
 0105078: SCache data incorrectly written to memory during a dirty writeback
 operation on 2nd block
 Mem Address 0x%08x
 Expected 0x%08x, Actual 0x%08x, XOR 0x%08x
 0105079: SCache data incorrectly written to memory during a dirty writeback
 operation on 3rd block
 Mem Address 0x%08x
 Expected 0x%08x, Actual 0x%08x, XOR 0x%08x

 −−−

 cache45 (hammer_pdcache) − stress primary D−cache−−runs
 icached

 Possible error:

 010407b: Primary cache stress error at addr : 0x%x Expected 0x%x Got 0x%x

 − 45 −

 −−−

 cache46 (hammer_scache) − stress secondary cache−−runs
 icached

 Possible error:

 010507c: Secondary cache stress error at addr : 0x%x Expected 0x%x Got 0x%x

 −−−

 cache47 (cache_stress) − cache stress test

 Write/read to one word in every page through 0x80000000
 space.

 Possible error:

 010507a: Secondary cache stress error at addr : 0x%x Expected 0x%x Got 0x%x

 −−−

 cache48 (cache_states) − complete cache−state transitions
 test

 The abbreviation of the following cache states are to be
 used in the description of each cache state transition test:

 CE clean exclusive
 DE dirty exclusive
 I invalid

 cstate0 (RHH_CE_CE)

 −−−−−−−−−−−−−−−−−−−

 Read hit primary (CE) and 2nd (CE). Check that the value is
 correct (the physmem addr) and that both tags are still CE.

 cstate1 (RHH_DE_DE)

 −−−−−−−−−−−−−−−−−−−

 Read hit primary (DE) and 2nd (DE). Check value and that
 both are still DE.

 cstate2 (WHH_CE_CE)

 −−−−−−−−−−−−−−−−−−−

 − 46 −

 Write hit primary (CE) and 2nd (CE). Check that 2nd and
 memory still have old value and that both cache lines are
 now DE.

 cstate3 (WHH_DE_DE)

 −−−−−−−−−−−−−−−−−−−

 Write hit primary (DE) and 2nd (DE). Check that 2nd and
 memory still have old value and that both lines are still
 DE.

 cstate4 (RMH_I_CE)

 −−−−−−−−−−−−−−−−−−

 Read miss primary (I) and hit 2nd (CE). Check that 2nd and
 memory still have old value and that both lines are CE.

 cstate5 (RMH_I_DE)

 −−−−−−−−−−−−−−−−−−

 Read miss primary (I) and hit 2nd (DE). Check that 2nd and
 memory still have old value and that both lines are DE.

 cstate6 (RMH_CE_CE)

 −−−−−−−−−−−−−−−−−−−

 Read miss primary (CE) and hit 2nd (CE). Check that 2nd and
 memory still have old value and that both lines are still
 CE.

 cstate7 (RMH_DE_DE)

 −−−−−−−−−−−−−−−−−−−

 Read miss primary (DE) and hit 2nd (DE). Check that 2nd and
 memory still have old value and that both lines are still
 CE.

 cstate8 (WMH_I_CE)

 −−−−−−−−−−−−−−−−−−

 Write miss primary (I) and hit 2nd (CE). Check that 2nd and
 memory still have old value and that both lines are DE.

 cstate9 (WMH_I_DE)

 − 47 −

 −−−−−−−−−−−−−−−−−−

 Write miss primary (I) and hit 2nd (DE). Check that 2nd and
 memory still have old value and that both lines are DE.

 cstate10 (WMH_CE_CE)

 −−−−−−−−−−−−−−−−−−−−

 Write miss primary (CE) and hit 2nd (CE).

 cstate11 (WMH_DE_DE)

 −−−−−−−−−−−−−−−−−−−−

 Write miss primary (DE) and hit 2nd (DE).

 cstate12 (RMM_I_I)

 −−−−−−−−−−−−−−−−−−

 Read miss primary (I) and 2nd (I). Check that value is
 correct, that 2nd and memory still have old value and that
 both lines are CE.

 cstate13 (RMM_I_CE)

 −−−−−−−−−−−−−−−−−−−

 Read miss primary (I) and miss 2nd (CE). Check that value is
 correct, that 2nd and memory still have old value and that
 both lines are CE.

 cstate14 (RMM_I_DE)

 − 48 −

 −−−−−−−−−−−−−−−−−−−

 Read miss primary (I) and miss 2nd (DE). Check that 2ndary
 line matches memory, that both tags are CE, that the addr
 tags on both lines are correct, and that the dirty altaddr
 secondary line was flushed to memory.

 cstate15 (RMM_CE_CE)

 −−−−−−−−−−−−−−−−−−−−

 Read miss primary (CE) and miss 2nd (CE). Fill cache lines
 with a word from physaddr+2ndcachesize; do a read, then
 check that the tags for both lines are CE and have the
 correct phys addrs, and that the alternate memory word
 hasn’t changed ###.

 cstate16 (RMM_DE_DE)

 −−−−−−−−−−−−−−−−−−−−

 Read miss primary (DE) and miss 2nd (DE). Fill cache lines
 with a word from physaddr+2ndcachesize; do a read, then
 check that the tags for both lines are now CE and have the
 correct phys addrs, and that the alternate memory word was
 written when the altaddr line was flushed.

 cstate17 (WMM_I_I)

 −−−−−−−−−−−−−−−−−−

 Write miss primary (I) and 2nd (I). Check that 2ndary line
 matches memory, that both tags are DE, and that the addr
 tags on both lines are correct.

 cstate18 (WMM_I_CE)

 −−−−−−−−−−−−−−−−−−−

 Write miss primary (I) and miss 2nd (CE). Check that 2ndary
 line matches memory, that both tags are DE, and that the
 addr tags on both lines are correct.

 cstate19 (WMM_I_DE)

 − 49 −

 −−−−−−−−−−−−−−−−−−−

 Write miss primary (I) and miss 2nd (DE). Check that 2ndary
 line matches memory, that both tags are DE, that the addr
 tags on both lines are correct, and that the dirty altaddr
 secondary line was flushed to memory.

 cstate20 (WMM_CE_CE)

 −−−−−−−−−−−−−−−−−−−−

 Write miss primary (CE) and miss 2nd (CE). Fill cache lines
 with a word from physaddr+2ndcachesize; do a store, then
 check that the tags for both lines are DE and have the
 correct phys addrs, and that the alternate memory word
 hasn’t changed.

 cstate21 (WMM_DE_DE)

 −−−−−−−−−−−−−−−−−−−−

 Write miss primary (DE) and miss 2nd (DE). Check that 2ndary
 line matches memory, that both tags are DE, that the addr
 tags on both lines are correct, and that the dirty altaddr
 primary and secondary lines were flushed to memory.

 Possible errors:

 010707d: RHH_CE_CE : physaddr 0x%x contents incorrect (0x%x)
 010707e: RHH_DE_DE : physaddr 0x%x contents incorrect (0x%x)
 010707f: RMH_I_CE : physaddr 0x%x contents incorrect (0x%x)
 0107080: RMH_I_DE : physaddr 0x%x contents incorrect (0x%x)
 0107081: RMH_CE_CE : physaddr 0x%x contents incorrect (0x%x)
 0107082: RMH_DE_DE : physaddr 0x%x contents incorrect (0x%x)
 0107083: RMM_I_I : physaddr 0x%x contents incorrect (0x%x)
 0107084: RMM_I_CE : physaddr 0x%x contents incorrect (0x%x)
 0107085: RMM_I_DE : physaddr 0x%x contents incorrect (0x%x)
 0107086: PRIMARYD cache state error at addr 0x%x : Expected 0x%x Got 0x%x
 OR PRIMARYI cache state error at addr 0x%x : Expected 0x%x Got 0x%x
 OR SECONDARY cache state error at addr 0x%x : Expected 0x%x Got 0x%x
 0107087: PRIMARYD addr error at slot 0x%x : Expected 0x%x Got 0x%x
 OR PRIMARYI addr error at slot 0x%x : Expected 0x%x Got 0x%x
 OR SECONDARY addr error at slot 0x%x : Expected 0x%x Got 0x%x
 0107088: Mem value error at addr 0x%x : Expected 0x%x Got 0x%
 0107089: Writeback missed 2ndary level cache at addr 0x%x
 010708a: 2ndary cache value error at addr 0x%x : Expected 0x%x Got 0x%x

 − 50 −

 2.3 M_C_3__i_d_e__G_u_i_d_e_

 To run the MC3 i_d_e_ diagnostics:

 o Boot i_d_e_

 o The default report level is 2. Set the report level by
 typing the following:

 report=#

 where # is any number from 1 to 5.

 level 5 Debugging messages displayed. Don’t need
 this much detail.

 level 4 Prints out memory locations as they are
 written. Selecting this level slows down
 testing time.

 level 3 Prints out 1−line functional
 descriptions within tests. This is
 probably the most useful level for
 general use.

 level 2 Print out only errors, titles, and
 pass/fail.

 level 1 Print out only titles and pass/fail.

 Level n_ prints out all messages for level n_ and below.

 o Set the modes of operations for running the tests:

 − qmode [on | off]

 For the memory tests, quick mode tests every n_th
 byte instead of every byte, where n_ varies from 96
 to 7680 depending upon the test. The goal in
 quick mode is to test 16GB in about 10 minutes−and
 this is accomplished by testing every n_th byte. n_
 varies depending upon how fast or slow a test was
 timed to run.

 − c_on_error [on | off]

 For the memory tests, the ‘‘on’’ setting continues
 the test even when an error has been encountered.
 Setting the mode to ‘‘off’’ stops the tests after
 the first error.

 − 51 −

 o Run m_e_m_a_l_l_ and m_e_m_f_a_s_t_.

 These are two defined commands. Each can be run in
 quick mode or in normal mode. m_e_m_a_l_l_ runs all commands
 (m_e_m_a_l_l_: m_e_m_1_, m_e_m_1_4_, m_e_m_2_, m_e_m_3_, m_e_m_4_, m_e_m_5_, m_e_m_6_,
 m_e_m_7_, m_e_m_8_, m_e_m_9_, m_e_m_1_0_, m_e_m_1_3_, m_e_m_1_6_, in this order),
 while m_e_m_f_a_s_t_ runs just the faster tests (m_e_m_f_a_s_t_:
 m_e_m_3_, m_e_m_5_, m_e_m_8_, m_e_m_9_, m_e_m_1_0_, m_e_m_1_6_, in this order).

 o There are currently 18 memory tests, m_e_m_1_−m_e_m_1_8_. They
 are detailed below:

 −−−

 mem1 − Read the mc3 configuration registers (real fast)

 The following registers are probed:

 reg test description
 −−− −−−

 00 Read the BankEnable
 01 Read BoardType
 02 Read RevLevel
 03 Read AccessControl: endianness, subBlockOrder, ebus=64bitsOrNot
 04 Read MemoryErrorInterrupt
 05 Read EBUSErrorInterrupt
 06 Read BIST result
 07 Read DRSC timeout
 0a Read LeafControlEnable
 Read leaf regs 10−24, 30−33 (leaf0), 50−64, 70−73 (leaf1)

 mem1 is very similar to mem14 which is the pod−mode dmc
 command.

 −−−

 mem2 − Memory sockets connection test (similar to IP17’s
 mem1) (real fast)

 The memory sockets connection test writes patterns to the
 first 2 KB of each configured leaf and then reads them back.
 By writing 2 KB, all simms are ensured of being written to
 regardless of the interleaving factor specified.

 If the pattern read back does not match, the socket is
 assumed to have a connection problem.

 −−−

 − 52 −

 mem3 − Walking address test (similar to IP17’s mem2) (real
 fast)

 This is a traditional test that checks for shorts and opens
 on the address lines. Address lines that are greater or
 equal to the most significant address lines of the memory
 bounds are not tested. Testing is done by byte read/writes
 from first_address up to last_address.

 −−−

 mem4 − Write/read data patterns (similar to IP17’s mem3)
 (slow)

 This test does word read/writes of all−1’s and all−0’s
 patterns. It shows if all addresses appear to be writable,
 and that all bits may be set to both 1 and 0. However, it
 provides no address error or adjacent−bits−shorted
 detection. The flow is as follows:

 (w0), u(r0,w1), d(r1,w5a), u(r5a,ra5), d(ra5) −− word and
 byte (read as: write 0 to all locations, read 0 and write 1
 to all locations in ascending order, read 1 and write 5a to
 all locations in descending order, read 5a and write a5 to
 all locations in ascending order, read a5 from all locations
 in descending order)

 mem13 does byte read/writes in the same pattern. The tests
 were separated out since the byte read/writes take a long
 time.

 −−−

 mem5 − Address in address memory test (slow)

 This is a traditional, hueristic, rule−of−thumb, "address−
 in−address" memory test. It also puts the complement of the
 address in the address, and makes passes in both ascending
 and descending addressing order. There are both full memory
 store then check passes, as well as read− after−write passes
 (with complementing).

 −−−

 mem6 − walking 1/0 memory test (very slow)

 Another traditional test − walking 1’s and walking 0’s
 through memory. This is a whole−memory test that is very
 good at shaking out shorted data bits, but provides little
 protection for addressing errors.

 − 53 −

 −−−

 mem7 − MarchX (slow)

 Described in van de Goor’s book, "Testing Semiconductor
 Memories" and has the following flow:

 (w0), u(r0,w1), d(r1,w0), (r0)

 Will detect address decoder faults, stuck−at−faults,
 transition faults, coupling faults, and inversion coupling
 faults(see van de Goor for definitions)

 −−−

 mem8 − MarchY (slow)

 Described in van de Goor’s book, "Testing Semiconductor
 Memories" and has the following flow:

 (w0), u(r0,w1,r1), d(r1,w0,r0), (r0)

 Will detect address decoder faults, stuck−at−faults,
 transition faults, coupling faults, and linked transition
 faults(see van de Goor for definitions)

 −−−

 mem9 − Memory with ecc test (similar to IP17’s mem6) (slow)

 This test writes to memory via uncached space and reads
 back through cached space (ECC exceptions enabled). Although
 it provides a simple level of ECC checking, its main
 function is to verify that cached and uncached memory
 addresses are accessing the same area of physical memory.
 The test values used are address−in−address and inverted
 address− in−address patterns, so a certain amount of address
 uniqueness checking is done as well.

 −−−

 mem10 − Cache write−through memory test (similar to IP17’s
 mem9)(slow)

 This is a traditional, hueristic, rule−of−thumb, "address−
 in−address" memory test. It also puts the complement of the
 address in the address, making passes in ascending order
 only. All of memory is stored and then checked. All reads
 and writes are made through K0 seg, so the the reads and
 writes are cached. However, since the size of main memory
 exceeds the cache sizes, all data will be written to main

 − 54 −

 memory and then read back. This is not a particularly
 thorough test, and it depends upon a good cache to function
 correctly, but it is fast, at least compared to the other
 full−memory tests.

 −−−

 mem11 − User−specified patter/location write/read
 test(similar to IP17’s mem7)

 type "mem11" without any arguments to see the usage.
 Usage: mem11 [−b|h|w] [−r] [−l] [−c] [−v 0xpattern] RANGE

 This test allows the technician to fill a range of memory
 with a specified test value and read it back, done as a
 series of byte (−b), half−word (−h), or word (−w) writes and
 reads. If the −v option is not used to select the test
 pattern, an address−in−address pattern is used instead. (−r)
 will do read only and will not do any writes. (−l) will loop
 forever. (−c) will run in cached memory space − the default
 is to run in uncached space.

 −−−

 mem12 − Decode a bad address into slot, leaf, bank, simm

 Usage: mem12 [−a 0xaddress] [−b xxxxx] [−s x]
 −b expects a hex number showing which bits are
 bad.
 e.g. If bits 0 and 2 are bad, enter: −b 0x5
 −s 1, 2, or 4 for byte, half−word or word
 −b defaults to 0x0 and −s defaults to 4

 For example, to decode address 0x4000 with bad bits
 0 and 2 and it’s
 a word, type:

 mem12 −a 0x4000 −b 0x5 −s 4

 −−−

 mem13 − byte read / write (see mem4) (slow: 15 minutes/32
 MBytes)

 − 55 −

 −−−

 mem14 − Read the mc3 config register

 This is the same as the dmc command from pod mode. See also
 mem1

 −−−

 mem15 − Double word MarchY pattern test (4 min / 128 MB)

 Same as mem8 but does double word writes/reads instead of
 word writes/reads.

 −−−

 mem16 − Knaizuk Hartmann Memory Test (3 min/128 MB)

 This algorithm is used to perform a fast but non−exhaustive
 memory test. It will test a memory subsystem for stuck−at
 faults in both the address lines as well as the data
 locations. The algorithm breaks up the memory to be tested
 into three partitions. Partition 0 consists of memory
 locations 0, 3, 6...; partition 1 consists of memory
 locations 1, 4, 7...; and partition 2 consists of locations
 2, 5, 8 The partitions are filled with either an all
 1’s pattern or an all 0’s pattern. By varying the order in
 which the partitions are filled and then checked, this
 algorithm manages to check all combinations of possible
 stuck−at faults.

 −−−

 mem17 − Three Bit Memory Test (12 min/128 MB)

 This algorithm is designed as a pattern sensitivity test.
 The intent is to surround a given cell of memory on both
 sides with cells in the opposite state. To do all possible
 combinations of ones surrounding zeros, and zeros
 surrounding ones, it is necessary to run six patterns. The
 test writes all of memory from low address to high address
 memory, then reads back the data from low to high.

 − 56 −

 −−−

 mem18 − Double−Word Knaizuk Hartmann Memory test (11/2
 min/128 MB)

 Same as test 16, except memory reads and writes are done 64
 bits at a time, using the store/load double−word
 instruction.

 −−−

 ena_bnk, dis_bnk − enable / disable one bank at a time

 Interactively asks the user for slot, leaf, and bank to act
 on. Do not run dis_bnk unless you know what you are doing.
 Otherwise, you will most likely hang the system.

 2.4 I_O_4__I_D_E__G_u_i_d_e_

 o Boot i_d_e_

 o The default report level is 2. Set the report level by
 typing the following:

 report=#

 where # is any number from 1 to 5.

 level 5 Debugging messages displayed. Don’t need
 this much detail.

 level 4 Prints out memory locations as they are
 written. Selecting this level slows down
 testing time.

 level 3 Prints out 1−line functional
 descriptions within tests. This is
 probably the most useful level for
 general use.

 level 2 Print out only errors, titles, and
 pass/fail.

 level 1 Print out only titles and pass/fail.

 Level n_ prints out all messages for level n_ and below.

 o Set the modes of operations for running the tests:

 − qmode [on | off]

 − 57 −

 All current IO4 tests run fast enough that there
 is no difference between quick and long test modes
 for the IO4. If the total elapsed time for
 running all IO4 tests ever exceeds 10 minutes,
 quick mode will be enabled for the IO4.

 − c_on_error [on | off]

 For the IO4 tests, the ‘‘on’’ setting continues
 the test even when an error has been encountered.
 Setting the mode to ‘‘off’’ stops the tests after
 the first error.

 o Run i_o__a_l_l_.

 This command runs all working/known bug−free IO4 tests
 that do not require human intervention. Any mostly
 working but possible buggy tests, as well as any tests
 requiring a human to interpret the results, are not
 included.

 o There are currently tests for the following areas of
 the IO4 board: IO4 interface, VME adapter, SCSI
 adapter, and EPC adapter.

 The detailed tests are listed below.

 2.4.1 I_O_4__I_n_t_e_r_f_a_c_e_ −−−−−−−−−
 −−

 check_iocfg − Checks IO4 config against NVRAM

 This test compares the actual setup of the IO4 board to the
 values specified in the NVRAM. Each IO4 board in the system
 is checked to see that it has all the adapters specified in
 NVRAM, and that they are of the specified types.

 In addition, if "report" is set VERBOSE, configuration
 information for each board is printed out even if no errors
 occur.

 − 58 −

 −−−

 io4_regtest − Read/Write test of IO4 registers

 This is a basic Read/Write test for the IO4 registers. It
 does tests and address−in−address testing for:

 IO4_CONF_LW
 IO4_CONF_SW
 IO4_CONF_ADAP
 IO4_CONF_INTRVECTOR
 IO4_CONF_GFXCOMMAND
 IO4_CONF_ETIMEOUT
 IO4_CONF_RTIMEOUT
 IO4_CONF_INTRMASK

 Although these are not the only IO4 registers, they are the
 only ones that may safely be Read/Write tested.

 −−−

 io4_pioerr − IO4 PIO bus error test

 Attempts to generate an error interrupt by attempting a
 write to IO adapter 0 (nonexistent). This tests the IO4
 error generation capability and the IO4 to IP error path.

 −−−

 mapram_test − Read/Write test of IO4 map ram

 As the name implies, tests the IO4 mapping ram as a small
 memory array.

 Tests memory with pattern Read/Write, address−in−address,
 and marching 1’s test patterns.

 −−−

 check_hinv − Checks type of board in each slot

 Not a test per se − merely prints out the locations and
 types of all boards currently installed in the system.
 −−−

 2.4.2 V_M_E__A_d_a_p_t_e_r_ −−−−−−−−−
 −−

 fregs − Test VMECC registers

 − 59 −

 Basic Read/Write test for the F Chip registers, running
 going through large window space. Verifies operation for:

 FCHIP_VERSION_NUMBER
 FCHIP_MASTER_ID
 FCHIP_INTR_MAP
 FCHIP_FIFO_DEPTH
 FCHIP_FCI_ERROR_CMND
 FCHIP_TLB_BASE
 FCHIP_ORDER_READ_RESP
 FCHIP_DMA_TIMEOUT
 FCHIP_INTR_MASK
 FCHIP_INTR_SET_MASK
 FCHIP_INTR_RESET_MASK
 FCHIP_SW_FCI_RESET
 FCHIP_IBUS_ERROR_CMND
 FCHIP_TLB_FLUSH
 FCHIP_ERROR
 FCHIP_ERROR_CLEAR
 FCHIP_TLB_IO 0 − 7
 FCHIP_TLB_EBUS 0 − 7

 (32 registers currently tested)

 −−−

 vmeregs − Test VMECC registers

 Basic Read/Write test for the VMECC registers. Verifies
 operation for:

 VMECC_RMWMASK
 VMECC_RMWSET
 VMECC_RMWADDR
 VMECC_RMWAM
 VMECC_RMWTRIG
 VMECC_ERRADDRVME
 VMECC_ERRXTRAVME
 VMECC_ERRORCAUSES
 VMECC_ERRCAUSECLR
 VMECC_DMAVADDR
 VMECC_DMAEADDR
 VMECC_DMABCNT
 VMECC_DMAPARMS
 VMECC_CONFIG
 VMECC_A64SLVMATCH
 VMECC_A64MASTER
 VMECC_VECTORERROR
 VMECC_VECTORIRQ 1 − 7
 VMECC_VECTORDMAENG
 VMECC_VECTORAUX0

 − 60 −

 VMECC_VECTORAUX1
 VMECC_IACK 1 − 7
 VMECC_INT_ENABLE
 VMECC_INT_REQUESTSM
 VMECC_INT_ENABLESET
 VMECC_INT_ENABLECLR
 VMECC_PIOTIMER
 0x1388
 0x1390
 0x1398
 0x13A0
 0x13A8
 0x13B0
 0x13B8
 0x13C0
 0x13C8
 0x13D0
 0x13D8
 0x13E0
 0x13E8
 0x13F0
 0x13F8

 (54 registers currently tested)

 − 61 −

 −−−

 vmeintr − Test VMECC self interrupts

 Places a handler on the appropriate vector and forces the
 VMECC to generate an interrupt. Checks to make sure that
 the interrupt both reaches the CPU and activates the proper
 handler.

 −−−

 vmeberr − Test VMECC bus errors

 This test ensures that the VMECC can time out for all
 sections of A24/A32
 addresses.

 First, A24 addressing is used. All sections except one are
 made to respond as slaves, and a PIO access to the non−
 responding slave section is done. This should generate a
 timeout.

 This procedure is repeated for all 16 sections of the A32
 addressing range.

 −−−

 vmedma − Test VMECC DMA Engine

 Transfers data between controller memory & host memory by
 DMA; no disk data is involved (and no disk need be
 connected).

 The controller imposes some constraints on what can be done
 with this test: it will transfer only a single sector (512
 bytes).

 −−−

 vmelpbk − Test VMECC loopback capability

 Tests using the VMECC loopback mode of operation. Mainly
 exercises the data path between the CPU and the VME bus.

 − 62 −

 −−−

 cddata − cdsio board internal/external data loopback test

 Does loopback testing of all channels of the cdsio 6−port
 board. Pretty much a direct port of the IP5 family version
 of this test.

 −−−

 cdintr − Test cdsio interrupts

 Generates interrupts on the CDSIO board and verifies that
 they reach the CPU. Again, a direct port of the IO5 family
 test.
 −−−

 2.4.3 S_C_S_I__A_d_a_p_t_e_r_ −−−−−−−−−
 −−

 s1_regtest − Register Read/Write test for s1 chip

 This is a basic Read/Write test for the S1 chip registers.
 It does tests and address−in−address testing for:

 S1_INTF_R_SEQ_REGS 0 − 0xF
 S1_INTF_R_OP_BR_0
 S1_INTF_R_OP_BR_1
 S1_INTF_W_SEQ_REGS 0 − 0xF
 S1_INTF_W_OP_BR_0
 S1_INTF_W_OP_BR_1

 (36 registers currently tested)

 Although these are not the only S1 registers, they are the
 only ones that may safely be used by Read/Write tests.

 − 63 −

 −−−

 regs_95a − Register read/write test for wd95a chip

 This is a basic read/write test for the wd95a chip
 registers. In setup mode, the test writes a’s and 5’s to the
 "Sleep Countdown" register while all other registers are
 just read. In normal mode, all registers are read and no
 registers are written. While there are many registers, the
 Sleep Countdown register was the only register where it was
 safe to write values.

 −−−

 scsi_intr − SCSI interrupt test

 This tests the wd95a’s ability to send an interrupt to the
 cpu and have the system respond correctly. The wd95a is
 programmed to interrupt upon a scsi reset command. The reset
 command is sent and then the system is checked to make sure
 it correctly "saw" the interrupt.

 −−−

 scsi_self − SCSI senddiag test

 This test sends a SCSI senddiag command to each SCSI device
 found on each SCSI bus and verifies that a good result is
 returned.

 −−−

 scsi_dmaxfer − SCSI DMA transfer test

 This test checks SCSI DMA transfers by performing DMA reads
 and writes from each SCSI disk drive encountered. 1 block of
 data (512 bytes) is read and/or written. The command syntax
 is:

 scsi_dmaxfer [−w] [−p <partition #>] [−f]

 Without any switches, scsi_dmaxfer will read 512 bytes from
 partition 1 of the disk drive.

 −w:
 perform a write operation to the disk drive from memory in
 addition to the read. The default is to only perform a read
 operation from the disk to memory. Writing is a destructive
 action and should only be used by experts. User confirmation
 is always requested unless a −f switch is used. The data
 written (a’s on pass 1 and 5’s on pass 2) is then read back

 − 64 −

 via another DMA operation and the written data is compared
 to the read data.

 −p #:

 specify which disk partition to read or write to. The
 default is partition #1.

 −f:

 the "force" switch. If specified, no user confirmation for
 the writes will be requested. The default is to always
 request user confirmation for any write operation. This
 switch is designed to be used in a script where user input
 is not desired (e.g. in an overnight oven script).

 −−

 scsi_dmaintr − SCSI DMA interrupt test

 This test checks the SCSI DMA interrupt functionality by
 performing a DMA read from the disk and specifying a bad
 read buffer address.
 −−−

 2.4.4 E_P_C__A_d_a_p_t_e_r_ −−−−−−−−−
 −−

 epc_regtest − Register Read/Write test for epc chip

 Basic Read/Write test for the EPC chip registers, including
 the Parallel Port registers. Registers tested:

 EPC_IIDDUART0
 EPC_IIDDUART1
 EPC_IIDENET
 EPC_IIDPROFTIM
 EPC_IIDSPARE
 EPC_IIDPPORT
 EPC_IIDERROR
 EPC_EADDR0
 EPC_EADDR1
 EPC_EADDR2
 EPC_EADDR3
 EPC_EADDR4
 EPC_EADDR5
 EPC_TCMD
 EPC_RCMD
 EPC_TBASELO
 EPC_TBASEHI
 EPC_TLIMIT

 − 65 −

 EPC_TTOP
 EPC_TITIMER
 EPC_RBASELO
 EPC_RBASEHI
 EPC_RLIMIT
 EPC_RTOP
 EPC_RITIMER
 EPC_PPBASELO
 EPC_PPBASEHI
 EPC_PPLEN
 EPC_PPCTRL

 As stated above, this is a good basic test for the Parallel
 Port; for more thorough testing a test fixture is required.

 −−−

 epc_nvram − NVRAM Read/Write test

 Does Read/Write pattern and address−in−address testing for
 all the NVRAM accessible to the EPC chip. Although the
 NVRAM is physically on the RTC chip, it occupies a separate
 address space and is accessed differently, hence the
 separate test.

 −−−

 epc_rtcreg − RTC register/NVRAM Read/Write test

 Read/Write test for the RTC registers and the small amount
 of NVRAM in the RTC address space portion of the RTC chip.
 Registers tested:

 NVR_SEC
 NVR_SECALRM
 NVR_MI
 NVR_MINALRM
 NVR_HOUR
 NVR_HOURALRM
 NVR_WEEKDAY
 NVR_DAY
 NVR_MONTH
 NVR_YEAR

 NVRAM tested is in the address range 0xE − 0x3F.

 −−−

 epc_rtcinc − RTC clock increment test

 − 66 −

 Tests the ability of the RTC chip to handle time−of−day
 transitions. Sets the RTC to a known time and date (last
 second of the year), waits one second, and checks to make
 certain that the time and date have changed correctly.

 −−−

 epc_rtcint − RTC Interrupt generation test

 Tests to make certain that the RTC can correct generate
 Alarm, Periodic, and Update interrupts. Validates the path
 from the RTC chip to the IP board’s master CPU.

 −−−

 duart_loopback − Duart loopback test

 Attempts to configure and test all available serial ports.
 Does loopback testing at all baud rates for each port
 tested. Normally uses internal loopback, but if invoked
 with "duart_loopback −e" assumes that an external loopback
 fixture is being used.

 −−−

 erase_nvram − NVRAM Erase Utility (Dangerous!)

 Erases all data in non−volatile ram. Used in the debug area
 to clear totally fouled−up configuration data.

 erase_nvram must be invoked with a slot number −
 "erase_nvram 5" would erase the NVRAM data on the IO4 board
 in slot 5 of a system.

 Normally only run in the debug/repair area. Do not run this
 on the master IO4 board unless you want to re−configure all
 setup data.

 −−−

 epc_extint − External Interrupt Read/Write Utility

 Called with "epc_extint slot# pattern". Writes the hex
 value "pattern" to the external interrupt outputs and
 returns the value seen on the external interrupt inputs.

 Since this test requires an external test fixture or jumper
 cables, it is not part of the standard "io_all" script.

 −−−

 − 67 −

 enet_xmit − Ethernet transmit/receive test (with internal
 loopback on)

 Transmits 9 packets and receives them with the LXT internal
 loopback mode on. The transmit and receive status bytes are
 checked against expected values, and the data in each byte
 of each packet is verified against what was expected. The
 following is a short description of each of the 9 packets:

 packet 0: 50 data bytes, walk 0 through the bytes. packet
 1: 50 data bytes, walk 1 through the bytes. packet 2: 50
 data bytes, alternating 55’s and aa’s in alternating bytes.
 packet 3: 60 data bytes, alternating 0’s and ff’s in
 alternating bytes. packet 4: 50 data bytes, all 55’s.
 packet 5: 1 data byte, short packet. packet 6: 130 data
 bytes, decrementing pattern starting with ff. packet 7: 3
 data bytes, short packet. packet 8: 130 data bytes,
 decrementing pattern starting with cc.

 −−−

 enet_colctr − Read ethernet collision counters Test

 Transmits the same 9 packets as enet_xmit but with LXT and
 EDLC in normal mode so packets will actually go out onto the
 net. The user is given instructions that he needs to run
 "ttcp −r −s" on one other machine and "ttcp −t −s <machine
 #1>" on machine #2 in Unix. Then by running this test,
 collisions will occur and we will display the collision
 counter counts after each packet is sent. There is not
 really a fail status in this test unless we are unable to
 transmit our packets. The test fails if the collision
 counter counts being displayed never increment.

 −−−

 epc_plptest − Parallel Port Write Test

 Fills a buffer with printable characters and attempts to DMA
 it out the parallel port. Detects the presense of a printer
 − if a printer is present, configures the port to use the
 "BUSY" mode and writes to the printer using BUSY handshaking
 to prevent buffer overrun. If no printer is present, uses
 the "SACK" mode and writes as fast as the DMA engine sends
 characters.

 If a printer is present, will detect printer errors and
 report them; in all cases it will detect DMA timeout errors
 or failure to generate the DMA completion interrupt.

 − 68 −

 If an external printer is present, these characters should
 be printed out:

 !"#$%&’()*+,−./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_

 −−−

 2.4.5 D_A_N_G__A_d_a_p_t_e_r_ −−−−−−−−−
 −−

 dang_regtest − DANG Register Read/Write Test

 This test does read/write verification of all DANG PIO
 registers that are safely writable (some, such as the Master
 DMA start register or the interrupt mask register, are not).

 Runs a series of bit−pattern tests, marching ones and zeros,
 and address−in−address patterns on the DANG chip PIO
 registers. For this test to function correctly, the basic
 DANG Ibus interface must be working.

 Patterns used:

 0x0
 0xFFFFFFFF
 0x55555555
 0xAAAAAAAA
 0xA5A5A5A5
 0x5A5A5A5A
 Marching 1’s (32 patterns) − 0x1, 0x2, . . . 0x80000000
 Marching 0’s (32 patterns) − 0xFFFFFFFE, 0xFFFFFFFD, . .
 . 0x7FFFFFFF
 Address in Address
 Inverse Address in Address

 Registers currently tested:

 DANG_UPPER_GIO_ADDR
 DANG_MIDDLE_GIO_ADDR
 DANG_BIG_ENDIAN
 DANG_GIO64
 DANG_PIPELINED
 DANG_GIORESET
 DANG_AUDIO_ACTIVE
 DANG_AUDIO_SLOT
 DANG_PIO_WG_WRTHRU
 DANG_DMAM_MAX_OUTST
 DANG_DMAM_CACHE_LINECNT
 DANG_DMAS_MAX_OUTST
 DANG_DMAS_CACHE_LINECNT
 DANG_INTR_ERROR

 − 69 −

 DANG_INTR_GIO_0
 DANG_INTR_GIO_1
 DANG_INTR_GIO_2
 DANG_INTR_DMAM_COMPLETE
 DANG_INTR_PRIV_ERR
 DANG_INTR_PAUSE
 DANG_INTR_BREAK
 DANG_WG_LOWATER
 DANG_WG_HIWATER
 DANG_WG_FULL
 DANG_WG_PRIV_LOADDR
 DANG_WG_PRIV_HIADDR
 DANG_WG_GIO_UPPER
 DANG_WG_GIO_STREAM
 DANG_WG_PAUSE
 DANG_WG_STREAM_ALWAYS

 − 70 −

 Sample Error Messages:

 Exception Accessing DANG chip!
 Failed to set DANG Intr mask. Expected: 0 Got: 1f
 Failed testing DANG register DANG_WG_FULL. Expected 400
 Got 4F0
 Failed DANG reg address test. Reg: DANG_WG_FULL
 Expected: 52018
 Got: 0

 −−−

 dang_gr2ram − GIO Bus/Gr2 Shared Ram Test

 This test is designed to stress the GIO bus interface and
 prove that the basic GIO bus read/write functionality is
 present. As such, although it requires a working Express
 graphics board, dang_gr2ram only stresses the Express shared
 RAM area.

 Like dang_regtest, dang_gr2ram runs a series of bit−
 patterns, marching ones and zeros, and address−in−address
 tests, though its target this time is the entire Express
 shared RAM area.

 dang_gr2ram stresses the DANG’s Ibus interface, the basic
 DANG IO configuration, the DANG GIO bus interface, and the
 GIO bus data/address lines in addition to the Express shared
 RAM.

 Patterns used:

 0x0
 0xFFFFFFFF
 0x55555555
 0xAAAAAAAA
 0xA5A5A5A5
 0x5A5A5A5A
 Marching 1’s (32 patterns) − 0x1, 0x2, . . . 0x80000000
 Marching 0’s (32 patterns) − 0xFFFFFFFE, 0xFFFFFFFD, . .
 . 0x7FFFFFFF
 Address in Address
 Inverse Address in Address

 − 71 −

 Sample Error Messages:

 Failed Gr2 shared ram test. Index: 0x400 Expected:
 0x55555555 Got: 0x5A

 −−−

 dang_mdma − DANG Master DMA Module Test

 The DMA Master module test has a reasonably simple basic
 design: set up a Master DMA transfer either to or from the
 Gr2 RAM space, verify that it completed and the DMA complete
 interrupt was generated, and validate the transferred data.

 To fully test the DMA module, however, requires that all the
 corner cases are covered, which requires many different
 transfers in a variety of DMA modes.

 Currently, the dang_mdma test has 38 test cases, covering
 GIO bus dynamic and static address modes, transfers to and
 from the Gr2, data patterns, address−in−address data,
 single−line, multi−line, and multi−page transfers, transfers
 with no offset or stride, transfers with offset or stride,
 transfers with both offset and stride, etc.

 dang_mdma stresses the DANG’s Ibus interface, the basic DANG
 IO configuration, the DANG GIO bus interface, the Express
 shared RAM area, and the Dang DMA Master Interrupt logic as
 well as the DANG Master DMA module proper.

 One cache line static address tests

 host to gr2, 0x55555555
 gr2 to host, 0xAAAAAAAA

 One cache line data tests

 host to gr2, 0x55555555
 host to gr2, 0xAAAAAAAA
 host to gr2, 0xFFFFFFFF
 gr2 to host, 0x55555555
 gr2 to host, 0xAAAAAAAA
 gr2 to host, 0xFFFFFFFF

 One partial cache line static address tests

 host to gr2, 0x55555555
 gr2 to host, 0xAAAAAAAA

 One partial cache line data tests

 − 72 −

 host to gr2, 0x55555555
 host to gr2, 0xAAAAAAAA
 host to gr2, 0xFFFFFFFF
 gr2 to host, 0x55555555
 gr2 to host, 0xAAAAAAAA
 gr2 to host, 0xFFFFFFFF

 One cache line address tests

 host to gr2, address in address
 host to gr2, inverse address in address
 gr2 to host, address in address
 gr2 to host, inverse address in address

 One partial cache line address tests

 host to gr2, address in address
 host to gr2, inverse address in address
 gr2 to host, address in address
 gr2 to host, inverse address in address

 Multiple block data tests using stride and offset

 host to gr2, 0x55555555 (stride)
 gr2 to host, 0xAAAAAAAA (stride)
 host to gr2, 0x55555555 (stride+offset)
 gr2 to host, 0xAAAAAAAA (stride+offset)

 Multiple block address tests using stride and offset

 host to gr2, address in address (stride)
 gr2 to host, inverse address in address (stride)
 host to gr2, address in address (stride+offset)
 gr2 to host, inverse address in address (stride+offset)

 Full data buffer static address tests

 host to gr2, 0x55555555
 gr2 to host, 0xAAAAAAAA

 Full data buffer data tests

 host to gr2, 0x55555555
 gr2 to host, 0xAAAAAAAA

 Full data buffer address tests

 host to gr2, address in address
 gr2 to host, inverse address in address

 − 73 −

 Sample Error Messages:

 data setup problem: small static pattern 1
 small static pattern 1: (H to G) timed out waiting for
 DANG interrupt
 xfer data, small static pattern 1 (H to G), line 0x1
 byte 0x1: src 0x55
 dest 0x5A
 small static pattern 2 (G to H) wrong interrupt level:
 was 20, sb 35
 small static pattern 3 (H to G) DMA xfer not complete

 −−−

 dang_wg − DANG Write Gatherer Test

 The DANG write gatherer test, dang_wg, has three subtests,
 which test the WG FIFO RAM, the Host to DANG WG interface,
 and the WG interrupts.

 Since each subtest must be working for the next to function
 correctly, the subtests are run in the order given, and are
 not written to be run separately.

 The WG FIFO RAM tests runs bit patterns and address−in−
 address data through the FIFO and out to the Gr2 shared RAM
 area via the GIO bus. The test method is to use the
 DANG_WG_PAUSE register to pause output, fill the WG FIFO
 RAM, and then enable output. After the WG FIFO has drained,
 the data in the Gr2 shared RAM is verified.

 − 74 −

 Patterns used:

 0x55555555
 0xAAAAAAAA
 0xFFFFFFFF
 0x5a5a5a5a
 0xa5a5a5a5
 0x0
 Address in Address
 Inverse Address in Address

 The Host to WG test sends data from the Host CPU’s write
 gatherer module using all four of the possible addressing
 modes (relative, absolute, streaming, and streaming always)
 and verifies that the data reaches the area of Gr2 shared
 RAM it was aimed at. Since the FIFO RAM has already been
 verified, the individual tests are less exhaustive.

 Patterns used:

 Relative Mode: Address in Address
 Absolute Mode: Inverse Address in Address
 Streaming Always Mode: 0x5A5A5A5A
 Streaming Mode: 0xA5A5A5A5

 Finally, the Interrupt tests use the Host to DANG WG
 interface to generate the FIFO high, FIFO full, FIFO low,
 and privilege violation interrupts. In each case, the data
 used to fill the buffer is verified after the interrupt has
 been generated.

 Pattern used:

 Address in Address

 dang_wg stresses the DANG’s Ibus interface, the basic DANG
 io configuration, the Write Gatherer FIFO RAM, the DANG GIO
 bus interface, the Express shared RAM area, and the WG
 Interrupt logic as well as the DANG Write Gatherer module
 proper.

 Sample Error Messages:

 DANG wg fifo not empty − had 23 words
 DANG wg fifo: bad word count − was 0x2ff, sb 0x3ff
 DANG fifo write through data error: addr 0x1000, was 0x0
 sb 0x55555555
 DANG host wg data error: addr 0x80, was 0x0 sb 0x80
 wrong dang wg interrupt level − was 0x20, sb 0x73
 dang wg interrupt bit bad − was 0x0, sb 0x4
 no wg fifo hi interrupt!

 − 75 −

 no wg fifo low interrupt!
 no wg fifo full interrupt!
 no wg privileged interrupt!

 −−−

 dang_status − DANG Status display utility

 Displays the current state of the DANG chip. This is the
 same routine called by the DANG tests when an error is
 detected.

 When possible, status information is given both as numeric
 values and named states. An example status is:

 + dang_pio_err: 0x200
 + 11..8: dang_pio_err_version: 0x2
 + dang_dmam_status: 0x1
 + 0: dang_dma_stat_busy
 + 1: dang_dma_stat_dir: 0x0
 + dang_dmam_status, dma if 1 − ibus to fifo:
 dang_dma_if_idle <0>
 + dang_dmam_status, dma if 2 − fifi to gio :
 dang_dma_if_idle <0>
 + dang_dmam_status, dma if 3 − gio to fifo :
 dang_dma_if_idle <0>
 + dang_dmam_status, dma if 4 − fifo to ibus:
 dang_dma_if_idle <0>
 + dang_dmam_err: 0x0
 + dang_dmas_status: 0x0
 + dang_dmas_status, dma if 1 − ibus to fifo:
 dang_dma_if_idle <0>
 + dang_dmas_status, dma if 2 − fifi to gio :
 dang_dma_if_idle <0>
 + dang_dmas_status, dma if 3 − gio to fifo :
 dang_dma_if_idle <0>
 + dang_dmas_status, dma if 4 − fifo to ibus:
 dang_dma_if_idle <0>
 + dang_dmas_err: 0x0
 + dang_intr_status: 0x408
 + 3: dang_istat_wg_flow
 + 10: dang_istat_giostat
 + dang_wg_status: 0x1
 + 0: dang_wgstat_idle
 + 4..3: dang_wgstat_fill: 0x0
 + 7..5: dang_wgstat_wext: 0x0
 + 9..8: dang_wgstat_drain: 0x0

 −−−

 − 76 −

 dang_gr2read − Gr2 Read utility

 "dang_gr2read slot# adapter# gr2address"

 Reads an address on the GIO bus. A GIO bus "peek" routine.

 Requires IO4 slot number, dang adapter number, and Gr2
 offset (base of the Gr2 shared RAM area is offset 0).

 All numbers may be in decimal or hexadecimal − hex numbers
 should be preceded by "0x".

 "dang_gr2read 11 5 0" would read Gr2 location 0 on DANG
 adapter 5 of the IO4 board in slot 11; so would
 "dang_gr2read 0xb 5 0".

 −−−

 dang_gr2write − Gr2 Write utility

 "dang_gr2read slot# adapter# gr2address pattern"

 Writes one word to a specified location in the GIO bus. The
 syntax is as given for dang_gr2read.

 "dang_gr2write 11 5 0 0x55555555" would write 0x55555555 hex
 to Gr2 location 0 on DANG adapter 5 of the IO4 board in slot
 11.

 −−−

 dang_gr2readloop

 "dang_gr2readloop slot# adapter# gr2address loopcount"

 dang_gr2writeloop

 "dang_gr2writeloop slot# adapter# gr2address pattern
 loopcount"

 Scope loop versions of the read and write utilities.
 dang_gr2readloop requires a loop count after the standard
 dang_gr2read parameters; similarly, dang_gr2writeloop
 requires a loop count following the standard dang_gr2write
 parameters.

 "dang_gr2writeloop 11 5 0 0x55555555 100000" would write
 0x55555555 to Gr2 location 0 on DANG adapter 5 of the IO4
 board in slot 11 one hundred thousand times.

 − 1 −

 3. I_P_1_7__C_r_i_m_s_o_n__S_t_a_n_d_a_l_o_n_e__D_i_a_g_n_o_s_t_i_c_s__S_y_s_t_e_m_

 The IP17 diagnostic package, i_d_e_, is a standalone program
 that can be invoked from the PROM Monitor or SASH to test a
 variety of hardware components. The package includes a
 powerful command parser that allows the user to repeatedly
 execute tests in a given order, as well as run pre−
 programmed sets of tests, such as an overnight stress test.
 In addition, i_d_e_ has the ability to log the results of the
 tests and send the logging information to a remote machine
 or to a printer. i_d_e_ also has the ability to do auto−
 configuration; that is, the test will be skipped if the
 required piece of hardware, such as a Interphase disk
 controller, does not exist.

 3.1 D_e_s_c_r_i_p_t_i_o_n__o_f__T_e_s_t_s_

 The IP17 diagnostics tests contain the following eight
 categories:

 CPU TEST: 23 tests
 BUS TEST: 4 tests
 MEM TEST: 9 tests
 PATH TEST: 41 tests
 IO TEST: 29 tests
 FPU TEST: 5 tests

 The CPU tests provide rigorous testing of each CPU subsystem
 feature except the MP bus interface. The instruction cache,
 first level data cache, second level data cache, instruction
 buffer, CPU counter/timer, TLB, timer, RMP ASIC, and duarts
 are explicitly tested.

 The BUS tests stress the sync bus controller and semaphore
 RAM. The tests include SBC registers test, semaphore RAM
 test, SBC interrupts test and semaphore operations test.

 The MEM tests contain the basic memory addressing and
 stuck−at bits tests. The memory array is accessed through
 the unmapped uncached (k1) memory space (0xa0000000 −
 0xafffffff) without using the cache.

 The cache states and cache<−>memory data paths are tested by
 the PATH diagnostics. Each possible cache state and
 instruction is tested for the primary data cache, primary
 instruction cache, and secondary cache. These are very
 thorough tests, whose only drawback is their duration − they
 take roughly an hour to complete.

 − 2 −

 The IO tests stress the basic IO3 functionalities. The IO3
 functionalities include: the IO3 local registers, mapper,
 ECC logging RAM, VME and SCSI DMA transfer, interrupts, VME
 memory space, ECC, bus error exceptions, nvram, sound, and
 ethernet.

 The FPU tests attempt to execute all single and double
 precision FPU instructions, access all FPU registers, and
 check all FPU error cases. Since the R4000 FPU is
 integrated into the CPU, if any errors occur, the CPU itself
 needs to be replaced.

 3.2 H_o_w__t_o__R_u_n__t_h_e__D_i_a_g_n_o_s_t_i_c_s_

 The i_d_e_ program can be installed in one of four places: on a
 streaming tape, on the disk volume header, on a network
 server under the UNIX file system, or on the local disk
 under the UNIX file system. Booting the diagnostic off of
 the local disk or network is most convenient. Note: it is
 best to keep a copy on tape in case neither boot sequence
 works.

 − 3 −

 3.2.1 M_a_i_n_t_e_n_a_n_c_e__M_e_n_u_ The following menu is displayed
 when the system is reset. Enter the b_o_o_t_ <p_a_r_a_m_e_t_e_r_s_>
 command at the Command Monitor Prompt. The various
 combinations of parameters are described below.

 System Maintenance Menu

 1) Start System
 2) Install System Software
 3) Run Diagnostics
 4) Recover System
 5) Enter Command Monitor

 Option? 5

 >>

 3.2.2 I_n_s_t_a_l_l_i_n_g__a_n_d__R_u_n_n_i_n_g__f_r_o_m__a__S_t_r_e_a_m_i_n_g__T_a_p_e_ First,
 obtain the lastest version of i_d_e_. Until this package is
 shipped, the most recent version can be found in
 m_o_r_c_:/u_s_r_/t_m_p_/i_d_e_.I_P_1_7_ (s_g_i_ i_n_t_e_r_n_a_l_ u_s_e_ o_n_l_y_). Copy this
 file to the current working directory of a running
 workstation. Install the i_d_e_ binary on the tape by
 executing the following command in the UNIX shell:

 # /etc/mkboottape ide

 To run the diagnostics, load the tape into the tape drive of
 the desired machine. From the PROM Monitor (recognizable by
 the ">>" prompt), type the following command if using a SCSI
 tape controller:

 >> boot −f tpsc(0,7)ide

 3.2.3 R_u_n_n_i_n_g__D_i_a_g_s__o_v_e_r__t_h_e__N_e_t_w_o_r_k_ Copy the i_d_e_ binary
 to a running machine, preferably one on the local subnet
 that is usually up. Suppose the binary has been installed
 on the machine s_e_r_v_e_r_ under /s_t_a_n_d_/i_d_e_. Then to run the
 diagnostics, type the following command to the PROM Monitor:

 >> boot −f bootp()server:/stand/ide

 Note: If the binary is installed under /u_s_r_/l_o_c_a_l_/b_o_o_t_ on
 s_e_r_v_e_r_, it is not necessary to specify the complete
 pathname. For example, the following command will be
 sufficient.

 >> boot −f bootp()server:ide

 − 4 −

 3.2.4 I_n_s_t_a_l_l_i_n_g_ a_n_d_ R_u_n_n_i_n_g_ t_h_e_ D_i_a_g_n_o_s_t_i_c_s_ f_r_o_m_ t_h_e_ D_i_s_k_
 V_o_l_u_m_e_ H_e_a_d_e_r_ Perhaps the fastest way to boot the
 diagnostics is from the volume header on the root disk.
 Unfortunately, the diagnostics can only be installed while
 the system is running UNIX. After installation, however,
 the diagnostics can be invoked regardless of the state of
 the file system. To install the diags, first copy the i_d_e_
 binary to the current directory of the working machine.
 Then type the following in a UNIX shell:

 # /etc/dvhtool −v creat ide ide /dev/vh

 After bringing the system down and returning to the PROM
 Monitor, the diagnostic package can be booted by either of
 the two methods shown below.

 Type the following if using a SCSI disk:

 >> boot −f dksc(0,1,8)ide

 Type the following if using a ESDI disk:

 >> boot −f dkip(0,0,8)ide

 3.2.5 I_n_s_t_a_l_l_i_n_g_ a_n_d_ R_u_n_n_i_n_g_ t_h_e_ D_i_a_g_n_o_s_t_i_c_s_ f_r_o_m_ t_h_e_ U_N_I_X_
 F_i_l_e_ S_y_s_t_e_m_. The diagnostic package may be run from the
 root file system of the disk. The diagnostics should be run
 from the root file system on very stable systems since a
 great deal of hardware and software must work reliably. To
 install the diags, copy the i_d_e_ binary to a directory on the
 root file system, such as /s_t_a_n_d_ in the example below.
 Then, boot from the PROM Monitor using either of the
 commands shown below.

 − 5 −

 To boot from the PROM Monitor using a SCSI disk, type:

 >> boot dksc(0,1,0)/stand/ide

 To boot from the PROM Monitor using an ESDI disk, type:

 >> boot dkip(0,0,0)/stand/ide

 Note the absence of the −f flag to b_o_o_t_. This flag causes
 the PROM Monitor to quietly invoke SASH and search for the
 file name. Then, SASH will actually boot the file. Only
 SASH is able to traverse the UNIX file system for files.

 3.3 D_i_a_g_n_o_s_t_i_c__C_o_m_m_a_n_d_s_

 After successfully booting i_d_e_, a banner like the following
 will be displayed on the screen:

 Diags Version 4D1−4.0 IP17 OPT Wed May 11 XX:XX:XX PDT 19XX SGI
 Memory size: 1677216 (0x1000000) bytes

 **
 Special Note:
 These diagnostics are to be used by authorized SGI
 personnel only.
 Please use the following predefined options:
 "a" (for all tests), "x cpu" (for cpu tests)
 "x fpu" (for fpu tests), "x io" (for io tests)
 "x mem" (for mem tests), "x bus" (for bus tests)
 "x path" (for path tests)
 **
 Note: Disk Write Mode is OFF
 (some tests which write to disk partition 1 are not
 going to run)
 If you want to run these tests,
 please use "f k 1" to turn the Disk Write Mode on
 and use "f w 0" to turn the Warning Message Mode off.
 **

 DIAGS:

 3.3.1 H_e_l_p__C_o_m_m_a_n_d_ For a display of the available command
 and options, type:

 DIAGS: ? (or "help" or "h’)

 The following information will be displayed:

 − 6 −

 COMMANDS:
 help: ? [COMMAND(s)]
 auto execute: a [TEST NAME]
 hardware configuration: c
 dump: d [s] [v]
 system configuration: f [p #][m RANGE][d DEVS][b #][r #][e #][v #][s #][a #]
 help: h [COMMAND(s)]
 init logfile: i
 print logfile: l [LINES]
 menu: m [MENU(s)]
 quit with reboot: q
 exit to prom: e
 execute: x {expression [arg(s)][; expression ...]}*count
 where:
 expression testname[sequence][*count]
 sequence number | (testnumbers[*loop][,...])
 testnumbers number | number1−number2

 Example:
 DIAGS: x {c*3; cpu2;M(1,2)*3 arg1;b(1*2,5*2,2)*2 arg1 arg2}*0

 The backslash character (\) can be used for multiple input lines

 Command lines take either uppercase or lowercase characters

 Control Characters
 Erase single characters by CTRL−H or DEL
 Rubout entire line by CTRL−U
 Suspend the test by CTRL−C

 3.3.2 M_e_n_u__C_o_m_m_a_n_d_ The menu command displays the tests
 available to execute. Invoked with no arguments, the menu
 command displays the test categories:

 DIAGS: m

 The following test categories would be displayed:

 CPU TEST
 BUS TEST
 MEM TEST
 PATH TEST
 IO TEST
 FPU TEST

 To list the BUS tests with a brief description, type;

 DIAGS: m bus (or "m b")

 A table similar to the following will be displayed:

 − 7 −

 bus1: test the semaphore ram as a small memory
 bus2: test SBC registers for stuck−at faults
 bus3: syncbus interrupt test
 bus4: semaphore operations test
 .
 .
 .

 3.3.3 E_x_e_c_u_t_e__C_o_m_m_a_n_d_ The arguments to the execute command
 may look complex, but they need not be. To run a single
 test, such as the first CPU test, type:

 DIAGS: x cpu1 (or x c1)

 Assuming the hardware is working correctly, i_d_e_ will respond
 with:

 running cpu1
 cpu test pass, pass count = 1, skip count = 0

 To run the eleventh IO test, type:

 DIAGS: x io11 (or x i11)

 Assuming the required interphase controller does not exist,
 i_d_e_ will respond with:

 running io11
 io test skip, skip count = 1

 To run the first and third CPU test, type:

 DIAGS: x cpu(1,3)

 The response will be:

 running cpu1
 running cpu3
 cpu test pass, pass count = 2, skip count = 0

 To run the first through the third CPU test, type:

 DIAGs: x cpu(1−3)

 The response will be:

 running cpu1
 running cpu2
 running cpu3
 cpu test pass, pass count = 3, skip count = 0

 − 8 −

 The tests can be executed from different categories with a
 single command. To run the first three CPU tests and the
 first FPU test, type:

 DIAGS: x {cpu(1−3);fpu1}

 The response will be:

 running cpu1
 running cpu2
 running cpu3
 running fpu1
 cpu test pass, pass count = 3, skip count = 0
 fpu test pass, pass count = 1, skip count = 0

 To run a test a number of times, use the "*" construct. To
 run the first FPU test three times after the CPU tests, type
 the following:

 DIAGS: x {cpu(1−3);fpu1*3}

 − 9 −

 The response will be:

 running cpu1
 running cpu2
 running cpu3
 running fpu1
 cpu test pass, pass count = 3, skip count = 0
 fpu test pass, pass count = 3, skip count = 0

 The entire sequence of tests can be executed a desired
 number of times. To run the above sequence of tests twice,
 type:

 DIAGS: x {cpu(1−3);fpu1*3}*2

 The response will be:

 running cpu1
 running cpu2
 running cpu3
 running fpu1
 running cpu1
 running cpu2
 running cpu3
 running fpu1
 cpu test pass, pass count = 6, skip count = 0
 fpu test pass, pass count = 6, skip count = 0

 To run a test infinite times, use "0". To run the first FPU
 test after the first CPU test in infinite loop, type the
 following:

 DIAGS: x {cpu1;fpu1}*0

 The response will be:

 running cpu1
 running fpu1
 running cpu1
 running fpu1
 running cpu1
 running fpu1
 .
 .
 .

 To run the pre−programmed set of tests, type the name of the
 category. For example, to run the FPU tests, type the
 following:

 DIAGS: x fpu (or x f)

 − 10 −

 The response will be:

 running fpu1
 running fpu2
 running fpu3
 running fpu4
 running fpu5
 running fpu14
 fpu test pass, pass count = 14, skip count = 0

 To execute pre−programmed tests from different categories
 with a single command. To run the BUS tests and FPU tests,
 type:

 DIAGS: x {bus;fpu}

 The response will be:

 running bus1
 running bus2
 running bus3
 running bus4
 running fpu1
 running fpu2
 running fpu3
 running fpu4
 running fpu5
 running fpu14
 bus test pass, pass count = 4, skip count = 0
 fpu test pass, pass count = 14, skip count = 0

 3.3.4 S_y_s_t_e_m__C_o_n_f_i_g_u_r_a_t_i_o_n__C_o_m_m_a_n_d_ The system
 configuration command allows the user to display and change
 the default behavior of the diagnostic package. To display
 the default settings, type the following.

 DIAGS: f

 A table similar to the following will be output:

 m: memory testing area: from 0x400000 to 0xfffffc
 b: block mode is on
 r: remote log file is on
 e: current error mode is 1 which is continue after error occurs
 v: Verbose Mode
 k: Disk Write Mode is off (no tests will write to disks)
 w: Warning Message Mode is off
 a: current auto execution table is fe table
 d: vme devices for io tests are ipi(0,0,1)
 t: scsi devices for io tests are dksc(0,1,1)
 i: vme devices for mp tests are ipi(0,0,1) ipi(1,0,1)

 − 11 −

 c: scsi devices for mp tests are dksc(0,1,1) dksc(1,1,1)
 p: Parity and ECC exceptions enabled

 3.3.4.1 M_e_m_o_r_y__R_a_n_g_e__C_o_n_f_i_g_u_r_a_t_i_o_n__O_p_t_i_o_n_ The "m"
 configuration variable is the range to test memory in the
 memory tests. The memory tests ordinarily test memory from
 the four megabyte mark to the top of installed memory. To
 test up to the six megabyte mark, type:

 DIAGS: f m 0x400000:0x600000 (or f m 0x400000#0x100000)

 3.3.4.2 V_M_E__B_l_o_c_k__M_o_d_e__C_o_n_f_i_g_u_r_a_t_i_o_n__O_p_t_i_o_n_ The "b"
 configuration variable indicates the VME block mode. If the
 VME controller is Interphase 4021, the VME block transfer
 will be performed in the IO tests. Otherwise, the regular
 VME transfer will be performed. This variable can to set to
 0 to be regular VME mode.

 3.3.4.3 R_e_m_o_t_e__L_o_g_g_i_n_g__M_o_d_e__C_o_n_f_i_g_u_r_a_t_i_o_n__O_p_t_i_o_n_ The "r"
 configuration variable is the remote logging mode which is
 to send the logging information through a serial line to a
 remote machine or printer. Port 2 is used to connect remote
 machine or printer. If port 2 is used for some other
 purpose, remote logging mode can be disabled by setting "r"
 to 0.

 3.3.4.4 E_r_r_o_r__M_o_d_e__C_o_n_f_i_g_u_r_a_t_i_o_n__ The "e" configuration
 variable is the error mode. This variable can be set to 1
 (continue after errors), 2 (stop after first error), or 3
 (go into scope loop after error).

 Note: This final option does not work for mp tests.

 3.3.4.5 V_e_r_b_o_s_i_t_y__L_e_v_e_l__C_o_n_f_i_g_u_r_a_t_i_o_n__O_p_t_i_o_n_ The "v"
 variable indicates the verbosity level. If verbosity is set
 to 0, only error messages are printed. Otherwise,
 informative messages may be output during test execution.

 3.3.4.6 D_i_s_k__W_r_i_t_e__M_o_d_e__E_n_a_b_l_e_/_D_i_s_a_b_l_e__O_p_t_i_o_n_ The "k"
 variable indicates whether the io tests may write to disk.
 If set to 0 (default value) disk writes are disabled, and
 tests that need to write to disk are skipped. If this
 variable is set to 1, disk writes are permitted.

 3.3.4.7 D_i_s_k__W_r_i_t_e__W_a_r_n_i_n_g__O_p_t_i_o_n_ The "w" variable
 indicates whether ide should prompt you for the correct disk
 write status before running any groups of tests that might
 write to disk. Default value is 1 (on).

 − 12 −

 3.3.4.8 T_e_s_t__S_c_r_i_p_t__C_o_n_f_i_g_u_r_a_t_i_o_n_ The "a" variable
 indicates which test script should be executed. This option
 can be set to 0−6 (overnight stress test) or 7 (fe diags,
 which complete in ~30 minutes). The default is level 7 (fe
 diags).

 3.3.4.9 V_M_E__D_e_v_i_c_e_s__C_o_n_f_i_g_u_r_a_t_i_o_n__O_p_t_i_o_n_ The "d"
 configuration variable is the VME devices to test in the IO
 tests. The default device is ipi(0,0,1). To test two ESDI
 disks on two different controllers, type:

 DIAGS: f d dkip(0,0,1) dkip(1,0,1)

 3.3.4.10 S_C_S_I__D_e_v_i_c_e_s__C_o_n_f_i_g_u_r_a_t_i_o_n__O_p_t_i_o_n_ The "t"
 configuration variable is the SCSI devices to test in the IO
 tests. The default device is dksc(0,1,1). tpsc(0,7) will
 also be the default device if there is one in the system. To
 test two SCSI disks on two different controllers, type:

 DIAGS: f t dksc(0,1,1) dksc(1,1,1)

 3.3.4.11 P_a_r_i_t_y_/_E_C_C__E_x_c_e_p_t_i_o_n__O_p_t_i_o_n_ The "p" configuration
 variable is used to select whether Parity and ECC exceptions
 are to be normally enabled or disabled. Parity/ECC
 exceptions are enabled by default; to disable them use the
 command:

 DIAGS: f p 0

 To re−enable the Parity/ECC exceptions, use:

 DIAGS: f p 1

 Note: In the IP5 diagnostics, the "f p" command is used to
 select which processors will be running tests, and
 has no connection to exception handling.

 3.3.5 L_o_g_f_i_l_e__C_o_m_m_a_n_d_s_ Pass count, fail count, skip count,
 test executions, and error messages are automatically
 logged. To print the log file, type l or <Ctrl−l>. <Ctrl−l>
 can print the log file on the fly. That means <Ctrl−l> can
 be typed during test execution, and the log file will be
 printed without suspending the test.

 DIAGS: l

 A sample log file as will be displayed:

 TEST SUMMARY:
 cpu test: pass count = 2, error count = 0, skip count = 0

 − 13 −

 bus test: pass count = 0, error count = 0, skip count = 0
 mem test: pass count = 0, error count = 0, skip count = 0
 path test: pass count = 0, error count = 0, skip count = 0
 io test: pass count = 2, error count = 0, skip count = 0
 fpu test: pass count = 2, error count = 0, skip count = 0

 − 14 −

 MESSAGES:
 P0:running cpu1
 P0:running io04
 P0:running on device dkip(0,0,1)
 P0:running on device dksc(0,1,1)
 P1:running on device dkip(0,0,1)
 P1:running on device dksc(0,1,1)
 P0:running fpu1

 The log file statistics can be reset and the saved messages
 erased by typing "i".

 3.3.6 A_u_t_o__E_x_e_c_u_t_e__C_o_m_m_a_n_d_ Invoked with no arguments, the
 command executes multiple categories tests. To run the PATH
 tests, type;

 DIAGS: a path (or "a p")

 The response will be:

 running all path tests
 running path1
 running path2
 running path3
 running path4
 running path43
 path test pass, pass count = 43, skip count = 0

 Note: ‘‘a p’’ and ‘‘x p’’ run same set of tests.

 3.3.7 H_a_r_d_w_a_r_e__C_o_n_f_i_g_u_r_a_t_i_o_n__C_o_m_m_a_n_d_ This command displays
 the hardware configuration which provides the information
 for users to set up the system configuration to run the
 tests.

 DIAGS: c

 − 15 −

 A sample hardware configuration is as follows:

 Memory size: 8 Mbytes
 Instruction cache size: 64 Kbytes
 data cache size: 64 Kbytes
 SCSI Disk: dksc(0,1)
 SCSI Tape: tpsc(0,7)

 3.3.8 D_u_m_p__C_o_m_m_a_n_d_ The dump command displays IO2 mapper.
 Invoked with no arguments, the command displays both SCSI
 and VME mappers.

 To dump the SCSI mapper, type:

 DIAGS: d s

 To display VME mapper, type:

 DIAGS: d v

 3.3.9 Q_u_i_t__C_o_m_m_a_n_d_ Typing q to the diagnostic prompt will
 reboot the system, running the PROM start up diagnostics
 before returning to the start up menu.

 DIAGS: q
 >>

 3.3.10 E_x_i_t__C_o_m_m_a_n_d_ Typing e to the diagnostic prompt will
 return the system to the start up menu without running the
 start up diagnostics. This is ~2 minutes faster than the q
 command.

 DIAGS: e
 >>

 3.4 H_o_w__t_o__C_h_a_n_g_e__P_r_e_−_p_r_o_g_r_a_m_m_e_d__T_e_s_t__T_a_b_l_e_s_

 The pre−programmed test tables are structured as two levels.
 The higher level table is selected by the system
 configuration command with the "a" variable. Under this
 table, there are nine subtables. One of these tables is for
 multi−categories auto execution (‘‘a’’ command without any
 argument), and the others are for eight individual
 categories to respond to ‘‘x’’ or ‘‘a’’ command with an
 argument, such as ‘‘a c’’ or ‘‘x b.’’

 All these tables are located in
 j_a_k_e_:/j_a_k_e_/a_t_t_/u_s_r_/s_r_c_/s_t_a_n_d_/I_P_5_d_i_a_g_s_/i_n_t_e_r_f_a_c_e_/e_x_e_c_u_t_e_.c_.

 The higher level table is called defined_table:

 − 16 −

 struct predefined_lev defined_table[] = {
 { USER, io2_tables},
 { SANITY, sanity_tables},
 { LONG, auto_tables},
 };

 Each line of this table represents a different level of
 auto−execution. For example, io2_tables is an IO2 stress
 test, and auto_tables is an over night stress test. To run
 auto_tables, type:

 f a 2

 − 17 −

 auto_tables is defined as follows:

 struct excmd auto_cpu[2];
 struct excmd auto_mem[2];
 struct excmd auto_bus[2];
 struct excmd auto_path[2];
 struct excmd auto_io[2];
 struct excmd auto_fpu[2];
 struct excmd auto_all[11];

 struct auto_table auto_tables[] = {
 { "cpu", auto_cpu},
 { "cpu", auto_cpu},
 { "bus", auto_bus},
 { "mem", auto_mem},
 { "path", auto_path},
 { "io", auto_io},
 { "fpu", auto_fpu},
 { "all", auto_all},
 {0},
 };

 Each line of this table corresponds to one individual
 category except the first line is dummy and the last line is
 multi−categories. The format of subtable is defined as:

 {TEST NAME, TEST NUMBER, LOOP−COUNT, TEST NUMBER, LOOP−COUNT,
 , GLOBAL LOOP−COUNT, 0}

 For example, the following table will run CPU test 1 to 24,
 but skip test 9.

 struct excmd auto_cpu[] = {
 { CPU, 1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,10,1,11,1,12,1,13,1,14,1,15,
 1,16,1,17,1,18,1,19,1,20,1,21,1,22,1,23,1,24,1,0,0,0,0, 1, 0},
 {0},
 };

 To run memory 7 ten times after memory 1, 2, and 4, the
 table can be defined as:

 struct excmd auto_mem[] = {
 { MEM, 1,1,2,1,4,1,7,10,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, 0},
 {0},
 };

 − 18 −

 To execute the whole bus tests twice, the table is:

 struct excmd auto_bus[] = {
 { BUS, 1,1,2,1,3,1,4,1,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 2, 0},
 {0},
 };

 The following table will skip the whole fpu tests:

 struct excmd auto_fpu[] = {
 { FPU, 0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, 0},
 {0},
 };

 The multi−categories table is as follows:

 struct excmd auto_all[] = {
 { CPU, 1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,1,10,1,11,1,12,1,13,1,14,1,15,
 1,16,1,17,1,18,1,19,1,20,1,21,1,22,1,23,1,24,1,0,0, 1, 0},
 { BUS, 1,1,2,1,3,1,4,1,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, 0},
 { MEM, 1,1,2,1,4,1,7,1,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, 0},
 { PATH, 1,1,2,1,3,1,4,1,5,1,6,10,7,1,8,10,10,1,0,0,0,0,0,0,0,0,0,0,0,0,
 0, 1, 0},
 { IO, 1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,1,10,1,11,1,12,1,13,1,14,1,15,
 1,16,1,17,1,18,1,19,1,20,1,0,0,0,0,0,0,0,0,0,0, 1, 0},
 { FPU, 1,1,2,1,3,1,4,1,5,1,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, 0},
 {0},
 };
 /}

