CHALLENGE™ / Onyx®
Diagnostics Roadmap

Document Number 108-7045-010

Contributors

Written by Greg Morris

[llustrated by Dan Young and Greg Morris

Engineering contributions by John Kraft, Steve Whitney, Rich Altmaier, Unmesh Agarwala, Ray
Mascia, Robert Thomas, Dilip Amin

© Copyright 1993, Silicon Graphics, Inc.— All Rights Reserved

This document contains proprietary and confidential information of Silicon Graphics, Inc. The
contents of this document may not be disclosed to third parties, copied, or duplicated in any
form, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

Restricted Rights Legend

Use, duplication, or disclosure of the technical data contained in this document by the
Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 52.227-7013 and /or in similar or
successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon
Graphics, Inc.,, 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.

FCC Warning

This equipment has been tested and found compliant with the limits for a Class A digital device,
pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection
against harmful interference when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and, if not installed and used
in accordance with the instruction manual, may cause harmful interference to radio
communications. Operation of this equipment in a residential area is likely to cause harmful
interference, in which case the user will be required to correct the interference at his

OwWIl EKFEI.'[SEZ

Attention

This preduct requires the use of external shielded cables in order to maintain compliance
pursuant to Part 15 of the FCC Rules.

Challenge/Onyx Diagnostic Roadmap
Document Number 108-7045-010

Silicon Graphics, Inc.
Mountain View, California

Silicon Graphics is a registered trademark and IRIX, RealityEngine? and POWERpath-2 are
trademarks of Silicon Graphics, Inc. VME is a trademark of Mororola. UNIX is a registered
trademark of UNIX Systemn Laboratories.

Contents

13} o 1o 11 o3 ({1 FAUURR OO RSR

1. Theory of Operationsccccorveerrnrrenrrnnnns

1.1
1.2
1.3

21
2.2

2.3

3. System Controller

31
3.2

3.3
34
35

OV BIVIEW 1aerrrerissasesssrussssssssassssssusssssssnssssnes snsassssassrsassasssssessns

System Buses........ccovrerneeen.

1.3.1

OVEIVIBW et iesseninsremssessss s s sasssassessrasssssas s ts s e ns s ssa s s s nsaneras sessnns
Power Fault Indicator Descriptions and Locations........c.cococovieeecccuenc
System Controller and OLSScccvveureviriemeeeienssensiesennaes
IP19 CPU BOArd.....ccoovrererenvcrirssseseisesesisesmssissensasssnsssseassssansenne
MC3 Memory Board........ccoorminninisrinenissensisesssassenenses
TO4 BOArdoccveemereiemeercresme s s e s s srsas s s sneenas
Remote VCAM (RMT_VCAM) Boardcccoovuenmucnicninnsnnens
Mezzanine (F Mezz and S Mezz) Boardscccovvveeveereerennens
SCSIBox Drive ENcloSure........oouciiincrimsincnseeiesseneens
Power-up Sequence

2.2.1
222
223
224
225
226
227

221

VBT VIBW «eeeeereieninireiressesisssnsnssnssssasssassnsensssssnsensassnsssesnssesssssnssssassnssnnnarassanses

BaSic FUNCHOMS «evveeieeeeeieeressnsereesesesssnssssnsessersnssssusssassesssssnsesssnsesssssnssnessnse

321
322
323

EITOT MESSAGEScoveuieererinesnrasinininssssiss et sis sttt st e st s e
SENSOT LOCAHIONS .cvcnirereemerencerctnssisseisssis tsss s s s s enss s ssss s msarsssssenn
— N

Error Messagesccoeeeieiercicecee ettt

Power SUbSYSIeM ...

ISOlating EITOIScoveveuicecierciesenessieses st snns s sssesns

Power-up, Boot, and Reset Sequences..........ccceccuereuireiennnnnes
Monitoring Normal System Operation.........cc.occveuvivirnrencun.
Initiating a System Power-off..........coovveiniinins

Menu Hierarchycccoeoevinniniennes

351
3.5.2

Key Switch in the On Positioneeesensecnessesssansensenec
Key Switch in the Manager Position.......cecceeieennninene.

. 1-1
werene 171
ASIC Error DeteChON. .covecueeuecverririeeeriereessesiasiesssssssassnsssessssnsssesassnsensossasens

1-7
1-9

2-2

3-10

3-13

e 3-13

4.1
4.2
4.3
44
45
4.6
4.7

4.8
4.9

Power-on Test Status MeSSAZESc.vvvveruenrsmeiassenrersssssresaissssescarssssesmasns 45
Power-on Diagnostics Commands.............coooiiieerceeeneee. 427

IP19 PROM Error and Status Messages.......ocummmmiiriensarsisimmmmnen: 4-10
[P19 CPU Board Fault/Status INAiCAtOrS.....iueuircvsieireerercesenmersssnrens =14
471 LED Status Codes......cunrenmisemcnssaesesevessenssesssssssisssensees =15
472 LED E1r0r Codes ... rereresrssssrsseessssesessassssnsiesssssess =18
4.7.3 LED Power-on Status Codeseevncreneirresversessasenenss 4-19
Board Configuration Operations...........oiniiinennces O 4-20
PROM Monitor Boot COMMANGAScc.oureererreremesinrmssessssrssssmssssssssesmssenns 4-21

IDE TeSt SLIUCTUT®......vervvrrririremnsienrsimermsrersses i esssississrsssssesss s seassss s ssesens 5-1
521 Error Message Syntax ..., 5-37
IRIX Error RepOrtingccmiiemimieieniescsinsississesssssesssensnerssassssesnees 3-38
5.3.1 Panic Messages.vimimeirimeinne e ssssmssssssesnens 5-38
5.3.2 Warning MesSSages......uuummimmenmms s 5-38
5.3.3 DIIVer MeSSAZES....ccrieminnirnisinsirermsss st issssssssessaas ssssrasnase 5-39

Diagnostic ProCedures e sismssssssssssasssesssssssessesss 6-1

6.1
6.2
6.3

OVEIVIEW c.euiriisenssmsssoniemammerasressassesessasesiserssnsss srassscsssassssassasssassasssnon ssasesesasess 6-1
Examining a Frozen System ... 6]
TroubleshOOHNE ..ot ss e s 6-1
6.3.1 IP19 Troubleshooting Procedures ... 6-1
6.3.2 104 Troubleshooting Procedures.......ccoummieremesesiases 6-4
6.3.3 Using the System Controllerciiciisiiinccicssee. 64

Figures

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10
Figure 1-11
Figure 1-12
Figure 1-13
Figure 2-1
Figure 2-2
Figure 2-3

Figure 2-4
Figure 2-5

Figure 2-6
Figure 2-7

Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 3-1

Figure 3-2

Everest Functional Block Diagram........cccoveiinniinnnninniinnnnn 1-1
104 Board Functional Block Diagramcccoovinnieisirisnennes .12
Everest System Buses .. cerseaeisias .14
Everest Buses and I.nterface ASICs b es .15
Polled Serial BUS.......covrersierniemisnnmsssinsisississssissessssssasssssssessssssssasssssasssses 170
SCSI Drive Addressingc.cccericimcireesssesssiessansssesseessesssessssensseses 127
Everest Bus Parity Checkpoints.......cccoeveueuenscicsneieieneniscsssssssnessnn 19
IP19 Board Error Detection Logic.... 1-10
IP19 Board Component Locations... cermsresnsnsssssessssessssssssssssensnnsns 1711
104/VCAM Board Error Detection Log1c - ceerrneresnanns 1513
104/VCAM Component Locations......cevceeesrenseresnresssensnns 1-14
MC3 Memory Board Error Detection LOGIC....cccovninerinicacannns 1-19
MC3 Board Component Locations... 1-20
Power Subsystem Block Diagram.... st e 2-1
System Controller and OLS Power Indicators... .2-3
IP19 Board Power Fault Indicators and Power

Brick LOCAtIONS «...oveeremiecierasiicrninsenssiamresisssasss s senssssens s s sesssnssssenssens 2-4
MC3 Board Fault Indicator and Power Brick Locationscc........ 2-5
104 Board/VCAM Fault Indicator and Voltage

Regulator Locations... - S—— . 2-6
Remote VCAM Fault Indicator and Voltage

Regulator Locations... - RO ——— veres 27
F Mezzanine Board Fault Indlcator and Voltage

Regulator Locations... SO en 2-8
SCSIBox Fault I.ndicators OO SRRRORUOOTOROOOR . o
Power OK (POKx) Signa.ls ... 2-10

Power-on Sequence....
Power-on Signal Tmung
System Controller Voltage Status Menu...

Power Subsystem Voltage Momtormg.-................ srsssnsenisarsons

System Components Monitored/Controlled by the
System Controller .. S

System Controller]nput Sngnals

e 2211
...2-13
e 2-13
.. 2-15

.. 3-3

Vi

Figure 3-3
Figure 3-4
Figure 3-5
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4

Deskside System Controller Sensors...

Rackmount System Controller Sensors SRR
System Controller (Deskside and Rackmomt Versxons)
Power-on Test SeqUENCE ...
IP19 Board Fault INAicatorsc.ccocvveeeeeerieeenenet e see e cecenens
Slave Processor LED Patterncccocineeneinicnnicsesrcennnssiscecsees
CPU LED Pattern When POLlNgG......ccccceuvrmrmriesiisemiresseie s

..3-10
. 3-11

3-12

—

4-14
4-19
4-20

Tables

Table 2-1
Table 2-2
Table 2-3
Table 2-3
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 4-1
Table 4-2
Table 4-3
Table 4-7

MC3 Board FAult LEDSooii et ceeeee et ee e neeaee e e smmenen e mea s

104 Board Fault LEDs...
Remote VCAM Fault LEDs...

Voltage Ranges and Warnmg Thresholds... e
Power-on Test Errors and Fault Identﬁlcatlon.................................... .
System Event MeSSagescoceeurnuciiienisececssscscssn s
Internal System Controller Error Messagescoeceeueneevevensannes
System Controller Master CPU Selection Status Messages...................

Basic Niblet Tests ..
Niblet Supertests

IP19 Board Test Status LED Cocies
IP19 Board Power-on Test Failure LED Codes

.. 4-15

4-18

Vil

viii

Introduction

The purpose of this document is to describe the various diagnostic tools available with the
Everest board set and how they relate to the Everest system components and to each other.
Each of the diagnostic tools is described, the physical area being tested is identified, and
the possible error messages are explained.

The information contained in this document is organized as follows:

* Chapter 1 provides the theory of operations for the Everest board set. The various
buses connecting the boards are described, along with the bus errors potentially
encountered by each board.

¢ Chapter 2 discusses the power subsystem. The inputs and outputs of all power
supplies and on-board DC-to-DC converters are illustrated. The power-up sequence is
described, as are the various fault LEDs and other error detection methods.

e Chapter 3 explains the functions of the system controller, what causes various error
messages to be generated, and what those messages mean.

* Chapter 4 describes the PROM Monitor, as well as the Power-on tests, and the
Power-on Diagnostics (POD). System board configuration and the PROM Monitor
boot commands are also discussed.

* Chapter 5 supplies information on the standalone IDE and on IRIX error reporting.

* Chapter 6 analyzes several fault isolation procedures: Examining a Frozen System,
Debugging Hints, and Examining the IRIX and System Controller Error Logs.

1.1

Chapter 1

Theory of Operations

Overview

This chapter is an introduction to the Everest (POWERpath-2) board set and how those
boards communicate over the various system and board buses. Figure 1-1 is a high-level
functional block diagram of the Everest board set, installed in a typical system. Figure 1-2
illustrates the IO4 board architecture in greater detail. As the individual diagnostics tools
are discussed, you are referred to similar diagrams that highlight the areas affected by that
tool (where appropriate).

‘." System
Controller

. Cooling
Fans

Off-Line
P Switchers

YYYy

Power
Boards

—

Ethernet >

104 M
> VMEbus

VCAM

2| Graphics
e Boar% Set

scsl
Mezz SCSI-1/ SCSI-2 Buses

scsl
Devices

Flat Cable Interface

Figure 1-1 Everest Functional Block Diagram

Everest Data Bus (256 Bits)

S

L g»{Map RAM{<¢———| ID Chips

U

IBus (64 Bits) |
Mezz Mezz
EPC St F F Slot Slot
{3 Y RVAVAN
PROM ¢
— Fok > voaw
P
NVRAM K B
u
A ® > FCI k£ ::>Graphios
Timer \r—"'. Board Set
Fast/Wide
Serial | A > SCSI-2 <: > SCsi
Ports &) ' Controller Devices
Mo <: Fast/Wide
Mbor SCsl-2 Scsl
Por ¥'| Controller <":>Dewoes
Parallel Port -———
Ethernet

Controller ~#————

Figure 1-2 104 Board Functional Block Diagram

The diagnostic tools available are separated into six groups: the Parity Checkers, Power
Subsystem Self-Checks, the Power-on tests, the Power-on Diagnostics (POD), the System
Controller, and the Integrated Diagnostics Environment (IDE).

Parity Checkers are housed in the data and address bus ASICs on each system board, in the
cache controller and CPU cache on the IP19 board, and in each of the interface ASICs on
the I04 board. The checkers are stategically placed to verify correct address and data parity
at the system bus connectors, as well as at the on-board buses.

The Power Subsystem Self-Checks are automatic at power on and at reset. Voltages that are
not within the specified levels, or are not present, cause the System Controller to halt the
power-up sequence and display an error message. Error information is also provided by a
series of LEDs located on the off-line switchers and on the system boards, but they are not
visible without opening the cabinet.

The power-on tests execute whenever the system is powered up or reset. These tests verify
enough of the system’s basic hardware functionality to load the Standalone Diagnostics
from the IDE.

The Power-on Diagnostics (POD) is a special command interpreter that is a subset of the
Power-on tests. POD is automatically invoked by the PROM monitor in the event of an
error during the boot process, or can be manually selected by the operator. POD provides
an interface that allows the operator to inspect and modify various system parameters.

The Standalone Diagnostics are a series of functionality-oriented tests that are invoked
from the PROM Monitor. They provide the highest degree of error isolation and offer the
most accurate diagnosis, but require their own environment (IDE) in order to run.
Completion of the Standalone Diagnostics provides sufficient confidence in the system to
attempt to boot UNIX®, but is not a guarantee.

Each of these groups is described in more detail in the following chapters.

1.2 System Buses

This section lists each of the buses found in a typical Everest deskside or rackmount system
(see Figure 1-3):

Everest Buses

e The Everest Data and Address buses (Ebus) interconnect the system board set.

¢ The Polled Serial bus specifically connects the system’s CPU boards to the System
Controller.

On-board Buses

* The Interface bus (Ibus) is located on the I04 board. This internal bus connects the
Ebus to the peripheral controllers on the I04 board and its various optional interface
(mezzanine) cards.

¢ The Peripheral bus (Pbus) is also located on the 104 board. It connects the Everest
Peripheral Controller (EPC) chip to a number of /O ports, the NVRAM, and 1 MB of
flash PROM.

¢ The Memory Bus is located on the MC3 and provides a path between the Ebus
interface ASICs and the memory array logic.

Peripheral Buses

* The SCSI buses connect a variety of storage devices to the I04 board. The 104 board
has two SCSI buses standard. A maximum of 32 SCSI buses can be supported by the
large systems with the addition of multiple I04 boards and SCSI mezzanine cards.

1-3

* The Flat Cable Interface (FCI) connects the graphics cards or VMEbus to the I04
board. Like the SCSI, multiple FCI buses can be supported with the addition of FCI
Mezzanine cards. In the standard configuration, 2 FCIs are on the 104 board.

* The VMEDbus is embedded in both the deskside and rackmount backplanes and is
available as an optional third cardcage with the rackmount system.

: ; #- System
¥ é ‘* A Controller
IP19 IP19 1
MC3 MC3 2 (Master
1 2 CPU) | .. | Cooling
; Fans
Off-Line
B! Switchers
vYY
Everest Data Bus (256 bits) P
ower
' Boards

Ethemet

FMezz Mezz

SCsI
Devices

1-4

Flat Cable Interface B%;?ﬁrg?ts

)

Figure 1-3 Everest System Buses
Everest Address and Data Buses

The Everest system buses consist of a 256-bit, 1200 MB/sec data bus, a 40-bit address bus,
and the bus interfaces. The interfaces between the system buses and the Everest boards are
supplied by a set of data and address ASICs (see Figure 1-4). There are four data ASICs (D
chips) and one address ASIC (A chip) on each board. This logic is not identical from board
to board but performs the same basic functions. The parity checking performed on the data,
address, and control lines during every bus cycle is done by these interface chips. There are
eight parity lines on the data bus and 2 parity lines on the address bus. ASIC parity error
detection is explained in more detail in Section 1.3.

P19

BEE B0

IP19

[o] [o][A] [0] [0]

IP19

[o] [0][A]] [0]

[uolfa] ool

MC3

104

Figure 1-4 Everest Buses and Interface ASICs

Polled Serial Bus

This is a dedicated bus embedded in the system’s backplane. It connects the system’s CPU
boards with the System Controller. During the boot process, the System Controller polls the
CPU boards over this bus requesting a bootmaster. After the bootmaster is identified, all

bring-up messages from the bootmaster CPU are sent to the System Controller display over

the Polled Serial bus. The bootmaster CPU also outputs the bring-up messages to the

system console RS-232 port (see Figure 1-5).

1-5

P19 P19 MC3
(Master CPU)

{D}@l@@

DEADD

Polled Serial Bus

L 1B Syste
o TATioTio) Cofrler
|

l Display
i
104 |

Figure 1-5 Polled Serial Bus

The Polled Serial bus provides a shortened error reporting path to the System Controller
display on the front panel. The path from the bootmaster CPU to the RS-232 System
Console port involves the Ebus and the I04's Ibus. For error messages to reach the graphics
monitor, they must pass through the graphics boards as well. Both of these error reporting
paths require a significant percentage of the system’s hardware to be functional before an
error can be reported.

Interface Bus (Ibus) and Peripheral Bus (Pbus) on 104 Board

When the PROM initializes it reads the IA configuration registers to determine what kind
of devices are connected to the Ibus. Based on the configuration information, the PROM
runs a series of diagnostics that check the integrity of the Ibus and Pbus, as well as the
functionality of the devices themselves. These diagnostics cannot distinguish between a
bus failure and an ASIC failure, but are sufficient to isolate a fault to the FRU (board) level.

SCSI Bus

The system supports 20 MB/sec SCSI buses. These buses can be configured as single-ended
or differential, and as 8- or 16-bit. A five-digit drive address has been implemented to
accommodate the large number of storage devices the Everest board set can manage. The
first two digits represent the decimal slot number of the I04 board. The third digit
corresponds to the nth SCSI channel on the I04 board (with possible SCSI mezzanine
boards) 0 and 1 are assigned to the two SCSI controllers on the I04 board. Two through
seven are assigned to the controllers on the mezzanine cards that are installed on the IO4.
The fourth digit represents a specific drive. The fifth digit is the partition on the selected
drive. See Figure 1-6 for an example of SCSI drive addressing.

104 Slot Assignment 15

Channel

6 ——01| |
5

———
Drive 5 7 \\g
Partition 0
0
ﬁ\

“Q"}\;\Zﬁ

e
//
/

Mezz
Card |

104
Base
Board

Mezz]
Card

L—1

A ||c—ag—3
L

4

SCSI Drive Address: 15150

Figure 1-6 SCSI Drive Addressing

FCI Bus

The Flat Cable Interface (FCI) is a Silicon Graphics-proprietary interface used to connect a
variety of local and remote peripheral resources, such as; graphics controllers, VMEbus
adapters, and FDDI adapters. The FCI operates at 160 MB per second (maximum) for
graphics controllers, and at a maximum of 200 MB per second with VMEbus adapters.

Note: The maximum effective VMEbus transfer rate may be in the range of 50 MB per
second with DMA. The transfer rate is less with PIO-driven 1/O.

1.3 ASIC Error Detection

There are various points in the Everest system where the accuracy of the information being
transferred is checked. Different error checking methods are used depending upon the
particular system interface. These methods include parity bits, error correction codes
(ECCs), timeouts, or a combination of several methods.

Errors are generally propagated from the point of origin on throughout the system. An
error is flagged at both the sending and receiving end of every interface it crosses, and an
error message written to CPU-accessible registers. Eventually, the error is recognized by
one or more CPUs, which then take appropriate action. How soon the error is recognized

1-7

and whether or not the system can identify the origin of the error depends upon the type
of operation that generated the fault.

For example, a memory read is an operation that provides a high rate of success in tracing
the error back to the origin. If a CPU issues a memory or PIO read, and that read generates
an error, the CPU takes a sychronous exception. Because the exception handler is invoked
so soon following the error, there is a better possibility that the cause of the error can be
determined.

An example of a difficult fault to trace is one that occurs during a memory write. If a CPU
issues a memory or PIO write, and an error occurs, an error interrupt is sent to one of the
CPUs. The CPU receiving the interrupt may not be the same CPU that issued the write
operation. The difficulty is compounded when the error occurred during a transaction that
originated in a DMA controller.

The Ebus is highly pipelined, and an operation, once initiated, may not be completed until
some time later. Understanding these asynchronous operations requires an understanding
of the ways errors propagate through the hardware. In the Everest board set, all interfaces
are bridged by one or more ASICs. By associating specific error bits with a particular ASIC,
and by establishing the direction of information transfer within an interface, the error can
generally be traced back to its point of origin (or to a FRU level).

The figures in this section provide the locations of the error checking logic for each board,
as well as the direction in which the information is flowing when checked. The
accompanying tables list the various registers used to store error messages for each of these
checkpoints. Figure 1-7 provides an overview of the points in the system where errors are
detected. Figures 1-8 through 1-13 illustrates parity checking on each board. Tables 1-1
through 1-3 list the error registers for each board.

1-8

* t * * ‘ ™ C?)ﬁ:g::;r

VME

SCSI-1/SCSI-2 Buses

MC3 MC3 P19 IP191
1 2 2 (Master
® .CPU). p| Cooling
Fans
Off-Line
» Switchers
Everest Data Bus (256 bits)
Power
Boards
Ethemnet >

SCsi
Devices

Flat Cable Interconnects >

Graphics
Board Sets

@ Ermor Checking Logic

1.3.1

Figure 1-7 Everest Bus Parity Checkpoints

Error Messages

When the hardware detects an error, UNIX and the diagnostics display it in a format called

the HARDWARE ERROR STATE display (see Chapter 5 for a detailed description of the
error syntax). This section provides a complete list of the HARDWARE ERROR STATE
messages, arranged by board type. Each message contains a number representing the

location of the error checking logic (usually a bus-to-ASIC interface), as well as a

description of the error bit.

Each circuit board is represented by both a functional block diagram, and by a board layout
showing the physical locations of the error detection logic. Following the two figures that
support each board is a table that lists the possible hardware errors, along with a number

that identifies the location where the error was detected.

1.3.1.1 IP19 CPU Board

Figure 1-8 is a functional block diagram of the IP19 board with the error detection points
called out. Figure 1-9 shows the physical layout of the board and the locations of the error

detection logic.

Ebus
Data Ebus
DATA (64+ 4 Parity) DATA (24+1Parity)
SRAM
< l (Bus Tags) .
— 4
- I 4 OC . I cPuD
—I Chip " <= _)I SCache
SRAM
——T I (Bus Tags)
- — CPU1
SR, SO I pe— chi and
P SCache
: SRAM
-I (Bus Tags)
co o7y
Chip SCache
SRAM
(Bus Tags)
CPU 3
gr‘f: and
P) SCache
ADDR/DATA (64+8ECC)

ADDR (17+1 Parity)

\\ ADDR/CMD (48+2 Parity)
DATA (256+8 Parity)

Figure 1-8 IP19 Board Error Detection Logic

Note: Because each of the four processor slices are identical, only the registers
corresponding to slice 0 are described in the following section.

1-10

ASIC

ASIC

k CPU

CPU CPU

cC cC

Chip Chip
CC CcC
Chip Chip
CPU

A
ASIC

D
ASIC

D
ASIC

Figure 1-9 IP19 Board Component Locations

IP19 Board Error Messages

HARDWARE ERROR STATE:
IP19 in slot 1

+ o+ 4+ + o+ o+

+ + + 4+

+ +

A Chip Error Register: Oxffff
0:CPU 0 CC->A parity error
1:CPU 1 CC->A parity error
2:CPU 2 CC->A parity error
3:CPU 3 CC->A parity error
4:ADDR_ERROR on EBUS

5:My ADDR_ERRCR on EBUS
8:CPU 0 CC->D parity error

9:CPU 1 CC->D parity error
10:CPU 2 CC->D parity error
11:CPU 3 CC->D parity error
12:CpU 0

13:CPU 1 ADDR_HERE not asserted
14:CPU 2 ADDR_HERE not asserted
15:CPU 3 ADDR_HERE not asserted

ADDR_HERE not asserted

(= SIS B SO N

this A detected some

board emitted an address with
bad parity.

1 some board detected a parity
error in my emitted address

7 detected by D, for a cache
line write or upon an EBus
intervention reading a line

[l IR I |

address emitted by this &
was not decoded by any board

ol

1-11

+ CC in IP19 Slot 1, cpu O

+ CC ERTOIP Register: Oxffff

+ 0:ECC uncorrectable error in Scache 5 detected by R4000

+ 1:ECC correctable error in Scache 5 detected by R4000, upon
R4000 read or upon an EBus
intervention reading a line

+ 2:Parity Error on TAG RAM Data 4 detected by CC

+ 3:Parity Error on Address from A-chip 3 in path from A to CC

+ 4:Parity Error on Data from D-chip 3 in path from D to CC, or
when D receives data with
bad parity from EBus.

+ 5:MyRequest TimeOut on EBUS 1 A was not able to get EBus
access, to emit its request

+ 6:MyResponse D-Resource TimeOut in A chip

1 EBus did not return a
read-response to A
+ 7:MyIntervention Response D-Resocurce TimeOut in A chip
2 this CC returned an
intervention response to
A too late
+ 8:Address Error on MyRegquest on EBUS 1 one or more boards detected
a parity error in A emitted
address, or ADDR_HERE not
asserted (no board decoded
A emitted address)

+ 9:Data Error on MyData on EBUS 1 some board detected a parity
error in my emitted data
+ 10:Internal Bus State is out of sync with A_SYNC
3

+ CC in IP19 Slot 1, cpu 2
+ CC in IP19 Slot 1, cpu 3

Note: The numbers following each error message correspond to the interface where the

error detection logic is located. These registers are duplicated for each installed
Processor.

1.3.1.2 104 Interface Board
Figure 1-10 is a functional block diagram of the IO4 board and VCAM with the error

detection points called out. Figure 1-11 shows the physical layout of the IO4 board and the
locations of the error detection logic. The error messages are listed in the following section.

1-12

3 «— Addr/Data
(64 + 4

16+1 Parity

Ibus
Parity) §

104 Board
_

Data (16 + 2 Parity)

Ethernet

Core I/O

FCI Data
(32 + 2 Parity)

i
Ebus Addr/Cmd
(48 + 2 Parity)
Ebus Data
(256 + 8 Parity)

FCI Data
(32 + 2 Parity)

10

11

VMECC
chip

VCAM Board

SCsi 0

SCsi 1
8Csl 2

Parallel Port

Graphics
Board Set

VMEbus

Figure 1-10 104/VCAM Board Error Detection Logic

1-13

\ el
F s1 \[] ASIC
] D
E ASIC
Chip —
A
ASIC
EPC B
D -
ASIC
: F
Chip D
k ASIC
Figure 1-11 104/VCAM Component Locations
I04/VCAM Error Messages
+ I04 board in slot 5
+ IA IBUS Error Register: Ox7ffff
+ 0: Sticky Error More than one occurance of
one or more of the following
+ 1: First Level Map Error for 2-Level Mapping

5
+ 6
+ 7
+ 8
+ 9
+ 10

1-14

12 MAPRAM data parity error
detected by ID

: 2-Level Address Map Response Command Error

4 F chip detected bad parity
on IBus operation from IA
1-Level Map Data Error 12 MAPRAM data parity error
detected by ID

: 1-Level Address MapResponse Command Error

4 F chip detected bad parity
on IBus operation from IA

: IA Response Data Bad On IBUS 4

: DMA Read Response Command Error 4 F chip detected bad parity
on IBus operation from IA

: GFX Write Command Error 4 F chip detected bad parity
on IBus operation from IA

: PIO Read Command Error 4 target S1/EPC/F detected
bad parity on IBus operation
from IA

: PIO Write Data Bad 4 target S1/EPC/F detected
bad parity on IBus data
from ID

: PIO write Command Error 4 target S1/EPC/F detected

+

+

+ +

+

+ o+ o+ 4

11:

12:

13:

14:

15:

16:

PIO ReadResponse Data Error

DMA Write Data Error (Data From IOA)

DMA Write Command Error from IOA

2

4

PIO Read Response Command Error from

Command Error on OP from IOA

I0A number of Transaction:

IA EBUS Error Register: OxfeQ003ff

0:
1:

25:
26:
27:
28:
29:
30:
31:

Sticky Error
My DATA_ERROR Received

: BADDR_ERROR Detected

: Non Existent ICA

: Illegal PIO

: My ADDR_ERROR Received

: EBUS_TIMEOUT Received

Invalidate Dirty Exclusive Cache Line

: Read Resource Time Out

DATA_ERROR Received

PIO Queue full for Adapter
PIO Queue full for Adapter
PIC Queue full for Adapter
PIO Queue full for Adapter
PIO Queue full for Adapter
PIO Queue full for Adapter
PIO Queue full for Adapter

~1 oy N Wb

4

3

bad parity on IBus operation
from IA

ID detected bad parity

from S1/EPC/F

ID detected bad parity
from S1/EPC/F

IA detected bad parity
from S1/EPC/F

IOA

IA detected bad parity

from S1/EPC/F

IA detected bad parity

from S1/EPC/F

adaptor number which caused
error, only valid for errors
detected by IA or ID.

one or more boards detected
a parity error in my emitted
data, emitted by ID

this IA detected either
another board emitted an
address with bad parity, or
ADDR_HERE not asserted (no
board decoded someones
emitted address)

No F/S1/EPC configured at
specified address, probable
software error

CC Write Gatherer block
write only allowed to F+FCG,
probable software error

one or more boards detected
parity error in IA emitted
address, or ADDR_HERE not
asserted (no board decoded
IA emitted address)

IA was not able to get

EBus access, to emit its
request

EBus cache cocherence
protocol violation detected
by IA

EBus did not return a
read-response to IA

ID detected bad parity

on data from EBus

S1/EPC/F is not responding

1-15

+

+

IA Error Ebus Address: (x4

40: EBus Outgoing Command: 0x54

Holds the EBus address of

the transaction which caused
a parity error on EBus.
Valid if bit 5 in this
register is set.

Cormand on EBus which caused

parity error on EBus

EPC in IO4 slot 5 adapter 1
Ibus Error Register: 0x3e631ll
3..0: EPC Detected- PIO Write Request Data Error from IA

7
+ 3..0: EPC Detected- DMA Read Response Data Error from IA
7
+ 3..0: EPC Detected- Unexpected DMA Read Response Error from IA
7
+ 3..0: EPC Detected- Undetermined Command Error from IA
7
+ 11..4: EPC Observed- PIO Write Request Data Error from IA to IOA 3
7
+ 11..4: EPC Observed- GFX Write Request Data Error from TA to IOA 3
7
+ 11..4: EPC Observed- DMA Read Response Data Error from IA to IOA 3
7
+ 15..12: EPC Sent- PIO (to EPC) Read Response Command Error to IA
7 Error from EPC to IA
+ 15..12: EPC Sent- PIO (to EPC) Read Response Data Error to IA
7 Error from EPC to IA
+ 15..12: EPC Sent- DMA (Enet) Read Reguest Command Error to IA
7 Exrror from EPC to IA
+ 15..12: EPC Sent- DMA (Enet) Write Request Command Error to IA
7 Error from EPC to IA
+ 15..12: EPC Sent- DMA (Enet) Write Request Data Error to IA
7 Error from EPC to IA
+ 15..12: EPC Sent- Interrupt Request Command Error to IA
7 Error from EPC to IA
+ 15..12: EPC Sent- PIO (thru EPC) Read Response Command Error to IA
7 Error from EPC to IA
+ 15..12: EPC Sent- PIO (thru EPC) Read Response Data Error to IA
7 Exrror from EPC to IA
+ 15..12: EPC Sent- IMA (PPort) Read Reguest Command Error to IA
7 Error from EPC to IA
+ 15..12: EPC Sent- DMA (Pport) Write Request Command Error to IA
7 Error from EPC to IA
+ 15..12: EPC Sent- DMA (Pport) Write Request Data Error to IA
7 Exrror from EPC to IA
16: Parity Error on IBusAD[15:0]

17:
18:
19:
20:

Parity Error
Parity Error
Parity Error

++ + + + ot

IBus Opcode+Address

+

1-16

on IBusAD[31:16]
on IBusAD[47:32]
on IBusAD[63:48]

7 Exrror
7 Error
7 Error

Error Overrun
21: DMA Read Response 1 msec Timeout Error

: 0x2a40 7 Holds

from EPC to IA
from EPC to IA
from EPC to IA

the IBus contents if

EPC detects an error in IA
initiated transaction

Fchip in I04 slot 5 adapter 3, FCI master: FCG

F chip comnects
to graphics

+

+ o+ o+ o+ o+

+ o+

+ o+ + 4+

Fchip in I04 slot 5 adapter 2, FCI master: VMECC

Error Status Register: Ox4fffiff

0:
1:
2:
3:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:
23:
24:

25:
26:
27:
28:

OverWrite
Loopback Received
Loopback Error

F chip connects
to VME bus

F to IBus Command Error - non-interruptable

: DMA Read Request Timeout Error

: Unknown IBus Command Error

: DMA Read Response Ibus Data Error
: DMA Write Data FCI Error

: PIO Read Response FCI Data Error

PIO/GFX Write IBus Data Error

Load Address Read FCI Error

DMA Write IBus Command Error

8

8

IA detected parity error
on command from F

: PIO Read Response IBus Data Error - non-interruptable

ID detected parity error
on data from F

I2 did not return DMA
read response

F detected parity error
on command from IA

F detected parity error
on data from ID

F detected parity error
on data from FCI

F detected parity error
on data from FCI

F detected parity error
on data from ID

F detected parity error
on address from FCI

IA detected parity error
on command from F

Address Map Regquest IBus Command Error

Interrupt IBus Command Error
load Address Write FCI Error
Unknown FCI Command Error

Address Map Request Timeout Error

2ddress Map Response Data Error

8

PIO F Internal Write IBus Data Error

IBus Surprise

DMA Write IBus Data Error

System FCI Reset
Software FCI Reset
Master Reset

F Error FCI Reset

F Chip Reset in Progress
Drop PIO Write Mode

Drop DMA Write Mode

8
8

IA detected parity error

on command from F

IA detected parity error
on command from F

F detected parity error

on data from FCI

F detected parity error

on command from FCI

IA did not return map

response

F detected parity error

on data from ID

F internal problem

F received unexpected
bus-grant/DMA-response
from IA

ID detected parity error
on data from F

F received a reset request
from FCI
F reset FCI due to some error

F unrecoverable error
F unrecoverable error

1-17

+

29: Fake IMA Read Mode 8 F unrecoverable error

+ IBus Opcode+Address: 0xa54b 8 captures the F operation
which received a parity
error.
+ FCI Error Command: 0x3f 9 captures the FCI command
which had a data parity error
+ VMECC in IO4 slot 5 adapter 2
+ Error Cause Register: Ox1fff
+ 0: VME Bus Error on PIO Write (interrupts)
11 error from VME

+ 1l: VME Bus Error on PIO Read (no interrupt), return bad parity data
11 error from VME

+ 2: VME Slave Got Parity Error (no interrupt)
10 detected error on FCI

+ 3: VME Acquisition Timeout by PIO Master (interrupt, set dropmode)
11 error from VME

+ 4: FCIDB Timeout (no interrupt) 10 detected error on FCI

+ 5: FCI PIO Parity Error (interrupt) 10 detected error on FCI

+ 6: Overrun among bit 0,1,3,4,5

+ 7: in Dropmode

+ VME Address Error Register: 0xa0001248

+ Extra VME Bus signal register: 0x15e49

+ AM: 0x9 IACK Read AS DS0O DS1

+ VME-Grant-Level: 1: VME backplane levels

+ S1 in I04 slot 5 adapter 4

+ S1 Command Status Register: Oxffff

+ & : Error in SCSI Data DMA channel 0 6 detected error from SCSI

+ 7 : Error in SCSI Data IMA channel 1 6 detected error from SCSI

+ 8 : Error in SCSI Data DMA charmmel 2 6 detected error from SCSI

+ 9 : PIO Read Error in SCSI 0 6 detected error from SCSI

+ 10: PIO Read Error in SCSI 1 6 detected error from SCSI

+ 11: PIO Read Error in SCSI 2 6 detected error from SCSI

+ 12: PIO Write data Overrun due to PIO FIFC Full

5 81 internal error
+ 13: Missing Write data during PIO write

5 81 detected error on IBus
~ 14: PIO with an invalid address 5 81 detected error on IBus

+ 15: PIO Drop mode active 5 81 detected error on IBus

E S1 Ibus error Register: Ox1fffffff

+ 1: Error on Incoming Data to S1 - multiple occurances

5 81 detected error on IBus

+ 2: Error on Incoming command to S1 - multiple occurances

5 81 detected error on IBus
+ 3: Error on Outgoing data from S1 - multiple occurances

5 81 detected error on IBus
+ 4: Error on Outgoing command from S1 - multiple occurances

5 81 detected error on IBus
+ 5: Error in DMA translation - multiple occurances

5 81 detected error on IBus

+ 6: Error in Chamnel 0 - multiple occurances

+ 7: Error in Channel 1 - multiple occurances

+ 8: Error in Channel 2 - multiple occurances

+ 9: Surprising DMA Read/Ibus Grant - multiple occurances

5 81 detected error on IBus

+ 10: PIO Read response Error - multiple occurances

1-18

5 1IA detected error in data
from S1

+ 11: PIO Write request Error - multiple occurances
5 81 detected error on IBus
12: DMA Read response Error - multiple occurances
5 81 detected error on IBus
13: Interrupt Error - multiple occurances
5 TIA detected error
+ IBus Opcode+Address: Oxbfel 5 holds the Sl emitted IBus
operation where a Parity
error was reported by IA

+

+

1.3.1.3 MC3 Memory Board

Figure 1-12 is a functional block diagram of the MC3 board with the error detection points
called out. Figure 1-13 shows the physical layout of the board and the locations of the error
detection logic. The error messages are listed in the following section.

Ebus
Data Ebus

DATA
(512 + 64 ECC)

Leaf 0 DRAM

Leaf 1 DRAM

A
(512 + 64 ECC)

Q ADDR/CMD (48+2 Parity)
DATA (256+8 Parity)

Figure 1-12 MC3 Memory Board Error Detection Logic

1-19

F Mo | ||
ASIC

MD
ASIC

Il

MA
ASIC

MD
ASIC

MD
k ASIC

Figure 1-13 MC3 Board Component Locations

MC3 Memory Board Error Messages
+ MC3 in slot 3
+ MA Ebus Error register: Oxf
+ My EBus Address Error 3 destination board detected

a parity error in MA emitted
read-response ? field

+ My EBus Data Error 3 one or more boards detected
a parity error in MD emitted
read-response data

+ EBus Address Error 3 this MA detected another
board emitted an address with
bad parity

+ EBus Data Error 1 this MD received data with
bad parity

+ MA Leaf 0 Error Status Register: Oxf

Multiple Occurence of these errors: Shows more than one Read
Single Bit Exrror occurred

+ Read Single Bit Error 2 correctable error in this
leaf

+ Read Uncorrectable Error 2 uncorrectable error in this
leaf

+ PartialWrite Uncorrectable Error 2 uncorrectable error upon

reading out this leaf, to do
a partial write merge
+ MA Leaf 1 Error Status Register: Oxf

1-20

2.1

Chapter 2

Power Subsystem

Overview

The power subsystem consists of the off-line switchers (OLSs), the midplane and
backplane power buses, the various power boards, and the DC-to-DC converters (power
bricks) on the Everest CPU and Memory boards. See Figure 2-1 for a block diagram

illustrating the power subsystem components.

Eveready Server/GFX
110VAC @ 20A

Terminator w/o CC3
220VAC 2@

o] OLS 1

-

Terminator w/CC3
220VAC 3¢

-

oLs 2

LAA

| 4svDCw AN 104

oLs3 |-

48V Ret l/

Bulk Power to:

Backplane

VMEbus
GFX bus
SCsl bus

To Power Boards:

+5.0V +3.3V
Power Bricks

+5.0V
Power Brick

IP19

MC3

— 505- 5.0V @400 W (to cardcage)

—— 505X2- 5.0V @800 W (to cardcage)
(Terminator Only)

—— 512- 5V @ 200W
12V @ 200W (to cardcage)

— 512S-5V @ 200W
12V @ 200W (to SCSIBox)

—— Ebus- 1.5V @ 45W (to System
5V Aux @ 7.5W Controller)

L 104/
VCAM- -12V @ 18W (to VMEbus)

-5.2V @ eW

Figure 2-1

Power Subsystem Block Diagram

When the system is turned on, the power subsystem goes through a series of voltage checks
before the boot process is allowed to start. Power is applied to the various system

2-1

2.2

2-2

components sequentially in the following order: 5V and 12V power bricks (powers the
SCSI drives in the deskside systems), 1.5V and 3.3V power bricks, 5V and 12V (powers the
internal SCSIBox in the rackmount systems), 5V and 12V (powers the second internal
SCSIBox in the rackmount systems), and 5V and 12V for external SCSI. This power
sequencing is designed to prevent component damage due to incorrect or missing voltages,
and to avoid placing a large transient demand on the voltage source.

There are only three diagnostic tools at this point in the system’s start-up sequence: the red
fault LEDs on each circuit board, the voltage input and output LEDs on each OLS, and the
System Controller. To effectively use these indicators to troubleshoot a system fault, refer
to the fault indicator descriptions and the power-up sequence described in the following

sections.

Power Fault Indicator Descriptions and Locations

221

This section describes the power fault indicators found on each board, on each OLS, on the
SCSIBox backplane, and on the System Controller. The locations of the power fault
indicators, the power bricks, the removable fuses, and the secondary regulators (where
applicable) are also shown.

System Controller and OLSs

There are two LEDs located above the System Controller function buttons (see Figure 2-2).
The green power-on LED lights to indicate that 48 volts is present at the system
midplane/backplane, and remains lit as long as 48V is present. The amber fault LED lights
briefly during the power-up sequence, but should go out when the Power-on tests are
complete.

Each OLS also has a green and amber LED. The amber LED lights to indicate that the AC
input voltage level is within acceptable levels. The green LED lights to indicate that the DC
output voltage levels are within acceptable levels. Both LEDs should remain lit during
normal system operation.

System Controller
Fault LED Power-on LED

Display

Off-line Switcher

Switchers

Power Switch

Amber Green

Figure 2-2 System Controller and OLS Power Indicators

222 P19 CPU Board
The IP19 has two power bricks that step down the 48 volts from the midplane/backplane
to 5.0 and 3.3 volts. Each brick has a corresponding power fault LED, as shown in Figure
2-3.

Note: The LEDs are red and indicate a fault when lit.

2-3

3.3V Power Brick

e 1

3.3V Fault LED
(POKB)

5.0V Fault LED \
(POKA)

NI) 5.0V Power Brick
-
Y (2) T

2.2.3

2-4

Figure 2-3 IP19 Board Power Fault Indicators and Power Brick Locations

MC3 Memory Board

The MC3 board currently has a single +5.0-volt power brick, and a corresponding fault
indicator. Later versions of this board may have an additional +3.3V brick, as shown in
Table 2-1 and Figure 2-4.

Note: The LEDs are red and indicate a fault when lit.

LED Reference Color / Meaning Description
Designation When Lit

N8P2 (POKB) Red - Fault Bad 3.3V power brick
B4P2 (POKA) Red - Fault Bad 5.0V power brick

Table 2-1 MC3 Board Fault LEDs

224

3.3V Fail LED
(POKB)

(Not present
in this version)

5.0V Fail LED

(POKA)
\E(:)

Provision for 3.3V Power Brick
(Not present in this version)

Sy

\ 5.0V Power Brick

Figure 2-4 MC3 Board Fault Indicator and Power Brick Locations

104 Board

The 104 board has a single bank of five LEDs and two secondary regulators. These
regulators convert +5 volts to +1.5 volts (see Table 2-2 and Figure 2-5). The 104 also has

three replaceable fuses, as shown in Figure 2-5.

Note: All LEDs are red and indicate a fault when lit. The bottom three LEDs provide
power fault indications for the attached VMEbus Channel Adapter Module
(VCAM). The VCAM fault LEDs are mounted on the IO4 board because the

dimensions of the VCAM would make on-board LEDs extremely difficult to read.
These LEDs are unlit when no VCAM is installed.

LED Reference Color / Meaning Description

Designation When Lit

M2P6 (POKB) Red - Fault Bad 1.5V regulator A (near top) on
the 104 board

M1P6 (POKB) Red - Fault Bad 1.5V regulator B (near bottom)
on the I04 board

MOPé6 (POKB) Red - Fault Bad 1.5V regulator on the VCAM

L9P6 (POKA) Red - Fault Bad -12V to -5.2V regulator on the

VCAM

Table 2-2 104 Board Fault LEDs

2-5

LED Reference Color / Meaning Description
Designation When Lit

L8P6 (POKA) Red - Fault Bad +12.0V to -12.0V regulator on
the VCAM

Table 2-2 (continued) 104 Board Fault LEDs

Fault LEDs 104 VCAM
M2P6 ‘ED O

M1P6 1
MOP6 |:: /
L9P6 [Regulator A :[
L8P6
C_-; € 3 -5.2v
Reguiator B 15V~ / Reg
Reg 1
Fuses \

I

Figure 2-5 104 Board/VCAM Fault Indicator and Voltage Regulator Locations

2.25 Remote VCAM (RMT_VCAM) Board

The RMT_VCAM board has a bank of nine fault LEDs that flag power faults stemming
from the Cardcage 3 backplane, the System Controller, and the three regulators on the
RMT_VCAM itself. There are also six test points corresponding to the monitored voltages
(see Table 2-3 and Figure 2-6).

Note: The voltage levels of the three on-board voltage regulators are monitored by two
sets of LEDs: the three red LEDs and the bottom three amber LEDs. The red LEDs
light when a voltage error is sensed and remain lit until the system is reset. The
amber LEDs provide a “hot” measurement and light only when an error in the
monitored voltage levels is currently present.

LED Reference Color / Meaning Description

Designation When Lit

MOPé6 Red - Fault Bad +1.5V regulator on the RMT_VCAM
L9P6 Red - Fault Bad -5.2V regulator on the RMT_VCAM

Table 2-3 Remote VCAM Fault LEDs

2-6

2.2.6

LED Reference Color / Meaning Description

Designation When Lit

L8P6 Red - Fault Bad -12V regulator on the RMT_VCAM

L7P6 Green - Good 5V input (V5_AUX) from System Controller
to RMT_VCAM (should always be on)

L6P6 Amber - Fault Bad +12V input from the backplane

L5Pé Amber - Fault Bad +5V input (VCC) from the backplane

L4P6 Amber - Fault Bad +1.5V regulator on the RMT_VCAM

L3P6 Amber - Fault Bad -5.2V regulator on the RMT_VCAM

L2P6 Amber - Fault Bad -12V regulator on the RMT_VCAM

Table 2-3 (continued) Remote VCAM Fault LEDs

Fault LEDs

MOPE
L9P6
L8PB
L7P6
LePe
L5P6
L4PE
L3P6
L2P6

N

Test Points

+12v [O]
VCC (+5V) @

+1.5V
aND [O]

-5.2v [O]
-12v

oooooo

Figure 2-6 Remote VCAM Fault Indicator and Voltage Regulator Locations

Mezzanine (F Mezz and S Mezz) Boards

Both F mezzanine cards (F Mezz and Short F Mezz) have a 5V-to-1.5V regulator, identical
to those on the 104 and VCAM. Each F mezz board also has a single, red voltage fault LED,
as shown in Figure 2-7. The LED lights when the voltage level is out of range.

The S mezzanine card (not shown) has no regulators, but has three removable fuses.

2-7

|:| f 1.5V Regulator

=) &,

b

\— Voltage Fault LED

G6M1 (for standard F mezzanine)
A1KS5 {for short F mezzanine)

Figure 2-7 F Mezzanine Board Fault Indicator and Voltage Regulator Locations

2.2.7 SCSIBox Drive Enclosure

There is a +5V and a +12V power fault LED located behind each drive in the SCSIBox. Both
LEDs are green and are lit during normal operation (see Figure 2-8).

o =

\ N\

Power Fault LEDs Drive Sled Connector SCSIBox Access Door

Figure 2-8 SCSIBox Fault Indicators

2-8

2.3

Power-up Sequence

Note: The Power switch (main circuit breaker), located in the lower right corner of the
front of the system cabinet, must be turned on.

Turning the System Controller key switch to the ON or Manager position enables the OLSs
to output 48 volts to the midplane /backplane. The green power-on LED, above the front
panel display, lights to indicate that voltage is present at the midplane /backplane. The
step-down regulator on the Ebus power board converts the 48 volts to 5.0 volts (V5_AUX)
for use by the System Controller, power brick control circuits, and LEDs. As the System
Controller powers up and begins its initialization, the amber fault LED above the display
lights. When the System Controller successfully initializes and the Power-on tests are
complete, the amber fault LED will go out.

Note: If the system will not power up (green front panel LED not lit), first check the LEDs
on each of the off-line switchers. If the OLSs do not indicate a fault, verify that there
is 48 volts at the backplane near the Power-on LED.

If the backplane voltage is correct, but the System Controller has not initiated
the power sequencing, first check the display for an error message, then check
the Ebus board and verify that the 5.0V_AUX line from the System Controller
is supplying power to the power bricks.

The System Controller then manages the power sequencing for the rest of the system. A
series of power-enable (PENX) signals are asserted:

* PENA - controls +/-5.0 and +/-12 volts
e PENB - controls 1.5 and 3.3 volts

¢ PENC - controls 5 and 12 volts for the SCSIBox housing the system disk
(rackmount systemns only)

¢ PEND - controls 5 and 12 volts for the optional, second SCSIBox (rackmount
systems only)

* PENE - controls 5 and 12 volts for any external cabinets

Each time a signal is asserted, a corresponding power-OK (POKXx) signal is tested,
indicating to the System Controller that the voltage levels are correct. If any voltage-enable
line does not generate an OK signal, the System Controller will stop the power-on sequence
at the point of the failure. The POKx signals are continually monitored during and after
power up. Any POKx signal going low indicates a power-fail condition at one or more of
the system power supplies/regulators. A low POKx signal causes the System Controller to
display a “Power Fault” message and begin the system power-down sequence. Figure 2-9
illustrates the relationship of the POKx signals to the various system voltages and
components. The system power-on sequence is illustrated by the flowchart in Figure 2-10.

2-9

POKA POKB
sV 12V -5.2V -12V 1.5V

Ebus

IP19 104
505, 5056X2 VCAM
512,5125 GE10
*Debug a POKA error b
disabling the VCAM and then
the 512 boards to isolate the
origin of the fault.
POKC POKD POKE
(1st rackmount (2nd rackmount
SCSIBox) SCSIBox)
5V 12v 5v 12v
External
5128 5128 Cabinets

2-10

Figure 2-9 Power OK (POKXx) Signals

(if Onyx system)

Main power switch on.
Front panel key switch
in ON position. 48VDC
applied to backplane.

No 48V from OLSs.
Check key switch,
status panel, cable

to backplane, System
Controller, cable
between backplanes.
Check backplane
voltage, OLS power
LEDs, OLS cabling.

Green No

Pwr-on
LED lit

48V present at midplane/
backplane. System
Controller generates
5V_Aux line.

System Check 5.0V AUX,
Controller OLS amber LEDs.
comes up Blowers on?

Yes

Enables 5.0V

and 12V bricks

for cardcages
(PENA)

Power-up halted,
“POKA Fault’

POKA
signal
received

displayed by
System Controller.
Check fault LEDs
on power boards
(see Figure 2-7).

Enables 1.5V
and 3.3V
for cardcages
(PENB)

POKB
signal
received

Power-on halted,

“POKB Fault” displayed by
System Controller. If 1.5V
failed, check secondary
regulators on 104, MC3 and
VCAM. If 3.3V failed, check
power brick on IP19 (see

Figure 2-3).

~

Continued on next page

Figure 2-10 Power-on Sequence

2-12

v

Looks for good
system clock.
Enables 5.0V

and 12V for 1st
SCSIBox (housing

system disk).
(PENC)

System shutdown initiated.
System Controller displays
“No System Clock”
message.

Figure 2-10 (continued) Power-on Sequence

received.
Clock
OK

Power-up halted,
failing voltage
displayed by
System Controller.
Check voltages
on 5128 power
board in 1st
SCSlbox.

Enables 5.0V
and 12V for
optional 2nd
SCSIBox
(PEND)

POKD
signal
received

Power-up halted,
failing voltage
displayed by
System Controller.
Check voltages
on 5128 power
board in 2nd
SCsSiBox.

Enables 5.0V
and 12V for
external SCSI
drive boxes.

(PENE)

POKE
signal
received

Power-up halted,
failing voltage
displayed by
System Controller.
Check voltages
at external
drive box.

Power-on Sequence Complete

When the system has successfully powered up, the System Controller deasserts the power
clear (PCLR) and system clear (SCLR) signals to the address ASIC on each IP19 board. The
cache controllers then reset each of the system’s processors and the power-on tests are
started (see Chapter 4).

See Figure 2-11 for the power-enable/power-ok signal timing.

48V 7/
SV_AUX ____/
PENA _/
POKA_00
PENB /
POKB_00
PENC /
POKC_00
PEND /

—

—

POKD_00
PENE
POKE_00

Figure 2-11 Power-on Signal Timing

Note: The POKx signals (with the exception of POKE) remain high unless there is a fault.
The System Controller checks for a low to indicate a problem.

2.2.1 Isolating Errors

With the key switch in the Manager position, the voltage status menu can be called up on
the System Controller display. This menu displays the actual voltages at the
midplane/backplane, at the power boards, and at the VCAM. The voltage status menu is
shown in Figure 2-12.

OoLSs 512 Board 512/505 Board

System Controller 104-VCAM

Figure 2-12 System Controller Voltage Status Menu

2-13

If an out-of-range voltage level is sensed on the 505 or 512 power boards, the System
Controller will display a message indicating which voltage is out-of-range and whether it
is high or low. The display will indicate which voltage level failed, but cannot isolate the
failure to an individual power board because same-level voltages are ganged together.

The power-OK (POK) signals also cannot isolate a voltage fault to a specific component.
The voltages at each power brick are monitored, but the power-OK lines (POKA, B, C...) are
OR-tied together, so a failure sensed by any of the POK lines indicates the failing voltage
but cannot isolate the cause. Also, in systems with more than one of each type of power
board, identical voltages are ganged together. Finally, there are secondary regulators; one
on the backplane, two on the I04 board, one on the MC3 board, and one on each of the
FMezz boards, whose output voltages are not sensed.

A voltage fault is isolated by inspecting the fault LEDs on all of the suspect boards before
powering down or resetting the system (refer to the tables in the following section for'the
LED error codes). Check the system for a lit POKx LED when either a voltage fault message
(e.g. 5V low fault) or a POK error message (e.g. POKB bad) is displayed. The points where
the voltages are monitored are shown in Figure 2-13.

If a CPU, blower, voltage regulator, or power brick fails, the System Controller will disable
the bricks but will leave 48 volts at the midplane/backplane and the V5_AUX on. V5_AUX
allows the fault LEDs to remain lit and provides power to the front panel display and
System Controller. If a shutdown has occurred, check the error message that is displayed
and visually inspect the corresponding fault LEDs throughout the system to isolate the
fault. See Section 2.2 for the locations of the fault LEDs and Section 3.3 for the System
Controller error messages.

Note: Check the front panel display for error messages and inspect the cardcage(s) for lit
fault LEDs before restarting the system. Repeated power cycling during fault
diagnosis will eventually fill the System Controller event history log and overwrite
the original error message. The bootmaster CPU can save the contents of the
System Controller history log in /usr/adm/SYSLOG only after the boot process is
complete. If the fault prevents the system from booting, there will be no record of
the fault in UNIX.

If an over-temperature fault occurs, the entire system shuts down. Isolate the fault by
restarting the system with the key switch and checking the error message on the front panel
display. If the temperature sensors are not given sufficient time to cool below the trip point,
the system will continue to shut down. Temperature sensors are located on the IP19, MC3
and IO4 boards.

Note: The Voltage Status menu, shown in Figure 2-12, only applies to Cardcages 1 and 2.

Cardcage 3 voltages are monitored by the POK lines and voltage faults are
indicated by the fault LEDs on the Remote VCAM.

2-14

Monitors the 48V at output of OLSs.

Will shutdown if below 45V or above 50V
and send Power Fail Warning (PFW).
Will also shut down for loss of AC.

Off-line

Switcher
(OLS A, B,

——- 48V

C) |=@—— REMOTE_INHIBIT

— PFW (A, B, or C)

External
Control

--—— PENE
——» POKE

Will shut down if voltage is out of range.

Will send POK signal and turn on

POK LED.

Pwr

Brick

3.3V IP19/MC3

Boards

Pwr

Brick

5.0V

Each power brick has a monitor circuit.
Will shut down if voltage is out of range.
Will send POK signal and turn on

POK LED.

1.5V
Reg

104/VCAM
-12V
Reg
-5.2V
Reg

l.¢——— PENA and B

| POKA and B

—— = OVERTEMP

le¢——— PENA and B

|———p POKA and B

= OVERTEMP

Monitors backplane voltages generated by VCAM,
OLSs, 505 and 512 power boards. Also monitors
internal 1.5V power brick. Does not monitor IP19,
MC3, 104 or SCSIBox. Will shut system down

if voltages are out of range.

PENX -—
POKx ———p»!
PFW ——»=

REMOTE_INHIBIT -——
OVERTEMP ——pp|

System
Controller

505/512/512X2
Power

PENA N Boards

Pwr
POKA -g— g\r}ck

Pwr
Brick
5/12V

Will shut down if voltage is out of range.
Will send POK signal and turn on
POK LED.

GE10
PENB ————» Board
POKB --——— 1.5V
Reg
SCSiBoxes

PENx (C or D) ——

POKx (Cord) <——I

Each power brick has a monitor circuit.
Will shut down if voltage is out of range.
Will send POK signal and turn on

POK LED.

Figure 2-13 Power Subsystem Voltage Monitoring

2-15

Table 2-3 provides the voltage ranges monitored by the System Controller, and two sets of
voltage thresholds: the upper and lower thresholds at which a voltage warning is issued,
and the upper and lower thresholds at which the system is shut down.

Warning (below Maximum Nominal Maximum Warning (above
this voltage a Undervoltage Overvoltage this voltage a
warning is issued) (below this (above this warning is issued)
voltage system voltage system
shuts down) shuts down)
------- 45V 48V 50V e
10.97V 10.2V +12V 13.8V 13.02V
459V 435V +5V 5.65V 5.46V
1.23V 1.05V +1.5V 1.95V 1.77V
-4.4V -3.63V -5.2V -5.85V -5.66V
-10.0V -8.45V -12v -14V -13.7V

Table 2-3 Voltage Ranges and Warning Thresholds

Note: The POK signals are asserted at the under-voltage limits. If a specific test circuit
fails to assert POK, the System Controller initiates a system shutdown.

2-16

3.1

Chapter 3

System Controller

Overview

The Everest System Controller is a microprocessor with battery-backed clock and RAM.
The System Controller performs three basic functions:

The System Controller manages the system’s power-up, power-down, and
bootmaster arbitration processes. It also displays a running account of the
status of the boot procedure and notifies the bootmaster CPU when a system
event, such as power off, is initiated.

When operating conditions are within normal limits, the System Controller is
a passive monitor. The only active role the System Controller plays is in
monitoring the cabinet temperature and adjusting the blower speed. Its front
panel LCD offers a running CPU activity graph that shows the level of each
processor s activity. Previously logged errors are not available on the front
panel display, but are transferred into /usr/adm/SYSLOG.

The System Controller can also act independently to shut down the system
when it detects a threatening condition. Or it can adjust electro mechanical
parameters (such as blower speed) to compensate for external change. The
Manager position, on the key switch, provides menus used to probe for
system error information.

This chapter describes the operation of the System Controller during the power up, power
down, and boot sequences, as well as during both normal system operation and during an
emergency shutdown. Explanations of the possible error messages are presented in Section

3.3.

Figure 3-1 illustrates the system components monitored and /or controlled by the System
Controller.

-
v IR B W o e
IP19 P19 1

2 (Boot-
master)

- Cooling Inlet Air
Fans Temp

Off-Line
®1 Switchers

YYy

Everest Data Bus (256 bits) Power
i Boards

Ethernet
VMED!

VCAM
. - - SCSI
scs| SCSI-1/SCSI-2 Buses Sost
Mezz
Flat Cable Interconnects ' B%;argrg?ts

Figure 3-1 System Components Monitored /Controlled by the System Controller

3.2 Basic Functions
This section provides a step-by-step description of the System Controller operation. See

Figure 3-2 for a block diagram illustrating the signals received by and transmitted from the
System Controller.

3-2

OVERTEMP_L Display
POKx_L + Terminal/Keyboard
BPCLK
PFWx_L
BLOx_TACH System
SERIAL_BRDOUT Controller [~
_ «
PCLR_OD
SCLR_OD :%\?V
gzgm]fLADDRx < +12V | Backplane
- BLOXx MTR ;?22\)" Voltages
SERIAL_BRDIN PENX e
SERIAL_CLK RIH
FAULT_LED INLET TEMP 1
+5V_SC AUX TEMP

3.2.1

Figure 3-2 System Controller Input Signals

Power-up, Boot, and Reset Sequences

The System Controller plays an active role in the power-up, boot and reset processes. The
power-up process begins when the System Controller enables the OLS outputs, supplying
48 volts to the midplane /backplane. Next, the blower(s) are turned on and their speed
monitored. Then the System Controller sequentially turns on a series of power-enable lines
(PENA - PENE). As each system component is brought up, the System Controller waits for
a valid power-OK signal (POKA - POKE), which indicates that the voltages just enabled are
within the specified range. If the power-OK signal remains high, the System Controller
asserts the next power-enable line in the series. If a power-OK signal is bad (goes low), the
System Controller will halt the power-up sequence. When the power-up sequence is
complete, the System Controller sends a power-clear (PCLR) signal to the CPU boards (see
Chapter 2 for additional information).

Note: If a power-OK or blower fault is sensed during the power-up, the system will shut
down completely.

The PCLR/SCLR signals cause all of the system’s processors to reset, beginning the first
step in the bootmaster arbitration process (see Chapter 4). The System Controller then polls
each of the CPU boards over the Polled Serial bus. The first CPU polled is the board with
the lowest address. If that CPU has successfully passed its self-test, it notifies the System
Controller that it is becoming the bootmaster, and sends interrupts to any other CPUs. If
the first CPU failed its self-test, the System Controller will increment the CPU address by
one and offer the bootmaster role to the next CPU. The first CPU board to successfully
complete its self-test and respond to the poll becomes the bootmaster. The bootmaster CPU

3-3

3.2.2

3.23

3-4

takes control of the boot process and uses the serial link to the System Controller to
transmit status and error messages.

When the operator requests a reset using the front panel, the System Controller asserts the
SCLR line, as it does following the power-up sequence. The processors are reset and the
boot arbitration and power-on test processes start over, however, power is never removed
from the midplane /backplane.

Note: Before requesting a system reset, terminate all processes and run an init 0 to
gracefully halt UNIX.

Monitoring Normal System Operation

During normal system operation, the System Controller passively monitors the system
voltages, backplane clock, the air temperature in the cabinet, and the blower speed. The
Power Fault Warning (PFW) signals, from the off-line switchers, are also monitored in
order to allow the system to gracefully power-down in the event of an impending loss of
power. Status messages from the bootmaster CPU are transmitted to the System Controller
and are available at the controller’s display.

The System Controller will issue and display a warning if an abnormal condition is
detected but does not warrant a system shutdown. This condition can be detected by either
the System Controller’s sensors or by the bootmaster CPU. In these cases, the waming is
issued only to inform the user.

Initiating a System Power-off

If a condition is detected that calls for a system shutdown, the System Controller issues an
alarm. If the situation is not immediately dangerous, the System Controller will wait until
it receives a “Set System Off” message or until its internal timer counts down. This delay
in the shutdown sequence is designed to give UNIX ample time to perform an orderly
software shutdown and to sync the system disks before power is removed.

If the reason for the shutdown requires immediate action, such as an out-of-spec voltage or
a voltage failure POK condition, the System Controller will log a message and shut down
immediately. In these cases, the power subsystem is shut down gracefully, but the system
does not have time to sync disks or to halt UNIX.

Following the alarm, the System Controller removes power from the system boards and
peripherals without turning off the 48 volts from the OLSs (all of the PEN lines go low). The
System Controller will display a fault message and the fault LED next to the display will
light.

Note: First, check the front panel display for error messages. Then, inspect the
corresponding Fault LEDs to localize the problem. The appropriate fault LEDs will
remain lit after the system has shut down. Turning off the system power or
rebooting will reset the fault LEDs only if the fault has been corrected.

Restore power by turning the key switch OFF for 30 seconds, and then ON (turning the key
switch OFF will clear any fault LEDs that are lit). The System Controller will begin the
start-up sequence. If the fault still exists, the system will shut down again and repeat the
previous fault message.

3.23.1 Over-Temperature Faults

If the System Controller shuts the system down because the temperature sensors on the
IP19, MC3 or 104 boards are too high, power is removed from all system components,
including the System Controller itself. In order to determine the origin of the fault, cycle
the key switch Off and then On and check the displayed error message. If the system
immediately shuts down again, wait for several minutes to allow the mechanical
temperature sensor switch to cool below its trip point.

Error Messages

Tables 3-1 through 3-4 describe each of the messages displayed by the System Controller.
These messages are divided into five categories: power-up and system errors, system
events, internal System Controller errors, and bootmaster arbitration errors.

Error Message Failure Area/Possible Solution

EBUS TEST 2 FAILED! This comprehensive test of the Ebus
indicates probable failure of the IP19 ora
fault on the system Midplane/Backplane.

PD CACHE FAILED! The primary data cache on the bootmaster
microprocessor has failed.

NO 104 FOUND! No 104 is seen during the system probe.
Check for bent pins, re-seat the 104, or
replace the IO4. A backplane problem is
also possible.

NO 104 UART FOUND! [04 probably bad.
MASTER 104 FAILED! 104 probably bad.

104 UART FAILED! 104 probably bad.
INIT INV FAILED! [04 probably bad.
NO MC3 FOUND! No MC3 was found during the system

probe. Check for bent pins, re-seat the
MC3, or replace it. A backplane problem is
also possible.

Table 3-1 Power-on Test Errors and Fault Identification

Error Message

Failure Area/Possible Solution

MC3 CONFIG FAILED!

BUS TAGS FAILED!
SCACHE FAILED!

PROM DNLOAD FAILED!

GRAPHICS FAILED!

CONSOLE FAILED!

The system MC3 has failed. If there is more
than one MC3 present, a potential Ebus or
IP19board problem (if system uses a single
CPU). Check system voltages with the
System Controller. If voltages are out of
range, swap out power board or OLS.

There is a problem with the IP19.

The secondary cache on the bootmaster
microprocessor failed. The SCACHE
SIMM module is bad or the IP19 is faulty.

The 104 or MC3 path is blocked. A possible
fault exists on the [04’s flash PROM. Check
for bent pins and re-seat the IO4(s) and
MC3(s).

The graphics self tests failed. Check
individual graphics boards with
console/laptop.

Check the console terminal configuration
and cabling. Check the I04 to IO panel
cable connection. There may be a fault in
the 104.

Table 3-1 (continued)

Power-on Test Errors and Fault Identification

Note: Thefirst 12 error messages in the table are generated by the CPU’s boot PROM. The
last two messages are generated by the IO4’s boot PROM.

The area and possible solution for each error message in the previous table is general by
default. To obtain more specific information, you can follow three possible paths:

e Swap out the suspected faulty FRU and re-power the system.

 Plug your laptop into the system console port (Port 1) and probe for more specific
fault information. Note that if the fault lies in the 104 or 104 pathway, you may be
unable to access the system console port

* Plug your laptop into the System Controller port, labeled External Controllexr
Serial, using the cable permanently attached to the port. On rack-mounted systems,
this port is located in the lower left corner of the midplane (when facing the front of
the chassis). Deskside systems have the port located in the lower right corner of the
backplane (when facing the rear of the chassis).

3-6

Error Message Error Meaning

SCLR DETECTED The System Controller detected an SCLR
on the system backplane. The reset was ini-
tiated from the System Controller front
panel by an operator.

SYSTEM OFF The key switch was turned to the off posi-
tion and the System controller powered
down the system.

SYSTEM ON The System Controller has successfully
powered up the system.

SYSTEM RESET The System Controller detected an SCLR
and initiated a system boot arbitration pro-
cess. SCLR can be generated by any proces-
sor board or by the System Controller.

NMI The System Controller placed a non--
maskable interrupt (NMI) onto the system
backplane from a front panel menu option.
UNIX wrote out a core dump and then
restarted. The results of initiating an NMI
are unpredictable and should be only used
as a last resort. Note that if the system
debugger (SYMMON) is installed, select-
ing NMI will force the operating system to
return to SYMMON's “DBG” prompt
(useful if the machine hangs).

Table 3-2 System Event Messages

Error Message Error Meaning

ACIA FRAMING ERROR The secondary System Controller serial
port detected a framing error.

ACIA NOISE ERROR The secondary System Controller serial
port detected a noise error.

ACIA OVERRUN ERROR The secondary System Controller serial
port detected an overrun error.

BAD MSG: CPU PROCESS The CPU or System Controller process has
received an invalid message.

BAD MSG: DISPLAY The display process has received an invalid
message.

Table 3-3 Internal System Controller Error Messages

3-7

Error Message

Error Meaning

BAD MSG: POK CHK

BAD MSG: SEQUENCER

BAD MSG: SYS MON

COP FAILURE

COP MONITOR FAILURE

FP CONTROLLER FAULT

ILLEGAL OPCODE TRAP

MEMORY FAILURE

PULSE ACCU INPUT

PULSE ACCU OVERFLOW

SCI FRAMING ERROR

SCI NOISE ERROR

SCI OVERRUN ERROR

The power ok check process received an
invalid message.

The sequencer process has received an
invalid message.

The system monitor process has received
an invalid message.

The Computer Operating Properly (COP)
timer has exceeded time limits. The System
Controller firmware must write to a COP
timer port before it times out. If the firm-
ware exceeds the time allowed between
writes to a COP port, an interrupt is gener-
ated. The System Controller firmware may
have entered an endless loop.

A Computer Operating Properly (COP)
clock monitor failure was detected. The
System Controller clock oscillator is oper-
ating at less than 10K Hz.

An error was detected in the front panel
LCD display control process.

The System Controller’s microprocessor
tried to execute an illegal instruction. Prob-
ably because of a stack overrun followed
by a process switch.

The System Controller’s internal memory
experienced a failure.

An interrupt was detected on the pulse
accumulator input port. The port is not
used and an interrupt is considered an
error.

The pulse accumulator overflow port
received an interrupt. This port is unused
and the interrupt is considered an error.

The System Controller’s internal micropro-
cessor has detected a framing error on its
serial port.

The System Controller’s internal micropro-
cessor has detected a noise error on its
serial port.

The System Controller’s internal micropro-
cessor has detected an overrun error on its
serial port.

Table 3-3 (continued) Internal System Controller Error Messages

3-8

Error Message

Error Meaning

SOFTWARE INTERRUPT

SPI TRANSFER

STACK FAULT PID 0-6

TIMER IN COMP 1

TIMER OUT COMP 1-5

A software generated interrupt was
detected. This function is not supported
and the interrupt is considered an error.

An interrupt was detected on the synchro-
nous serial peripheral Interface. This inter-
face is not supported and the interrupt is
an error.

One of the seven stack areas used by a Sys-
tem Controller process has overflowed its
assigned boundaries

The timer input compare port received an
interrupt. The port is not used and the
interrupt is considered an error.

One of the five timer output compare ports
received an interrupt. The port is not sup-
ported and the interrupt is considered an
error.

TIMER OVERFLOW A timer overflow port interrupt occurred.
This port is not used and the interrupt is
considered an error.

Table 3-3 (continued) Internal System Controller Error Messages

Note: Internal errors will cause an error message to be displayed, but will not shut down

the system.

Master CPU Selection Message

Context and Meaning of Message

BOOT ARBITRATION NOT
STARTED

The system CPU board(s) have not
begun the arbitration process.

BOOT ARBITRATION IN PROCESS The System Controller is searching

ARBITRATION COMPLETE
BOARD OxZZ PROC OxZZ

for the bootmaster CPU.

The chosen bootmaster CPU has
identified itself to the System
Controller and communication is
fully established.

Table 3-4 System Controller Master CPU Selection Status Messages

3-9

Master CPU Selection Message Context and Meaning of Message

BOOT ARBITRATION An error has occurred in the boot

INCOMPLETE NO MASTER process and no boot master CPU is
communicating with the System
Controller.

Either no CPU is running or the
System Controller is faulty. If the
System Controller has failed, the
system will boot normally, but the
histograph will not display.

Table 3-4 (continued) System Controller Master CPU Selection Status Messages

3.4 Sensor Locations

The locations of the System Controller sensors for both the deskside and rack-mounted
systems are shown in Figures 3-3 and 3-4, respectively.

Air Inlet
Temperature
Sensor

External SCSI Rack

System
Controller

I Blower

Eveready
Backplane

Voltage
Terminatio

1.5 Volt
Regulation

Int | Status Panel,
ré%rgla KeySwitch, Function
Rack Buttons and LCD

Off-line
Switcher
(OLS)

B Sensor

Figure 3-3 Deskside System Controller Sensors

3-10

Terminator

Secondary
Backplane
I Air Inlet
Temperature
External SCSI| Rack Sensor
System 1
Controller
Voltage 1T Rotary Blower
2% Fan A
Termination Terminator
Midplane
15Volt [
Regulation
T Rotary Blower
Fan B

Keyswitch, Function

Internal !
ScCsi b Buttons, Graphics
Rack Display/Status Panel

Off-line
Switcher
(OLS3)

| Off-line
Switcher
(OLS2)

BB Sensor

Figure 3-4 Rackmount System Controller Sensors

3.5 Menu Hierarchy

This section provides a sequential listing of the available System Controller menus, as well
as descriptions of the menu functions.

The menus are accessed and their functions executed using four function buttons. Press the
Scroll Up and Scroll Down buttons to locate a specific menu. Press the Menu button to view
the selected menu. Press the Execute button to perform the menu function. See Figure 3-5
for an illustration of the System Controller display and function buttons.

3-11

Rackmount Systems

test
Power On On Paosition
5 Controll Fault LE0
ystem roller aul o .
LCD Screen LED Off Position Magr Position
|
4 © i
- @ @ @
: :
™ ° @ e /4 @
™~ o
Menu Scroll Scroll Execute Key Switch
Up Down
Deskside Systems
Fauit PowerOn System Controller
LED LED LCD.’.“Saaen
Mgr Position ———
On Position
Off Position

3-12

Figure 3-5 System Controller (Deskside and Rackmount Versions)

3.5.1 Key Switch in the On Position

There are four menus that are accessible when the key switch is in the On position.

Checking Memory
Bt++

Master CPU Selection Menu

Scroll

2. Event History Log

Scroll

3. CPU Activity

Scroll

4, Boot Status

Continuing to pressing the Scroll buttons will loop through the four menus. When the
function buttons are not used, the display will default to the CPU activity histogram.

This message is displayed following a

successful boot. The second line indicates

that the first of the four installed processors

is the bootmaster (B) and that the remainin
processors (+) are on-line. A blank space indicates
that the processor is missing or dead, an “x”
indicates the processor failed diagnostics, and a
“d” means that the processor has been disabled.
Note: This message cannot be used to identify the
location of a bad processor. The symbols
representing the processors do not correspond to
physical locations.

Pressing the Execute button displays the last
boot arbitration message sent out by the boot-
master CPU. A typical message is:
Arbitration Complete
Slot xx Proc xx

Pressing the Execute button di?lays the last
status or error message. Repeatedly pressing
either Scroll button will step through the
contents of the history log. A maximum of 10
messages are stored. The 11th message causes

the first to be discarded. The most recent message
is at the end of the log.

Pressing the Execute button displays the
processor activity as a histogram.

Pressing the Execute button displays the last
boot arbitration message sent out by the boot-
master CPU.

3.5.2 Key Switch in the Manager Position

In addition to the four menus just described, the Manager position provides access to eight

more menus.

3-13

10.

11.

3-14

Boot Status

Scroll

Turn External Cabinet Off/On

Scroll

Turn Internal SCSI B Off/On

Scroll

Turn Internal SCSI A Off/On

Scroll

Backplane NMI

Scroll

Reset System (SCLR)

Scroll

Voltage Status

Scroll

Temperature Status

Pressing the Execute button toggles between
turning the external cabinet on and off. Each time
the button is pressed, the menu prompt toggles
between “Off” and “On.”

Pressing the Execute button toggles between
turning the optional second SCSIBox on and off.
Each time the button is pressed, the menu prompt
toggles between “Off” and “On.”

Pressing the Execute button toggles between
turning the standard SCSIBox on and off. Each
time the button is pressed, the menu prompt
toggles between ”Bff” and “On.”

Selecting this menu displays a second-level
confirmation menu. Pressing the Execute button
performs the interrupt. Pressing the Menu button
returns you to the system menu.

Selecting this menu displays a second-level
confirmation menu. Pressing the Execute button
performs the reset. Pressing the Menu button
returns you to the system menu.

Pressing the Execute button displays the voltage
menu (refer to Section 2.2.1).

Pressing the Execute button displays the blower
speed in RPMs and the inlet temperature in
egrees centigrade.

To access the Debug Settings menu: First turn the key switch to the On position. Press the Scroll

Up and Scroll Down buttons simultaneously. Turn the key switch to the Manager position. Press both
scroll buttons simultaneously again. Scroll through the menus until the Debug Settings menu
appears. If the menu is not selected within 30 seconds, it disappears.

Pressing the Execute button displays 16 bits:
0000000000000000Q

The bits are numbered from right to left, starting with
“0” and ending with “f.”

A flashing cursor appears under the bit at the far
right of the display. The Scroll buttons move

the cursor back and forth across the screen. The

Execute button toggles the bit. The bits are

defined as follows:
0000O0CO0OO0OCCOO0ODO0QCO0ODO0OO0QCO

Manu-mode PROM Debug
POD Second 104

No bootmaster mode
arbitration Do Not Clear Mem
Default NVRAM

Debug Settings

No diagnostics

The “PROM Debug Mode” switch displays additional
debugging information. It also is used to alter the system’s
serial number (see Section 6.3.3.5).

The “Second I04” switch causes the PROM to see the
104 board in the second highest slot as the master I04.

The “Do Not Clear Memory” switch instructs the
PROM not to run BIST on reset. Use to debug after a
system crash.

The “Default NVRAM Values” switch forces the PROM
to use the default values for various environment
variables, instead of reading them from the NVRAM.
The default values are:

dbaud 9600 The default console baud rate

rbaud 19200 The alternate port baud rate

fastmem 0 The memory configuration
algorithm

The “Manu-mode” switch sends all IP19 PROM
console output to the external UART on the System
Controller (External Controller Serial).

The “No bootmaster arbitration” switch prevents
the System Controller from selecting a processor
to communicate with. This allows the individual
processors to communicate via the “CC UART”
connectors located on the IP19 board edge.

The “POD mode” switch forces the IP19 PROM

to stc&mitialization just before it would have loaded
the I04 PROM and umi) to POD mode instead. Useful
on a system with a bad 104 board or PROM.

The “No diagnostics” switch prevents the system
from running power-on diagnostics.

Power cycle the system to install the new settings.

3-15

3-16

Chapter 4

PROM Monitor

4.1 Overview

This Chapter describes the power-on tests, how the Everest boards are configured, and
explains the Monitor boot commands.

4.2 Power-on Tests

The power-on tests are initiated when the System Controller sends the SCLR signal,

resetting the processors. This series of tests begins with the IP19 logic supporting each
individual processor and expands to test and configure the entire system. The power-on
test sequence is illustrated in Figure 4-1.

Set Up R4400
Registers

|
Configel'est

Configure the
Local

CC Chip

Test
A Chip
Registers

Pass +

Configure the
Local
A Chip

E-bus
Test No. 1
(Interrupts)

Pass

Figure 4-1 Power-on Test Sequence

4-1

Configure the
@—b CC Chip -
Config Regs.

My Time expired

4-2

Y

Begin
Bootmaster
Arbitration

Y

Wait for time
determined by
slot/CPU

number

the
bootmaster?

| am the
bootmaster

Communicate !
with System E

Controller

E-bus
Test No. 2

Figure 4-1 (continued) Power-on Test Sequence

Received interrupt
from another CPU

Master Code

Slave Code

Send
“I'm Alive”
interrupt

Wait
for
interrupt

Received rearbitrate

Receive
MPCONF
interrupt

interrupt

Send “trying
to talk to mem”
interrupt

Y

Fill in our slot
in MPCONF

Y

Wait for an
interrupt to
jump to mem

T

Fail Send out

rearbitrate
interrupt -
become
slave

Jumptoa
location in
MPCONF

Configure
cache as

@"' stack - jump to
C

code

Configure
104s

Read
NVRAM

ispla messagei
on System |
Controller - stop !

....................

o

Display message:
on System ~ !
Controller -
continue

* If all memory is bad, go into POD mode.

Figure 4-1

(continued) Power-on Test Sequence

Y

Configure
console port

Y

Check
NVRAM for
things to disable

Are
we
disabled?

Jump to
bootmaster
arbitration

Test raw
memory and
store results®

Y

Configure
memory

Y

Test configured
memory and
store results*

4-3

Figure 4-1

4-4

@_, |04 PROM

Load

Go into
POD mode

Test caches
and bus tags

v

Make slaves
test their
caches and
bus tags

Y

Run Niblet
MP tests

Y

Test I/O
devices

Y

Initialize 11O
PROM and
drivers

Y

Call PROM
Command
Monitor (or GUI)

(continued) Power-on Test Sequence

4.3

Power-on Test Status Messages

This section is a sequential list of all of the status messages that are displayed by the System
Controller during the normal power-on process.

1.

Firmware Date
DD-MM-YY

System On
HH-MM-SS

Boot Arbitration in Progress

Boot Arbitration Complete
All of the above messages are issued by the System Controller during initial
power-on.

Starting System
Displayed when bootmaster arbitration has completed. Indicates that the bootmaster
CPU has started up successfully and can communicate with the System Controller.

EBUS Diags 2
Displayed immediately before the secondary Ebus diagnostics are run (the secondary
Ebus diagnostics test the Ebus and the interrupt logic).

PD Cache Test
Displayed immediately before the primary data cache test is run.

Building Stack
Displayed before the system attempts to set the cache up as a stack.

Note: If this is the last message displayed, check for a fault in the bootmaster CPU.

9.

10.

11.

12.

13.

14.

Jumping to Main

Displayed before the system switches into the C main subroutine.

Initing Config Info

Displayed before the initial hardware probing is attempted and before the Everest
configuration data structure is set up.

Setting Timeouts

Displayed before attempting to write to the various board timeout registers. Everest
requires that all of the boards be initialized with consistent timeout values, and that
the values be written before any reads or writes of the boards are attempted.

Initing Master 104

Displayed before basic initialization of the system 104 boards is attempted (basic
initialization consists of: writing the large and small window registers, setting the
endianess, setting up error interrupts, clearing the Ibus and Ebus error registers, and
examining the I/O adapters).

Initing EPC

Displayed before the first writes to the master EPC. This routine clears the EPC error
registers and takes all EPC devices out of reset.

Initializing EPC UART

Displayed when first entering the UART configuration code.

4-5

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

4-6

Initing UART Chan B
Displayed before beginning the initialization of UART Chan B’s control registers.

Initing UART Chan A
Displayed before beginning the initialization of UART Chan A’s control registers.

Reading Inventory

Displayed before attempting to read the system inventory out of the I04 NVRAM. If
the inventory is invalid or can’t be read, the inventory fields are initialized with
appropriate default values.

Running BIST
Displayed before running the memory hardware’s built-in self test.

Configuring Memory
Displayed before configuring the banks into a legitimate state.
Testing Memory (will be added in the next release)

Displayed before beginning the memory post-configuration tests (verifies that
memory was configured correctly).

Testing Bus Tags

Displayed when the CC BUS TAGS are checked and initialized (the CC chip uses the
bus tags to determine whether or not it should pass a coherency transaction on to a
particular processor).

Writing CFGINFO
Displayed before attempting to write the Everest configuration information to main
memory.

Initing MPCONF Blk
Displayed before initializing the MP configuration blocks for all of the processors.

Testing S Cache
Displayed before testing the secondary cache on all of the processors.

S Cache Passed

Checking Slaves
Displayed when each slave processor is checked (check determines whether or not
processor is operational, and whether or not it passed its diagnostics).

Loading I04 PROM
Displayed when the I04 PROM is downloaded from the I04 flash PROMs into main
memory.

Entering I04 PROM (will be added in the next release)
Displayed when first jumping into the I04 PROM.

Sizing Caches

Displayed when the cache sizing code is executed.

Initing Environment

Displayed when attempting to read the NVRAM variables from the I04 PROM
NVRAM.

Reiniting Caches

Displayed when rechecking the caches.

Initing saio

Displayed when beginning the initialization of the standalone I/O routines.

33. Initing SCSI (will be added in the next release)
Displayed when beginning the initialization of the WD95 SCSI driver.

34. Initing UART (will be added in the next release)
Displayed when initializing the I04 EPC UART.

35. Initing Graphics (will be added in the next release)
Displayed when initializing the graphics devices (if installed).
36. Starting Slaves
Displayed when the slave processors enter the I04 PROM slave loop.

37. Startup Complete
Displayed when initialization is complete and the system is ready to display the main
menu.

At this point, either the boot menu appears or the system autoboots.

Power-on Diagnostics Commands

The Power-on diagnostics (POD) provide an interface that allows the state of the system to
be examined and modified. The PROM monitor can automatically drop into POD mode

during system power-up, or in the event of an unexpected exception or diagnostic failure.
POD mode can be entered manually, using the System Controller Debug Settings menu, or
manually selected from the System Maintenance Menu (select 5, then type pod). The POD
commands that are useful as fault isolation tools are described in the following paragraphs.

Note: Setbit 5 in the Debug Settings menu to 1 in order to enter POD mode (refer to
Section 3.5.2). The POD mode prompt is POD xx/yy>, where xx is the slot number
of the current processor and yy is the CPU on the IP19 board.

Kill an individual microprocessor on the IP19 — At the POD prompt, use either the
disable or fdisable commands. disable sets the disable bit in the stored hardware
inventory. £disable turns the specified processor off by writing to the CPU enable
register. Both commands use the format disable/£fdisable x y; where x is the cardcage
slot number and y is the CPU number.

Note: The disabled processor is unable to write to memory. It remains disabled until
the system is power-cycled, or the control register is rewritten with “f” and the
“reset” command is typed.

List the physical locations of all boards installed in the system — Type info to display the
board inventory.

Display the contents of all of IP19 registers — Type dr all.

Display the configuration of a specific board — Type devc x, where x is the slot number of
the selected board.

Note: The deve command will not work if memory is not configured.

Display the configuration of a specific memory board — Type dmc x, where x is the slot
number of the selected board.

4-7

4.5

Turn off individual banks of memory — Type disable x y, where x is the slot number of
the selected memory board and y is the bank number.

Note: The system must be left with enough enabled memory to successfully boot. If
you attempt to disable too much memory, the command will fail.

If memory is disabled, use the reconf command to reset the
interleaving.

Reconfigure the enabled memory — Type recont to reconfigure the memory using the
currently enabled banks. The configuration will be displayed.

Display the cache error register contents — Type ece. This command can only isolate the
fault to either the primary or secondary caches.

Clear the Memory Error registers — Type cleax. Use this command when POD is cycling
a memory error message, to determine whether the message is old or new.

Start the PROM Monitor — Type io.

Display the reason why the system entered POD mode — Type why. Use when the original

error message has scrolled off of the screen.

Niblet is a small, symmetric multiprocessing kernel with separate virtual address spaces
for its processes. Niblet was originally designed as a verification tool, but has been found
useful for testing boards.

Niblet is composed of 13 separate tests. These tests are, in turn, combined in various
combinations to form 13 test sets (Supertests). When Niblet is invoked, it attempts to
execute all of the tests in the selected set (Niblet cannot run individual tests). Table 4-1 lists
each of the basic Niblet tests, and Table 4-2 lists the available Supertests.

Note: Niblet attempts to run its tests on all of the processors that were present when the
PROM set up the machine. If one or more processors are forced into POD mode
(see Chapter 6), they are still included in Niblet's processor count, causing the
system to hang.

Niblet may not run correctly if the system processors are running different
versions of the IP19 PROM; however, if the processors launch successfully,

Niblet will run as intended.
Test Description
INVALID Invalidates random TLB entries to cause more varied
interactions.

Table 4-1 Basic Niblet Tests

Test

Description

COUNTER Runs until a certain instruction count is reached and
passed. The count is proportional to the Niblet process ID.

MPMON Verifies that repetitive Everest reads and writes are
identical.

MPINTADD Two processors add values to a common variable, hit a
barrier, and compare the final sum.

MPINTADD_4 Four-processor version of MPINTADD.

MPSLOCK A software locking protocol test.

MPHLOCK Tests load-link and store-conditional by grabbing a lock,
storing a process ID to a protected location, waiting for a
delay to expire, and then checking to see that the correct
process ID is still there. Multiple processors try this; a
failure should result in a processor reading the wrong PID.

MEMTEST Tests a range of memory by writing a value, based on a
process ID, to that range of memory and then verifying it.
The current version’s range is small enough to fit into a
secondary cache.

BIGMEM Same as above except that the range is larger than 1MB.

PRINTTEST Tests Niblet context-switching (very fast sanity check).

BIGINTADD_4 Same as MPINTADD_4 except that it runs for a high
number of iterations.

BIGHLOCK Same as MPHLOCK except that it runs for a high number
of iterations.

Table 4-1 (continued) Basic Niblet Tests

Test Description

niblet 0 Runs one copy of the INVALID process. This test should
always pass almost immediately.

niblet 1 Runs INVALID, COUNTER, COUNTER.

niblet 2 Runs MPMON, MPMON. Test takes disproportionately
longer on single-processor compared to multi-processor
machines.

niblet 3 Runs MPINTADD, INVALID, MPINTADD. Test takes
disproportionately longer on single-processor compared to
multi-processor machines.

niblet 4 Runs MPSLOCK, MPSLOCK, INVALID.

Table 4-2 Niblet Supertests

4-9

4.6

4-10

Test Description

niblet 5 Runs MPROVE, MPSLOCK, MPROVE, MPSLOCK,
INVALID.
niblet 6 Runs MPSLOCK, MPMON, INVALID, MPSLOCK,

MPMON. Test takes disproportionately longer on
single-processor compared to multi-processor machines.

niblet 7 Runs MPROVE, MPROVE.

niblet 8 Runs INVALID, MPMON, MPMON, MPROVE, MPROVE,
MPROVE, MPINTADD, MPINTADD, MPHLOCK,
MPHLOCK (total of 10 processes).

niblet 9 Runs MPINTADD_4, MPINTADD_4, MPINTADD_4,
MPINTADD_4, INVALID, MPROVE, MPROVE,
MPROVE, MPHLOCK, MPHLOCK, MPSLOCK,
MPSLOCK (total of 12 processes).

Table 4-2 (continued) Niblet Supertests

As long as there are more processes than processors, Niblet tests will migrate. This is why
there are three copies of INVALID in “niblet b.” As long as INVALID is run on fewer than
six processors, it will migrate eventually. Tests run on fewer processors will migrate more
often.

If there are more processors than processes, one or more processors will go into a loop
waiting for the Supertest to complete. Processors in this state will print “No processes left
to run - twiddling.”

Because Niblet is intended to run with one UART per processor, it only prints failure
messages to the processor on which a test failed. The processor hosting the failure prints all
pertinent information and then sends interrupts to the other processors. The cause of the
failure is only available on the processor where the process actually failed; the other
processors will print “Niblet failed on an interrupt.” This is particularly important when
Niblet fails due to a nonzero ERTOIP register, since the register can only be read by the
processor on which the error occurred. The processor hosting the error prints “ERTOIP is
nonzero! (ERTOIP, CAUSE, EPC)” followed by the values of ERTOIP, CAUSE, and EPC.

Whenever a Supertest completes, the bootmaster CPU prints “Supertest
PASSED/FAILED” followed by “Niblet Complete.” None of the 13 tests in the IP19 PROM
should ever generate a “Supertest FAILED” message under normal circumstances.

Niblet can be initiated while in POD mode by typing gm <return> followed by niblet
n <return>, where n is the set of tests that you wish to run.

IP19 PROM Error and Status Messages

During a normal system boot-up, the IP19 PROM provides a series of status messages that
are displayed by the System Controller. In the event of a failure during the boot process,
the IP19 PROM causes the appropriate error message to be displayed. If the system is a
server, the error message is also displayed on the terminal.

Both status and error messages are displayed in the same format: A short status or error
message appears near the top of the display. Immediately below it, a longer more
descriptive version of the message scrolls by. This longer message is followed by a
three-digit diagnostic code that corresponds to the displayed message.

Status messages scroll by as the machine comes up and will pass so quickly that they will
be difficult to read. A failure causes the corresponding error message to continuously scroll
across the display until the return key is pressed.

Note: If an IO4 failure has occurred, the error message will continue to scroll until the
system is powered down. See Section 6.3.2 to redirect the IP19 PROM output to an
external port.

The following sections list the various messages and their diagnostic codes.

IP19 PROM Messages (Short Form)

003 SCACHE FAILED!

004 SCACHE FAILED!

001 DCACHE FAILED!

002 DCACHE FAILED!

005 ICACHE FAILED!

006 ICACHE FAILED!

040 MC3 CONFIG FAILED!
041 NO GOOD MEMORY FOUND
042 MC3 CONFIG FAILED!
043 MC3 CONFIG FAILED!
044 MC3 READBACK ERROR!
047 MC3 CONFIG FAILED!
048 MC3 CONFIG FAILED!
049 MC3 CONFIG FAILED!
050 INSUFFICIENT MEMORY !
051 NO MEM BOARDS FOUND!
070 NO IO BOARRDS FOUND!
071 IO4PRCM FAILED!

072 IO4PROM FAILED!

073 IO4PROM FAILED!
074 IO4PROM FAILED!

075 IO4PRCM FAILED!

078 IO4PROM FAILED!

079 NO EPC CHIP FOUND!
080 IC4 CONFIG FAILED!
081 MASTER I04 FAILED!
082 MASTER IO4 FAILED!
083 MASTER I04 FAILED!
084 MASTER IO4 FAILED!
085 MASTER 104 FAILED!
086 MASTER IC4 FAILED!
088 MASTER IO4 FAILED!
085 MASTER IO4 FAILED!
050 MASTER IO4 FATILED!
051 MASTER IO4 FATLED!
092 MASTER I04 FAILED!

4-11

093
094
087
095
123
123
124
250
251
252
253

MASTER IO4 FAILED!
MASTER IO4 FAILED!
EPC CHIP FAILED!
EPC UART FAILED!
BUS TAGS FAILED!
BUS TAGS FAILED!
BUS TAGS FAILED!
Reentering PCOD mode
PROM EXCEPTION!
PRCOM MMI HANDLER
CPU in POD mode.

IP19 PROM Messages (Long Form)

040
041
042
043
044
047
048
045
050
051
070
071
072
073
074
075
078
079
080
081
082
083
084
085
086
088
089
090
081
092
083
094
087
251
252

000
001
00z
003

4-12

Memory board configuration has failed. Camnot load IO PROM.
All memory banks had to be disabled due to test failures.

The address line self-test failed. Cannot continue.

Memory board configuration has failed. Cannot load IO PROM.
Memory board configuration has failed. Cannot load IO PROM.
Memory board configuration has failed. Cannot load IO PROM.
Memory board configuration has failed. Cannot load IO PROM.

The PROM was unable to disable failing memory banks.

You must have at least 32 megabytes of working memory to load the IO PRCM.
The IP19 PROM did not recognize any memory boards in the system.
The IP19 PROM did not recognize any I04 boards in the system.
Diagnostics detected a problem with your IO4 PROM.

Diagnostics detected a problem with your I04 PROM.

Diagnostics detected a problem with your IO4 PROM.

Diagnostics detected a prcblem with your IO4 PRCM.

Diagnostics detected a problem with your I04 PROM.

An exception occurred while downloading the IO4 PROM to memory.
There must be an EPC chip on the IO board in the highest-numbered slot.
An exception occurred while configuring an IO board.

The chip on the master I0O4 board has failed diagnostics.

The chip on the master I04 board has failed diagnostics.

The chip on the master I0O4 board has failed diagnostics.

The chip on the master I04 board has failed diagnostics.

The chip on the master I04 board has failed diagnostics.
The chip on the master I04 board has failed diagnostics.
The chip on the master 104 board has failed diagnostics.
The chip on the master I04 board has failed diagnostics.
The chip on the master I04 board has failed diagnostics.

The chip on the master I04 board has failed diagnostics.

The chip on the master I04 board has failed diagnostics.

The chip on the master I04 board has failed diagnostics.

The chip on the master I0O4 board has failed diagnostics.

The EPC chip on the master I04 board has failed diagnostics.
The PROM code took an unexpected exception.

The PROM received a nonmaskable interrupt.

BEEREEEEEEEREES

Diagnostic Codes and Their Meanings

Device passed diagnostics.
Failed dcachel data test.
Failed dcachel addr test.
Failed scachel data test.

004
005
006
007
008
0098
040
041
042
043
044
045
046
047
048
049
050
051
052
060
061
062
063
070
071
072
073
074
075
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
120
123
124
125
240
246
247
248
249
250

Failed scachel addr test.

Failed icache data test.

Failed icache addr test.

Dcache test hung.

Scache test hung.

Icache test hung.

Memory built-in self-test failed.
No working memory was found.
Memory address line test failed.
Memory data line test failed.
Bank failed configured memory test.
Slave hung writing to memory.

Bank disabled due to downrev MA chip.

A bus error occurred during MC3 config.

A bus error occurred during MC3 testing.

PROM attempted to disable the same bank twice.
Not enough memory to load the IO4 PROM.

No memory boards were recognized.

Bank forcibly re-enabled by the PRCM.

CPU doesn’t get interrupts from CC.
Group interrupt test failed.

Lost a loopback interrupt.

Bit in HPIL register stuck.

No working IC4 is present.

Bad checksum on IO4 PROM.

Bad entry point in I04 PROM.

I04 PROM claims to be too long.
Bad entry point in IO4 PROM.

Bad magic number in IO04 PROM.

Bus error while downloading IO4 PROM.

No EPC chip found on master IO4.
Bus error while configuring IO4.
Bus error during IA register test.
Bus error during IA PIO test.

IA chip register test failed.
Wrong error reported for bad PIO.
IA error didn't generate interrupt.
IA error generated wrong interrupt.
EPC register test failed.

Bus error on map RAM rd/wr test.
Bus error on map RAM address test.
Bus error on map RAM walking 1 test.
Bus error during map RAM testing.
Map RAM read/write test failed.
Map RAM address test failed.

Map RAM walking 1 test failed.

EPC UART loopback test failed.

CPU can’'t access memory

CC bus tag data test failed.

CC bus tag addr test failed.

CPU forcibly re-enabled by the PROM.
CPU writing configuration info.
CPU testing dcache.

CPU testing icache.

CPU testing scache.

CPU initializing caches.

CPU returning from master’'s code.

4-13

4.7

4-14

251 Unexpected exception.

252 A nommaskable interrupt occurred.

253 POD mode switch set or POD key pressed.
253 Unspecified diagnostic failure.

254 Diagnostic value unset.

255 Device not present.

IP19 CPU Board Fault/Status Indicators

The IP19 board has a total of 24 fault indicators (see Figure 4-2). A bank of six LEDs is
assigned to each processor. Each bank displays 44 status values and 15 error values. The
values are displayed by the banks as a binary number, with the most significant bit
represented by the topmost LED (as viewed from the front of the cardcage). The status
values are displayed as the system progresses through the power-on tests. If a constant
value is displayed, convert the binary value to a decimal number and use Section 4.7.1 to
identify the status message. Status messages are displayed as a constant value and have the
prefix “PLED” (PROM LED) attached to their description.

If a fatal error prevents the power-on tests from completing, the LEDs will flash the error
value until the system is powered down or reset. Error messages have the prefix “FLED”
(Flashing LED) attached to their descriptions. Section 4.7.2 lists the error codes.

Fault LEDs 1
(one bank of four) i
3.3V Power Brick
T
1
~
Y‘] \ 5.0V Power Brick
.

Figure 4-2 P19 Board Fault Indicators

4.7.1 LED Status Codes

LED Pattern Displayed

© =Lit

LSB MSB

Description

(Constant Value Displayed)

0000

PLED_CLEARTAGS (1) - Clearing the primary
data cache tags.

00000

PLED_CKCCLOCAL (2) - Testing CC chip
local registers.

00000

PLED_CCLFAILED_INITUART (3) - Failed the
local test but trying to initialize UART.

COO00OOO0

PLED_CCINIT1 (4) - Initializing the CC chip
local registers.

PLED_CKCCCONFIG (5) - Testing the CC chi
config registers (requires usable bus to pass).
test hangs, usually means bus has failed. Check
oscillator.

PLED_CCCFAILED_INITUART (6) - Failed the
config reg test but trying to initialize UART.

PLED_NOCLK_INITUART (7) - CC clock not
running. Init UART anyway.

PLED_CCINIT2 (8) - Initializing the CC chip
config registers.

PLED_UARTINIT (9) - Initializing the CC chi
UART. If test hangs, usually means bad UA
clock. Check connections to System Controller.

PLED_CCUARTDONE (10) - Finished initializing
the CC chip UART.

PLED_ CKACHIP (11) - Testing the A chip
registers.

PLED_AINIT (12) - Initializing the A chip.

PLED_CKEBUSI (13) - Checking the Ebus
with interrupts.

PLED_SCINIT (14) - Initializing the system
controller.

PLED_BMARSB (15) - Arbitrating for a bootmaster.

PLED_BMASTER (16) - This processor is
the bootmaster.

Table 4-3 P19 Board Test Status LED Codes

4-15

LED Pattern Displayed

Description
(Constant Value Displayed)

PLED_CKEBUS2 (17) - In second Ebus test.
Run only by the bootmaster.

PLED_POD (18) - Setting up this CPU slice
for POD mode.

PLED_PODLOOP (19) - Entering POD loop.

PLED_CKPDCACHE] (20) - Checking the
primary data cache.

PLED_MAKESTACK (21) - Creating a stack
in the primary data cache.

PLED_MAIN (22) - Jumping into C code -
calling main,

PLED_CKIAID (23) - Check IA and ID chips
on master 104.

PLED_CKEPC (24) - Check EPC chip on
master 104.

PLED_IOA4INIT (25) - Initializing the I04 PROM.

PLED_NVRAM (26) - Getting NVRAM
variables.

PLED_FINDCONS (27) - Checking the path to
the EPC chip which contains the console UART.

PLED_CKCONS (28) - Testing the console UART.

PLED_CONSINIT (29) - Setting up the console
UART.

PLED_CONFIGCPUS (30) - Configuring out
CPUs that are disabled.

PLED_CKRAWMEM (31) - Checkin; SeF raw
memory (running Board Internal Self Test (BIST).

Table 4-6 (continued) [P19 Board Test Status LED Codes

4-16

LED Pattern Displayed

LSB MSB

Description

(Constant Value Displayed)

PLED_CONFIGMEM (32) - Configuring memory.

PLED_CKMEM (33) - Checking configured
memory.

PLED_WRCONFIG (34) - Writing evconfig
structure:

The bootmaster CPU writes the entire array.
The slave CPUs only write their own entries.

PLED_LOADPROM (35) - Loading 104 PROM.

PLED_CKSCACHEI (36) - First pass of
secondary cache testing. Tests the scache like
a RAM.

PLED_CKPICACHE (37) - Check the primary
instruction cache.

PLED_CKPDCACHE?2 (38) - Check the primary
data cache writeback mechanism.

PLED_CHSCACHE2 (39) - Check the secondary
data cache writeback mechanism.

PLED_CKBT (40) - Check the bus tags.

PLED_BTINIT (41) - Clear the bus tags.

PLED_CKPROM (42) - Checksum the I/O PROM.

PLED_INSLAVE (43) - This CPU is entering
slave mode.

PLED_PROMJUMP (44) - Jumpering to the
1/0O PROM.

PLED_SLAVEJUMP (45) - A slave is jumping
to the 104 PROM slave code.

Table 4-6 (continued) IP19 Board Test Status LED Codes

4-17

4.7.2 LED Error Codes

4-18

LED Pattern Displayed

LSB MSB

Description
(Flashing Value Displayed)

FLED_CANTSEEMEM (46) - Flashed by slave
processors if they take an exception while trying
to write their evconfig entries. Often means that
processor is getting D-chip parity errors.

FLED_NOUARTCLK (47) - The CC UART clock is
not running. No system controller access possible.

FLED_IMPOSSIBLE1 (48) - System fell through
an unreturning subroutine (shouldn’t be possible}.

FLED_DEADCOP1 (49) - Coprocessor 1 is dead
(no error does not mean coprocessor is good).

FLED_CCCLOCK (50) - Cache controller (CC)
clock is not running.

FLED_CCLOCAL (51) - Failed CC local register
tests.

FLED_CCCONFIG (52) - Failed CC config
register tests.

FLED_ACHIP (53) - Failed A chip register tests.

FLED_BROKEWB (54) - By the time this CPU
arrived at bootmaster arbitration barrier, the
rendezvous time had passed. CPU is running too
slowly, the ratio of the bus clock rate to CP

clock rate is too high, or a bit in the CC clock is
stuck on.

FLED_BADCACHE (55) - CPU’s primary data
cache test failed.

FLED_BADIO4 (56) - 104 board is bad (can’t get
to console).

FLED_UTLBMISS (57) - Took a TLB refill
exception.

FLED_XTLBMISS (58) - Took an extended TLB
refill exception.

FLED_CACHE (59) - Unused.

FLED_GENERAL (60) - Took a general exception.

FLED_NOTIMPL (61) - Took an unimplemented
exception.

FLED_ECC (62) - Took a cache error exception.

Table 4-7 IP19 Board Power-on Test Failure LED Codes

473

LED Pattern Displayed
© -1t

LSB MSB

Description

(Flashing Value Displayed)

FLED_BROKEWB (54) - By the time this CPU
arrived at bootmaster arbitration barrier, the
rendezvous time had passed. CPU is running too
slowly, the ratio of the bus clock rate to CP

clock rate is too high, or a bit in the CC clock is
stuck on.

FLED_BADCACHE (55) - CPU’s primary data
cache test failed.

FLED_BADIO4 (56) - 104 board is bad (can’t get
to console).

FLED_UTLBMISS (57) - Took a TLB refill
exception.

FLED_XTLBMISS (58) - Took an extended TLB
refill exception.

FLED_CACHE (59) - Unused.

FLED_GENERAL (60) - Took a general exception.

FLED_NOTIMPL (61) - Took an unimplemented
exception.

FLED_ECC (62) - Took a cache error exception.

Table 4-7 (continued) IP19 Board Test Failure LED Codes

Note: These binary error codes apply to all of the microprocessors resident on the board.
IP19 boards are configured with all four banks of LEDs, regardless of the number
of microprocessors installed.

LED Power-on Status Codes

When the Power-on Diagnostics (POD) are running, a pair of LEDs from each bank of

processor LEDs will flash alternately. After POD runs and the system enters the PROM
monitor, the LEDs on the bootmaster CPU will display a fixed value (binary 18). All other

slave processors will loop on a pattern waiting for a command (see Figure 4-5).

0800@0

o0®e00

Figure 4-3 Slave Processor LED FPattern

4-19

4.8

4-20

The bootmaster CPU will loop on the pattern shown in Figure 4-6 when polling the CC
UARTs.

®00000
080000
800000
0®0000
@00000
0O®0000

Figure 4-4 CPU LED Pattern When Polling

Board Configuration Operations

This section describes the commands used to verify and/or change the system
configuration.

Check the current system configuration using either the hinv command, or two variations
of it; hinv -b,and hinv -b -w:

hinv performs exactly as it did in previous releases.

hinv -bissimilar to the info command in POD and provides additional
information, such as: the number of processors present, the amount of memory
installed, and whether or not an I04 board is present.

hinv -b -v supplies additional information about each processor, memory bank,
and I/O adapter.

Modify the system configuration using the enable and disable commands:

enable x y, where x is the board slot number and y is the memory bank number,
turns on the selected memory bank on the MC3 board. The disable command works
in the same way.

enable x y, where xis the cardcage slot number and y is the CPU number, turns on
the selected processor on the IP19 board. The disable command works in the same
way. Entering enable x, without specifying the CPU, number turns on every CPU
resident in the specified cardcage slot.

Note: The system must be power-cycled following an enable command, in order for the
new configuration to be activated. The disable command does not require the
system to be power-cycled.

Change the system configuration and then power-cycle the system. Enter one of the hinv
commands. The current configuration is compared to the stored hardware inventory, and
any variations are flagged.

Revise the stored hardware inventory to reflect the new configuration by entering update.
This command rewrites the stored hardware inventory locations in the 104 board’s
NVRAM.

49

PROM Monitor Boot Commands

This section describes how to reconfigure the system to boot from a different system disk.
1. Bring up the System Maintenance menu.
2. Type 5 to enter the Command Monitor.

3. Type printenv and the following screen is displayed.

>> printenv

SystemPartition=scsi (0)disk(1l)partition(8)
OSLoadPartition=scsi(0)disk(1l)partition(0)
AutoLoad=No

dbgtty=multi(0)serial(0)

root=dks0d1s0

nonstop=0

rbaud=19200

TimeZone=PST8PDT

console=d

diskless=0

dbaud=9600

sgilogo=y

netaddr=192.48.150.68
ConsoleCut=multi(0)serial (0)
ConsoleIn=multi (0)serial(0)

cpufreg=50

Note: The lines in bold contain the values that must be changed before the system will
boot from the new disk. In this example, the address of the new system disk is “4.”

4. Use the setenv command to enter the following information:
>> setenv systempartition dksc(0,4,8)

>> setenv osloadpartiton dksc(0,4,0)

>> setenv root dks0d44s0

>> single

The system will begin to boot in single-user mode.

4-21

4-22

Chapter 5

IDE

5.1 Overview

This chapter provides the Everest board tests that are presently supported by IDE, along
with explanations of the various types of error messages.

5.2 IDE Test Structure

This section describes the IDE board tests. Because the information is still volatile, it is
provided as screen captures for this revision of the manual.

I04 IDE Guide

1. boot ide

2. The default report level is 2. Set the report level by typing the following:
report=#

level 5 : debugging messages displayed. Don’'t need this much detail.
level 4 : prints out memory locations as they are written. Will
slow down testing time.
level 3 : prints out l-line functional descriptions within tests. This
is probably the most useful level for general use.
level 2 : prints out only errors and titles.
level 1 : prints out only titles and pass/fail.

level n will print out all messages for level n and below.

3. Quickmode. For right now, vou set quick mode like this:
setenv quickmode 1

And you unset quickmode by doing a : unsetenv guickmode
Eventually ide will have a switch methed of setting/unsetting quick
mode.

NOTE: All current IC4 tests run fast enough that there is no
difference between quick and long test modes for the I04. If the
total elapsed time for running all IO4 tests ever exceeds 10
minutes, quick mode will be enabled for the IO4.

4. continue-on-error. For right now, vou set this mode like this:
setenv cont_on_err 1
For the IO4 tests, this will continue the test even when an error
has been encountered. Normally, the tests will stop after the first
error.

NOTE: continue-on-error is currently the default of most of the tests.
The tests will be changed to use the continue-on-error switch.

5. ic_all. This command runs all working/known bugfree IO4 tests that do not
require human intervention. BAny mostly working but possible buggy
tests, as well as any tests requiring a human to interpret the
results, are not included.

6. There are currently tests for the following areas of the I04 board:
I04 interface, VME adapter, SCSI adapter, and EPC adapter.

The detailed tests are listed below.

I04 Interface:

check_iocfg - Checks I04 config against NVRAM

This test compares the actual setup of the I04 board to the values specified
in the NVRAM. Each I04 board in the system is checked to see that it has
all the adapters specified in NVRAM, and that they are of the specified
types.

In addition, if “report” is set VERBOSE, configuration information for
each board is printed out even if no errors occur.
iod_regtest - Read/Write test of I04 registers

I04_CONF_LW

I04_CONF_SW

I04_CONF_ADAP

I04_CONF_INTRVECTOR

I04_CONF_GFXCOMMAND

I04_CONF_ETIMEOUT

I04_CONF_RTIMEOUT

I04_CONF_INTRMASK

Although these are not the only I0O4 registers, they are the only ones that
may safely be Read/Write tested.

iod_piocerr - IO4 PIO bus error test

Attempts to generate an error interrupt by attempting a write to IO adapter 0
(nonexistant). This tests the I04 error generation capability and the I04 to
IP error path.

mapram_test - Read/Write test of IO4 map ram
As the name implies, tests the I04 mapping ram as a small memory array.

Tests memory with pattern Read/Write, address-in-address, and marching 1l's
test patterns.

5-2

check_hinv - Checks type of board in each slot

Not a test per se - merely prints out the locaticns and types of all boards
currently installed in the system.

VME adapter:

NOTE - none of these have yet been enabled for the ic_all command
More details will be added after testing is completed.

vilpbk - Test VMEcc loopback capability

cddata - Test cdsio interrupts

sl_regtest - Register Read/Write test for sl chip

This is a basic Read/Write test for the S1 chip registers. It does tests and
address-in-address testing for:

S1_INTF_R_SEQ REGS 0 - OxF
S1_INTF_R_OP_BR_0
S1_INTF_R_OP_BR_1
S1_INTF_W_SEQ REGS 0 - OxF
S1_INTF_W_OP_BR_0
S1_INTF_W_OP_ER_1

(36 registers currently tested)

Although these are not the only Sl registers, they are the only ones that
may safely be used by Read/Write tests.

regs_95a - Register Read/Write test for wd95a chip

Read/Write test for the wd95a chip registers. This test is still being worked
ocn - more details later.

scsi_intr - SCSI interrupt test

scsi_selftest - SCSI device self test

scsi_dma - SCSI dma error generation test

5-3

These three tests are currently under development - more details later.

T e 2 S i S e o o o B o B

o e e e o o o S e o e S S S S o T o . .

epc_regtest - Register Read/Write test for epc chip

Basic Read/Write test for the EPC chip registers, including the Parallel
Port registers. Registers tested:

EPC_TIDDUARTO
EPC_IIDDUART1
EPC_TIDENET
EPC_IIDPROFTIM
EPC_TIIDSPARE
EPC_IIDPPORT
EPC_IIDERROR
EPC_EADDR0
EPC_EADDR1
EPC_EADDR2
EPC_EADDR3
EPC_EADDR4
EPC_EADDRS
EPC_TCMD
EPC_RCMD
EPC_TBASELO
EPC_TBASEHI
EPC_TLIMIT
EPC_TTOP

EPC_TITIMER
EPC_RBASELO
EPC_RBASEHI
EPC_RLIMIT
EPC_RTOP
EPC_RITIMER
EPC_PPBASELO
EPC_PPBASEHI
EPC_PPLEN
EPC_PPCTRL

As stated above, this is a good basic test for the Parallel Port; for more
thorough testing a test fixture is required.

epc_nvram - NVRAM Read/Write test

Does Read/Write pattern and address-in-address testing for all the NVRAM
accessable to the EPC chip. Although the NVRAM is physically on the RTC
chip, it occupies a seperate address space and is accessed differently, hence
the separate test.

epc_rtcreg - RIC register/NVRAM Read/Write test

Read/Write test for the RTC registers and the small amount of NVRAM in the RTC
address space portion of the RTC chip. Registers tested:

5-4

NVR_SEC
NVR_SECALRM
NVR_MI
NVR_MINALRM
NVR_HOUR
NVR_HOURALRM
NVR_WEEKDAY
NVR_DAY
NVR_MONTH
NVR_YEAR

NVRAM tested is in the address range 0xE - 0x3F.

epc_rtcinc - RTC clock increment test

Tests the ability of the RTC chip to handle time-of-day transitions. Sets
the RTC to a known time and date (last second of the year), waits cne second,
and checks to make certain that the time and date have changed correctly.

epc_rtecint - RTC Interrupt generation test

Tests to make certain that the RTC can correct generate Alarm, Periodic, and
Update interrupts. Validates the path from the RTC chip to the IP board’s
master CPU.

duart_loopback - Duart loopback test

Attempts to configure and test all available serial ports. Does loopback
testing at all baud rates for each port tested. Normally uses internal
loopback, but if invoked with “duart_loopback -e” assumes that an external
loopback fixture is being used.

1. boot ide
2. The default report level is 2. Set the report level by typing the
following:

report=# where # is any number from 1 to 5.

level 5
level 4

debugging messages displayed. Don‘t need this much detail.

prints out memory locations as they are written. Will

slow down testing time.

level 3 : prints out 1-line functional descriptions within tests. This
is probably the most useful level for general use.

: prints out only errors, titles and pass/fail.

: prints out only titles and pass/fail.

e

L8]

level
level

sy

level n will print out all messages for level n and below.
3. There are currently 4 classes of IP19 tests: IP, TLB, FPU and CACHE.

Each test in these classes can be invoked by a command from the IDE.
They are listed as follows:

5-5

ip(1 - 8) Tests IP19 components not covered by TLB, FPU

and CACHE.
tlb(1l - 9) Tests the TLBE in R4K.
fpu(l - 14) Tests the FPU in R4K.
cache(l - 48) Tests the primary and secondary cache for R4K.

In addition, there are commands to invoke each class of tests in
entirety, all classes of tests in entirety, and commands to
facilitate the test and repair process.

ipall invokes tests ipl through ip8.

tlball invokes tests tlbl through tlb9.

fpuall invckes tests fpul through fpuld.

cacheall invokes tests cachel through cached§.

ipls invokes all IP, TLB, FPU and CACHE tests.

cached9 invokes a short version of cache48.

cstate(0 - 21) inwvokes individual cache state tests in cache4S8.

quickfpu invokes tests fpul through fpul3, skipping fpuld.

quickcache invokes tests cachel through cached4, then cached?7,
skipping cached5, 46 and 48.

quickipl9 invokes all IP, TLB, FPU and CACHE tests except

fpuld, cached5, 46 and 48.

ipresults displays the test summaries for ipall.

tlbresults displays the test summaries for tlball.

fpuresults displays the test summaries for fpuall or quickfpu.

cacheresults displays the test summaries for cacheall or
quickcache.

ipl9results displays the test summaries for ipl9 or quickipl$.

This command is automatically invoked at the end of
ipl9 and quickipl9.

4. A brief description of each test and the possible errors are provided
below for your reference. The number preceding each error message identifies
each error uniguely and its format should be interpreted as follows:

Olcennn 01 - the board id for IP19
cc - the hint for failed component(s)
01 - A chip
02 - D chip
03 - CC chip

04 - Primary cache
05 - Secondary cache

06 - R4400

07 - Primary or secondary cache
08 - TLB

09 - FRU

nnmn - the error id

5-6

ipl (local_regtest) - Check CC local registers

Basic write/read test for the local registers. The registers tested are
limited to the following:

EV_WGDST Write gatherer destination
EV_WGCNTRL Write gatherer control
EV_IP0 Interrupts 63 - 0

EV_IP1 Interrupts 127 - 64
EV_CEL Current execution level
EV_IGRMASK Interrupt group mask
EV_ILE Interrupt level enable
EV_ERTOIP Error/timeout interrupt

EV_ECCSB_DIS ECC single-bit error disable

The read-only registers are read and their contents are reported. These
registers are:

EV_SPNUM Slot/Processor info
EV_SYSCONFIG System configuration

EV_HPIL Highest pending interrupt lewvel
EV_RO_COMPARE RTC compare

EV_RTC Real time clock

EV_WGCOUNT Write gatherer count

Possible error:

0103001: Local register %s R/W error : Wrote 0x%1llx Read 0x%llx

ip2 (cfig_regtest) - Check configuration registers

Basic write/read test for the configuration registers. The registers tested
are limited to the following:

EV_PGBRDEN Write gatherer destination
EV_PROC_DATARATE Write gatherer control
EV_WGRETRY_TOUT Interrupts 63 ~ 0
EV_CACHE_SZ Interrupts 127 - 64
EV_CMPREGO - 3 Timer comparator registers

Note that the timer comparator registers are checked via the read-only RIC
compare register.

Possible error:

ip3 (bustags_reg) - Check bus tags

This test calculates the size of bus tag space based on the size of the
secondary cache. Then it performs basic write/read test on the bus tags.

Possible error:

0103003: Bus tag addr 0x%x R/W error : Wrote Ox%x Read Ox%x

5-7

" ipl (local_regtest) - Check CC local registers

Basic write/read test for the local registers. The registers tested are
limited to the following:

EV_WGDST Write gatherer destination
EV_WGCNTRL Write gatherer control
EV_IPO Interrupts 63 - 0

EV_IPl Interrupts 127 - 64
EV_CEL Current execution level
EV_IGRMASK Interrupt group mask
EV_ILE Interrupt lewvel enable
EV_ERTOIP Error/timeout interrupt

EV_ECCSBE_DIS ECC single-bit error disable

The read-only registers are read and their contents are reported. These
registers are:

EV_SPNUM Slot/Processor info
EV_SYSCONFIG System configuration

EV_HPIL Highest pending interrupt level
EV_RO_COMPARE RTC compare

EV_RTC Real time clock

EV_WGCOUNT Write gatherer count

Possible error:

0103001: Local register %s R/W error : Wrote 0x%1llx Read Ox%1lx

ip2 (cfig_regtest) - Check configuration registers

Basic write/read test for the configuration registers. The registers tested
are limited to the following:

EV_PGBRDEN Write gatherer destination
EV_PROC_DATARATE Write gatherer control
EV_WGRETRY_TOUT Interrupts 63 - 0
EV_CACHE_SZ Interrupts 127 - 64
EV_CMPREGO - 3 Timer comparator registers

Note that the timer comparator registers are checked via the read-only RIC
compare register.

Possible error:

ip3 (bustags_reg) - Check bus tags

This test calculates the size of bus tag space based on the size of the
secondary cache. Then it performs basic write/read test on the bus tags.

Possible error:

0103003: Bus tag addr Ox%x R/W error : Wrote Ox%x Read Ox%x

5-8

ip7 (intr_timer) - Check IP19 RTSC and interval timer

This test generates level 1 interrupt by writing a value into the EV_CMPREG
configuration registers so that the RTSC will reach this value and interrupts
the processor.

Possible errors:

010301b: Invalid timer interrupt occurred
010301c: Interval timer interrupt did not occur
010301d: Group interrupt pending not cleared in Cause : Cause 0x%x

ip8 (intr_group) - Check IP19 processor group interrupt

This test generated level 0 interrupts using different processor groups at
different priority levels including broadcast interrupts.

Possible errors:

010301le: Group interrupt pending not set correctly in EV_IP0 : Expected 0x%1llx
Got

Ox%1llx

010301f: Group highest priority interrupt level failure : HPIL Ox%llx

0103020: Group interrupt not indicated in Cause register O0x%x

0103021: Group interrupt pending not cleared : IP0 Ox%1lx IP1 Ox%llx

0103022: Group highest priority interrupt level not cleared : HPIL Ox%llx
0103022: Group interrupt pending not cleared in Cause register : Cause 0x%x
0103024: Group interrupt did not occur : group 0x%x priority Ox%x

0103025: Group interrupt pending not cleared in Cause : Cause Ox%x

tlb2 (tlb_probe) - Check TLB functionality

Sets up all the TLB slots and then prcobes them with matching addresses. Checks
to ensure that there is a response for each wvalid address.

Possible error:

0108018: TLB probe error : Expected entry %d Got entry %4 vpnum %d addr Ox%x

tlb3 (tlb_xlate) - Check TLB address translation

Tests for correct virtual to physical translation via mapped TLE entries. Sets
the virtual address to user segment and uncached.

Possible errors:

010801b: TLB entry %d unexpected exception for addr 0x%x
010801lc: TLE entry %d translation error at addr Ox%x : Wrote %d Read %d

tlb4 (tlb_wvalid) - Check TLB valid exception

Tests to see if TLB invalid accesses generate exceptions. Maps the TLB entries
to invalid addresses in kZseg and attempts to access them.

5-9

Possible errors:

0108016: TLB entry %d invalid exception VADDR error : Expected 0x%x Got 0x%x
0108017: TLE entry %d invalid exception didn’t occur

tlbS (tlb _mod) - Check TLB modification exception

This test sets up the TLB to map each page as non-writable, then attempts to
write to each of the mapped pages. It verifies that an exception is generated

tlbl (tlb_ram) - Test R4K TLB as RAM

Tests the TLB as a small memory array. Checks to see if all the read/write
bits can be toggled and that all undefined bits read back zero.

Possible errors:
0108001: TLBHI entry %d R/W error: Wrote O0x%x Read 0x%x

0108002: TLBLO even entry %d R/W error: Wrote Ox%x Read Ox%x
0108003: TLBLO odd entry %d R/W error: Wrote Ox%x Read Ox%x

tlb2 (tlb_probe) - Check TLB functionality

Sets up all the TLB slots and then probes them with matching addresses. Checks
to ensure that there is a response for each valid address.

Possible error:

0108018: TLB probe error : Expected entry %d Got entry %d vpnum %d addr Ox%x

tlb3 (tlb_xlate) - Check TLE address translation

Tests for correct virtual to physical translation via mapped TLB entries. Sets
the virtual address to user segment and uncached.

Possible errors:

010801b: TLB entry %d unexpected exception for addr 0Ox%x
010801lc: TLB entry %d translation error at addr Ox%x : Wrote %d Read %d

tlbd (tlb_walid) - Check TLB valid exception

Tests to see if TLB invalid accesses generate exceptions. Maps the TLB entries
to invalid addresses in k2seg and attempts to access them.

Possible errors:

0108016: TLB entry %d invalid exception VADDR error : Expected 0x%x Got 0x%x
0108017: TLB entry %d invalid exception didn’'t occur

tlb5 (tlb _mod) - Check TLB modification excepticn

5-10

This test sets up the TLB to map each page as non-writable, then attempts to
write to each of the mapped pages. It verifies that an exception is generated
for each write attempt.

Possible errors:

010800b: TLB %s entry %d mod exception VADDR error : Expected Ox%x Got Ox%x
010800c: TLB %s entry %d mod exception didn’'t occur

010800d: TLB %s entry %d unexpected exception during mod

010800e: TLB %s entry %d mod error : Wrote 0x%x Read Ox%x

t1b6 (tlb _pid) - Check TLB refill exception

Tests each TLB slot by attempting access with both matching and non-matching
process id. It verifies that matching pid accesses are allowed and non-matching
pid accesses generate exceptions.

Possible errors:

0108015: TLE %s entry %d unexpected exception with matching pid Ox%x
0108016: TLB %s entry %d refill exception VADDR error : Expected Ox%x Got Ox%x
0108017: TLB %s entry %d refill exception didn’'t occur

tlb7 (tlb_g) - Check global bit in TLB entry

Sets up all the TLB slots to allow global access, then attempts access on all
slots with a variety of different pid settings. This test passes only if no
invalid access exceptions occur.

Possible error:

0108014: Unexpected exception occurred during glcbal access

tlb8 (tlb_c) - Check C bits in TLB entry

Attempts to access TLB-mapped memory in both cached and uncached modes. Tests
all slots by writing and reading back a pattern, first in cached mode, then
in uncached mode. This test checks basic functionality, and does not attempt
to detect cached/uncached interactions.

Possible errors:

010800f: Exception during cached write to 0x%x

0108010: Cached write to Ox%x failed

0108011: TLB %s entry %d cached mode exception

0108012: TLB %s entry %d cached R/W error : Wrote Ox%x Read Ox%x
0108013: TLB %s entry %d uncached mode exception

0108014: TLBE %s entry %d uncached R/W error : Wrote Ox%x Read Ox%x

tlb9 (tlb_mapuc) - Check cached/uncached TLB access

Checks that both cached and uncached mapped access work without interfering

5-11

with each other. This test aims at detecting the R4000 mapped uncached
writeback bug. The method used is to set up 2 TLB entries for the same page
of physical memory, one using cached access and the other using uncached. A
write is done via each of the TLB entries, followed by a read. If the R4000
cache is working properly, the test will be able to read back the correct
(different) pattern for each access mode, since the code avoids flushing the
cache to main memory. If the bug is present, the same value will be read back
via both cached and uncached access. The writes are done in both cached -
uncached and uncached - cached orders.

Possible errors:

0108004: TLB %s entry %d cached/uncached W exception

0108005: TLB %s entry %d cached/uncached W error : Wrote 0x%x Read Ox%x
0108006: TLB %s entry %d uncached/cached W execption

0108007: TLB %s en

fpul (fpregs) - fpu register test

This test simply writes and reads the FPU registers, reporting any readback
errors.

Possible errors:

01090le: FP register %d data error : Expected 0x%x Got Ox%x
010901f: FP register %d inverted data error : Expected Ox%x Got Ox%x

fpu2 (fpmem) - fpu load/store mem test

This test loads FPU from memory and stores memory from FPU.
Possible errors:

010901c: Load/store FP reg %4 data error : Expected Ox%x Got Ox%x
010901d: Load/store FP reg %d inverted data error : Expected Ox%x, Got Ox%x

fpu3l (faddsubs) - fpu add/subtract(single precision)

Tests addition and subtraction using simple single precision arithmetic.
Possible errors:

0109004: FP single add/sub result error : Expected Ox%x Got Ox%x

0109005: FP single add/sub status error : Expected 0 Got 0x%x
0109006: Fixed to single conversion failed : Before 0x%x After Ox%x

fpud4 (faddsubd) - fpu add/subtract(double precision)
Tests addition and subtraction using simple double precision arithmetic.
Possible errors:

0109001: FP double add/sub result error : Expected 0x%x Got 0x%x
0109002: FP double add/sub status error : Expected 0 Got Ox%x

5-12

0109003: Fixed to double conversion failed : Before 0x%x After Ox%x

fpud (fmuldivs) - fpu multiply/divide (single precision)

Tests multiplication and division using simple single precision arithmetic.

Possible errors:

0109011: FP single divide result error : Expected 0x%x Got 0x%x
0109012: FP single multiply result error : Expected 0x%x Got 0x%x

e . B B B S e S S S s i e S o o o o o . T S e o

fpub (fmuldivd) - fpu multiply/divide (double precision)

Tests multiplication and division using simple double precision arithmetic.

Possible errors:

010900f: FP double divide result error : Expected 0x%x Got Ox%x
0109010: FP double multiply result error : Expected 0x%x Got Ox%x

fpu7 (fmulsubs) - fpu multiply/subtract (single precision)

Tests multiplication and subtraction using simple single precision arithmetic.

Possible errors:

0109016: FP single mul/div result error : Expected 0x%x Got 0x%x
0109017: Fixed to single conversion failed : Before Ox%x After Ox%x
0109018: FP single mul/div status error : 0x%x

fpu8 (fmulsubd) - fpu multiply/subtract (double precision)

Tests multiplication and subtraction using simple double precision arithmetic.

Possible errors:

0109013: FP double mul/sub result error : Expected Ox%x Got Ox%x
01058014: Fixed to double conversion failed : Before Ox%x After Ox%x
0109015: FP double mul/div status error : 0x%x

foud (finvalid) - fpu invalid test

Simple test to see if an invalid operation exception can be generated. Divides

0.0 by itself to generate the exception.
Possible errors:
010900b: Invalid exception didn't occur

010900c: Invalid exception status error : 0x%x
010900d: Invalid exception dividend error : Expected 0x%x Got 0x%x

5-13

fpul0 (fdivzero) - fpu divided by zero test

Divides a non-zerc value by 0.0. Unlike the previous test, the floating point
status register is checked after the exception to make sure the divide by zero
flag is set.

Possible errors:

010%9007: Divide by Zero exception status error : O0x%x
0105008: Dividend conversion failed : Before 0x%x After 0x%x
0109009: Divisor conversion failed : Before 0x%x After Ox%x

fpull (foverflow) - fpu overflow test

Generates a single precision overflow by adding 2 at-the-limit large values.
After the exception, the floating point status register is checked to make
sure the overflow flag was set.

Possible error:

0109019: Overflow exception status error : Ox%x

fpul2 (funderflow) - fpu underflow test

Generates a single precision overflow by dividing an at-the-limit small value
by 2. After the exception, the floating point status register is checked to
make sure the underflow flag was set.

Possible errors:

0109020: Exception other than Underflow in FCR31 : Ox%x
0109021: Failed to generate Underflow Exception

fpul3 (finexact) - fpu inexact test

Generates a single precision inexact conversion error by attempting to convert
an integer value too large for a single precision representation into a single
precision value. After the error, the floating point status register is checked
to make sure the inexact conversion flag was set.

Possible error:

010900a: Inexact exception status error : 0x%x

fpuld (fpcmput) - fpu computation test
Given a list of “infinite” series, this test executes them a specified number

of times and compares the result gotten at run-time with an expected result.
Discrepancies are reported. This is a slow test.

5-14

Possible errors:

010900e: FP computation unexpected exception : Ox%x
010901a: Single precision %s error : Expected 0x%x Got 0x%x
010901b: Double precision %s error : Expected 0x%x 0x%x Got O0x%x 0x%x

cachel (Taghitst) - TAGHI Register Test

This diag tests the data integrity of the taghi register. A sliding one and
a sliding zero pattern are used.

Possible errors:

0104001: Taghi register failed walking one test
Expected data: 0x%08x Actual data: 0x%08x

0104002: Taghi register failed walking zero test
Expected data: 0x%08x Actual data: 0x%08x

cache2 (Taglotst) - TAGLO Register Test

This diag tests the data integrity of the taglo register. A sliding one and
a sliding zero pattern are used.

Possible errors:

0104003: Taglo register failed walking one test
Expected data: 0x%08x Actual data: 0x%08x

0104004: Taglo register failed walking zero test
Expected data: 0x%08x Actual data: 0x%08x

cache3 (pdtagwlk) - Primary data TAG RAM data line Test

This diag checks the data integrity of the primary data TAG RAM path using
walking ones and walking zeros patterns.

Possible error:
0104005: D-cache tag ram data line error

Failed walking one (or zero) test at 0x%08x
Expected: 0x%08x Actual 0x%08x

cached (pdtagadr) - Primary data TAG RAM address line Test

This diag tests the address lines to the primary data cache TAG RAM by
sliding a one and then a zerc on the address lines. This test assumes that
the taglo register is in good working condition.

Possible error:
0104006: D-cache tag ram address line error

Failed walking one (or zeroc) test at 0x%08x
Expected: 0x%08x Actual 0x%08x

5-15

cache5 (PdTagKh) - Primary data TAG Knaizuk Hartmann Test

This diag tests the data integrity of the primary data cache TAG RAM with
the Knaizuk Hartmann algorithm. It treats the TAG RAM array as a ordinary
memory array. The parity bit is not checked in this test.

A note about the Knaizuk Hartmann Memory Test

This algorithm is used to perform a fast but non-ehaustive memorv test.
It will test a memory subsystem for stuck-at faults in both the address
lines as well as the data locations.

The algorithm breaks up the memory to be tested into 3 partitions. Partition
0 consists of memory locations 0, 3, 6, ...; partition 1 consists of

memory locations 1,4,7,...; partition 2 consists oflocations 2,5,8...

The partitions are filled with either an all ones pattern or an all

zeroes pattern. By varying the order in which the partitions are filled

and then checked, this algorithm manages to check all combinations

of possible stuck at faults.

Possible errors:

set to Oxaaaaaaaa
set to Oxaaaaaaaa
set to Oxaaaaaaaa
set to Oxaaaaaaaa
set to 0x55555555
set to Oxaaaaaaaa

0104007: Partition 1 error after partition
0104008: Partition 2 error after partition
0104009: Partition 0 error after partition
010400a: Partition 1 error after partition
010400b: Partition 0 error after partition
2

010400c: Partition 2 error after partition

MO R RE RO

For each of the above errors, the following additional information is also
provided:

Tag ram address: 0x%08x
Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x

cache6 (pitagwlk) - Primary Instruction TAG RAM data line Test

This diag checks the data integrity of the primary instruction cache TAG
RAM path using a walking ones and zeros pattern.

Possible error:
010400d: I-cache tag ram data line error

Failed sliding one {(or zero) test at 0x%08x
Expected: 0x%08x, Actual: 0x%08x

cache? (pitagadr) - Primary Instruction TAG RAM address line Test
This diag tests the address lines to the primary instruction cache TAG RAM
by sliding a one and then a zero one the address lines. This test assumes

that the taglo register is in good working condition.

Possible error:

5-16

© 010400e: I-cache tag ram address line error
Failed sliding one (or zero) test at 0x%08x
Expected: 0x%08x Actual 0Ox%08x

cache8 (PiTagKh) - Primary Instruction TAG RAM Knaizuk Hartmann Test

This diag tests the data integrity of the primary instruction cache TAG RAM
with the Knaizuk Hartmann algorithm. It treats the TAG RAM array as a
ordinary memory array. The parity bit is not checked in this test.

Possible errors:

set to Oxaaaaaaaa
set to Oxaaaaaaaa
set to Oxaaaaaaaa
set to Oxaaaaaaaa
set to 0x55555555
set to Oxaaaaaaaa

010400£f: Partition
0104010: Partition
0104011: Partition
0104012: Partition
0104013: Partition
0104014: Partition

error after partition
error after partition
error after partition
error after partition
error after partition
error after partition

N OO N
NOKHBRO

For each of the above errors, the following additional information is
provided:

Tag ram index address: 0x%08x
Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x

cacheS (sd_tagwlk) - Secondary TAG data path Test

Checks the data integrity of the Secondary data TAG RAM path using a
walking ones/zeros pattern.

Possible error:

0105015: Secondary Data TAG RAM Path Error
on sliding one (or zero) pattern
TAG RAM Location 0x%x
Expected 0x%x Actual= 0x%x XOR= Ox%x

cachell (sd_tagaddr) - Secondary TAG address Test

Checks the address integrity to the Primary Data TAG RAM by using
a walking address.

Possible error:

0105016: Secondary Data TAG Address Error
TAG RAM Location 0x%x
Expected 0x%x Actual= 0x%x XOR= 0x%x

cachell (sd_tagkh) - Secondary TAG RAM Knaizuk Hartmann Test

This diag tests the data integrity of the secondary data cache TAG RAM with
the Knaizuk Hartmann algorithm. It treats the TAG RAM array as a ordinary
memory array. The parity bit is not checked in this test.

5-17

Possible error:

0105017: Secondary Data TAG ram data Error
Address %x, error code %d
expected %x, actual %x, XOR %x

cachel2 (d_tagparity) - Primary Data TAG RAM parity Test

This diag tests the functionality of the parity bit in the primary data
cache tag. For each tag, a stream of one’s and zero’s are shifted into the
tag to check if the parity bit change state accordingly.

Possible error:

0104018: D-cache tag ram parity bit error
Tag ram address: 0x%08x expected content: 0x%08x
Taglo: 0x%08x expected parity: Ox%x actual parity: Ox%x

cachel3 (d_tagcmp) - Primary Data TAG comparitor Test

This diag tests the comparator at the D-cache tag for hit and miss detection.
For each tag, set the ptag field with the values which will cause a cache hit
for the Ksegl address of 0x80002000 to Ox9fffffff. The values used are a
walking one or a walking zero pattern. This will ensure only one bit

location is tested at the comparator. The cache op Hit Invalidate is used to
check for cache hit and miss situations.

Possible errors:

0104019: D-cache tag comparator did not detect a miss
0104020: D-cache tag comparator did not detect a hit

For each of the above errors, the following additional information are
provided:

Tag ram address: 0x%08x

PTag field of tag: 0x%06x comparing with PFN: 0x%06x

cacheld4 (d_tagfunct) - Primary Data TAG functionality Test

This diag tests the functiocnality of the data cache tag. Kseg0 addresses
are used to lcad the cache from memory. The ptag and the cache state field
are checked to see if they are holding expected values. Virtual addresses
0x80000000, 0xB0002000, 0x80004000, Ox80008000, ... 0x90000000 are used as
the baseaddress of an 8k page which is mapped to the cache. The ptag and
state of each cache line are checked against the expected value.

Possible errors:

0104021: D-cache tag functional error in PTAG field
PTag field does not contain correct tag bits
Cache line address: 0x%08x
Expected PTag: 0x%06x
Actual PTag: 0x%06x

5-18

TAGLO Register %x
Re-read DTAG %x
0104022: D-cache tag functional cache state error
Cache line address: 0x%08x
Expected cache state: 0x%08Bx
Actual cache state: 0x%08x
TAGLO Register %x
Re-read DTAG %x

cachel5 (d_slide_data) - Primary Data RAM data line Test

This diag tests the data lines to the primary data cache. A sliding one and
a sliding zero data pattern is written into the first location of the
D-cache to check if each data line can be toggled individually.

Possible errors:

0107023: D-cache data ram data lines failed walking one test
2Addr: 0x%08x Expected: 0x%08x Actual: O0x%08x Xor: 0x%08x

0107024: D-cache data ram data lines failed walking zero test
Addr: 0x%08x Expected: 0x%08x Actual: O0x%08x Xor: 0x%08x

cachelé (d_slide_addr) - Primary Data RAM address line Test

This diag tests the address lines to the primary data cache. Each address
line to the data cache is toggled once individually by sliding a one and
then a zero across the address lines.

Possible errors:

0107025: D-cache data ram address lines failed walking one tes
Addr: 0x%08x Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x

0107026: D-cache data ram address lines failed walking zero test
Addr: 0x%08x Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x

o . . o S S o B T T T S o . 0 . T B T T S S . o S . o

cachel7 (d_kh) - Primary Data RAM Knaizuk Hartmann Test

This diag tests the data integrity of the D-cache with the Knaizuk Hartmann
algorithm. Data pattern 0x55555555 and Oxaaaaaaaa are used.

Possible errors:

set to Oxaaaaaaaa
set to Oxaaaaaaaa
set to Oxaaaaaaaa
set to Oxaaaaaaaa
set to 0x55555555
set to Oxaaaaaaaa

0107027: Partition
0107028: Partition
0107029: Partition
010702a: Partition
010702b: Partition
010702¢: Partition

error after partition
error after partition
error after partition
error after partition
error after partition
error after partition

N O = O N
MO R B HEO

For each of the above errors, the following additional information is
provided:

Cache address: 0x%08x

Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x

5-19

cachel8 (dsd _wlk) - Primary/Secondary Data path Test

Test the data path from memory through the secondary cache and to the
Primary Data Cache.

Possible errors:

010702d: Data Path Error from Memory->Secondary->Primary Data
Address %x, expected %x, actual %x, Xor %x

010702e: Data Path Error from Primary ->Secondary->Memory Data
Address %x, Expected %x, Actual %x, Xor %x

cachel9 (sd_aina) - Secondary Data RAM (address in address) Test
Performs an address in address test on the secondary data cache.
Possible errors:

010502f: Secondary Memory Error on pattern 1
Address %08x
expected %08x, actual %08x, XOR %08x
0105030: Secondary Memory Error on pattern 2
Address %08x
expected %08x, actual %08x, XOR %08x

cache20 (d_function) - Primary Data functionality Test

This diag tests the functionality of the entire data cache. It checks the
block £ill, write back on a dirty line replacement, and no write back on a
clean line replacement function of the data cache lines.

Possible errors:

0104031: D-cache block £fill error 1

Cache contains incorrect data

Cache Address: 0x%08x

Expected: 0x%08x Actual: 0x%08x Xor: O0x%08x
0104032: D-cache block fill error 2

Cache contains incorrect data

Cache Address: 0x%08x

Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x
0104033: D-cache block write back error 1

Memory contains incorrect data

Cache Address: 0x%08x

Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x
0104034: D-cache block fill error 3

Cache contains incorrect data

Cache Address: 0x%08x

Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x
0104035: D-cache block write back error 2

Memory content is altered

Write back happened on a clean line

Cache Address: 0x%08x

Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x

5-20

cache2l (d_parity) - Primary Data parity generation Test
This diag tests the parity bit generation of the D-cache data ram.
Possible error:

0104036: D-cache parity generation error
error %x
Cache byte address: 0x%08x data:0x%02x
Parity bit position: 0x%02x
Expected parity: 0x%02x Actual parity:0x%02x

cache22 (i_tagparity) - Primary Instruction TAG RAM parity bit Test

This diag tests the functionality of the parity bit in the primary I-cache
tag. For each tag, the parity bit is tested to respond to each bit change
in the tag.

Possible error:

0104037: I-cache tag ram parity bit error
Tag ram address: Ox%08x expected content: 0x%08x
Taglo: 0x%08x expected parity: Ox%x actual parity: Ox%x

cache23 (i_tagcmp) - Primary Instruction TAG RAM comparitor Test
This diag tests the comparator at the I-cache tag for hit and miss detection.
Possible errors:

0104038: I-cache tag comparator did not detect a miss (walking 1)
0104039: I-cache tag comparator did not detect a hit (walking 1)
010403a: I-cache tag comparator did not detect a miss (walking zero)
010403d: I-cache tag comparator did not detect a hit (walking zero)

For each of the above errors, the following additional information is
provided:

Tag ram address: 0x%08x

PTag field of tag: 0x%06x comparing with PFN: 0x%06x

cache24 (i_tagfunct) - Primary Instruction TAG functionality Test

This diag tests the functionality of the instruction cache tag. Kseg0
addresses are used to load the cache from memory. This will test if the
cache is functional on the cachable memory space. After each 8k segment of
memory is loaded into the cache. The ptag and the cache state field are
checked to see if they are holding expected values. Virtual addresses
0x80000000, 0x80002000, 0x80004000, 0x80008000, ..., 0x90000000 are used
as the base address of each 8k page which is mapped to the cache. The ptag
and cache state of each cache line are checked against the expected value.

Possible errors:

5-21

010403b: I-cache tag functional error in PTAG field
PTag field does not contain correct tag bkits
Cache line address: 0x%08x
Expected PTag: 0x%06x
Actual PTag: 0x%06x

010403¢c: I-cache tag functional cache state error
Cache state not correct
Cache line address: 0x%08x
Expected cache state: 0x%08x
Actual cache state: 0x%08x

cache25 (i_slide_data) - Primary Instruction data RAM data line Test

This diag checks the data lines to the I-cache data ram by sliding a one
and zero bit across the bus.

Possible errors:

010403f: I-cache data ram data lines failed walking one test
Addr: 0x%08x Expected: O0x%08x Actual: 0x%08x Xor: 0x%08x

PITAG %x
PDTAG %x
STAG %

0104040: I-cache data ram data lines failed walking zero test
Addr: 0x%08x Expected: 0x%08x Actual: Ox%08x Xor: O0x%08x
PTAG %x
STAG %x

cache26 (i_aina) - Primary Instruction data RAM address in address Test
Performs an address in address test on the primary instruction cache.
Possible error:

0107041: I-cache address in address error
addr %x, exp %x, act %x, XOR %x

cache27 (i_function) - Primary Instruction functionality Test

This diag tests the functionality of the entire instruction cache. It checks
the block fill and hit write back of the instruction cache lines.

Possible error:

0107042: I-cache block write back error
Memory contains incorrect data
Cache address: 0x%08x
Expected: 0x%08x Actual: 0x%08x Xor: 0x%08x
Icache TAG = %X
Scache TAG = %x

cache28 (i_parity) - Primary Instruction parity generation Test

5-22

This diag tests the parity bit generation of the I-cache data ram.
Possible error:

0104043: I-cache parity generation error
error %x
Cache byte address: 0x%08x data:0x%02x
Parity bit position: 0x%02
Expected parity: 0x%02x Actual parity:0x%02x

cache29 (i_hitinv) - Primary Instruction Hit Invalidate Test
This diag tests the Hit Invalidate cache op on the Instruction cache.
Possible errors:

0104044: I-cache state error during initialization
Cache state did not change to valid when filled from memory
Cache line address: 0x%08x
Expected cache state: 0x%08x Actual cache state: 0x%08x
0104045: I-cache state error
Hit Invalidate changed the line to invalid on a miss
Cache line address: 0x%08x
Miss address: 0x%08x
Expected cache state: Ox%08x Actual cache state: 0x%08x
0104046: I-cache state error on a Hit Invalidate Cache OP
Hit Invalidate did not invalidate the line on a hit
Cache line address: 0x%08x
Expected cache state: 0x%08x Actual cache state: 0x%08x

cache30 (i_hitwb) - Primary Instruction Hit Writeback Test
This diag tests the Hit Writeback cache op on the instruction cache.
Possible errors:

0104047: I-cache state error during initialization
Cache state did not change to valid when filled from memory
Cache line address: 0x%08x
Expected cache state: 0x%08x Actual cache state: 0x%08x
0104048: I-cache state error Hit writeback happened on a cache miss
Cache line address: 0x%08Bx
Miss address: 0x%08x
0104049: I-cache Hit writeback did not happen on a cache hit
Cache line address: 0x%08x
expected %x, actual %x, XOR %x

cache3l (ECC_reg_tst) - ECC register Test

This diag tests the data integrity of the ECC register. A sliding one and
sliding zero pattern is used in this test.

Possible errors:

5-23

010404a: ECC register failed walking one test
Expected data: 0x%08x Actual data: 0x%08x
010404b: ECC register failed walking zero test
Expected data: 0x%08x Actual data: 0x%08x

cache32 (dd_hitinv) - Primary Data Hit Invalidate Test
This diag tests the Hit Invalidate cache op on the data cache.
Possible errors:

010404c: D-cache state error during initialization
Cache state did not change to valid when filled from memory
Cache line address: 0x%08x
Expected cache state: 0x%08x Actual cache state: 0x%08x
010404d: D-cache state error
Hit Invalidate changed the line to invalid on a miss
Cache line address: 0x%08x
Miss address: 0x%08x
Expected cache state: 0x%08x Actual cache state: 0x%08x
010404e: D-cache state error on a Hit Invalidate Cache OP
Hit Invalidate did not invalidate the line on a hit
Cache line address: 0x%08x
Expected cache state: 0x%08x Actual cache state: 0x%08x

cache33 (d_hitwb) - Primary Data Hit Writeback Test
This diag tests the Hit Writeback cache op on the data cache.
Possible errors:

010404f: D-cache state error during initialization
Cache state did not change to valid when filled from memory
Cache line address: 0x%08x
Expected cache state: 0x%08x Actual cache state: 0x%08x
TAGLO Reg %x
Re-Read dtag %x
Re-Read stag %x

0104050: D-cache state error Hit writeback happened on a clean exclusive line
Cache line address: 0x%08x
PTAG %x
Scache TAG %x

0104051: D-cache Hit writeback happened on a cache miss
Cache line address: 0x%08x
Miss address: 0x%08x
PTAG %x
Scache TAG %x

0104052: D-cache Hit writeback did not happen on a cache hit
Cache line address: 0x%08x
PTAG %X
Scache TAG %x

0104053 : D-cache Hit Writeback clears the write back bi
Cache line address: 0x%08x

5-24

cache34 (d_dirtywbw) - Primary Data dirty writeback word Test

This test verifies the block (4 words) write mode in data cache.

It writes to KO (0x80020000) cached space, causing the cache dirty.
Then it replace the cache line by reading 0x80022000, different cache
line with same offset. This causes the data in 0x80020000 writeback
to memory which now has the same data as in 0x80020000. Multiple
cache lines are tested back to back.

Possible errors:

0104054: Unexpected Cache write through to memory
addr $x, expected %x, actual %x, XOR %x
Seconday TAG %x
0104055: Cache writeback did not occur on a word store to a dirty line
addr %x
expected $x, actual %x, XOR %x
Seconday TAG %x

cache35 (d_refill) - Primary Data refill from Secondary Cache Test

This test verifies the block write/read mode in data cache.

It writes to KO0 (0xB0020000) cached space, causing the cache dirty.
Then it replace the cache line by reading 0x80022000, different cache
line with same offset. This causes the data in primary data cache

to be written back to the secondary. The address 0x80020000 is reread
and compared. Should be a cache hit in the secondary.

Possible errors:

0104056: Unexpected Cache write through to memory
addr = %x
expected = %x, actual = %x, XOR %x
Seconday TAG %x
0104057: Secondary Cache miss, expected a cache hit
addr = %x
xpected = %x, actual = %x, XOR = %x
Data in memory = Oxdeadbeef
Seconday TAG %x

cache36 (sd_dirtywbw) - Secondary Dirty Writeback (word) Test

This test verifies the block (4 words) write mode in data cache.

It writes to KO0 (0x80020000) cached space, causing the cache dirty.
Then it replace the cache line by reading 0x80022000, different cache
line with same cffset. This causes the data in 0x80020000 write back
to secondary which now has the same data as in 0xB0020000. A write
to address 0xB0060000 will replace the secondary lines, thus forcing
a writeback from the Secondary Cache. Note, there is another flavor
of this test d_dirtywbw.c which forces the writeback from the primary
when the secondary line is replaced.

Possible errors:

5-25

0105058: Unexpected Cache write through to memory
addr = %x
expected = %x, actual = %$x, XOR %x
Seconday TAG $x
0105059: Data read replaced a dirty line in Secondary
Dirty line not written back to memory
addr = %x
expected = %x, actual = %x, XOR %x
Seconday TAG %x

cache37 (sd_dirtywbh) - Secondary Dirty Writeback (halfword) Test

This test verifies the block (4 words) write mode in data cache.

It writes to KO (0x80020000) cached space, causing the cache dirty.
Then it replace the cache line by reading 0x80022000, different cache
line with same offset. This causes the data in 0x80020000 write back
to memory which now has the same data as in 0x80020000. Multiple

cache lines are tested back to back. Half word transactions are tested.

Possible errors:

010505a: Unexpected Cache write through to memory on store halfword

addr = %x

expected = %4x, actual = %4x, XOR %4x

Seconday TAG %
010505b: Halfword read replaced a dirty line in Secondary, dirty line not
written back to memory

addr = %x

expected = %4x, actual = %4x, XOR %4x

Seconday TAG %x

cache38 (sd_dirtywbb) - Secondary Dirty Writeback (byte) Test

This test verifies the block (4 words) write mode in data cache.

It writes to KO (0x80020000) cached space, causing the cache dirty.
Then it replace the cache line by reading 0x80022000, different cache
line with same offset. This causes the data in 0x80020000 write back
to memory which now has the same data as in 0x80020000. Multiple
cache lines are tested back to back. Byte transactions are tested.

Possible errors:

010505¢c: Unexpected Cache write through to memory on store byte

addr = %x

expected = %2x, actual = %2x, XOR %2x

Seconday TAG $x
010505d: Byte read replaced a dirty line in Secondary, dirty line not written
back to memory

Dirty line not written back to memory

addr = %x

expected = %2x, actual = %2x, XOR %2x

Seconday TAG %x

o 1 S S S R S e e e e e o S e S e o e e e o e

cache39 (sd_tagecc) - Secondary TAG ECC Test

5-26

Checks the data integrity of the Secondary data tag ram path using a
walking ones/zeros pattern.

Possible errors:

010505e: Secondary Data TAG RAM ECC Path error (walking one as data)
TAG RAM Location 0x%x
Expected 0x%x Actual= 0x%x XOR= 0x%x

010505f: Secondary Data TAG RAM ECC Path error (walking zero as data)
TAG RAM Location 0Ox%x
Expected Ox%x Actual= 0x%x XOR= Ox%x

cached40 (sdd_hitinv) - Secondary Hit Invalidate Test
This test verifies the Hit Invalidate Cache operation.
Possible errors:

0105060: S-cache state error during initialization
addr = %x
expected = %x, actual = %x, XOR %x
Seconday TAG %x
0105061: sS-Cache error during Primary Cache dirty line writeback to Scache
0105062: S-Cache state error on a Hit Invalidate Cache OP
0105063: Data written back to memory after a Hit Invalidate on the Secondary
addr = ¥x
expected = %x, actual = %x, XOR %x
Seconday TAG %x
0105064: S-Cache state error on a Hit Invalidate Cache OP
0105065: Primary Cache TAG not invalid after a Hit Invalidate on the Scache
addr %x
Seconday TAG $x
Primary TAG %x
0105066: Data written back to memory after a Hit Invalidate on the Secondary
addr = %x
expected = %x, actual = %x, XOR %x
Seconday TAG %x
Primary TAG %x

For errors 0105061, 0105062 and 0105064, the following additional information
are provided:
Error in Secondary Cache TAG State field
OR Error in Secondary Cache TAG physical tag field
OR Error in Secondary Cache TAG Virtual Address field
Address 0x%08x\nSecondary TAG Data O0x%08x
Expected Cache State: O0x%x = [STATE]

STATE is one of the decoded cache states: Invalid, Clean Exclusive,
Dirty Exclusive, Shared, and Dirty Shared.

cached4l (sd_hitwb) - Secondary Hit Writeback Test

This test verifies the Hit Writeback Cache operation.
It verifies that the data can be written back from the Secondary

5-27

or in the case where the primary data is more current that the
data is written from the Primary to memory. Also checked is the
fact that the cache lines are not invalidated as with the Hit
Writeback Invalidate Cache Op. Instead it checks that the lines
are set to the clean exclusive state.

Possible errors:

0105067: Initialization error, unexpected Cache write through to memory
addr = %x
expected = %x, actual = %x, XOR %x
Seconday TAG %x
0105068: SCache error during Primary Cache dirty line writeback to Scache
0105069: Data not written back from Scache to Memory on Hit Writeback Cache OP
addr = %x
expected = %x, actual = %x, XOR %x
Seconday TAG %x
010506a: Initialization error, unexpected Cache write through to memory
addr = %x
expected = %x, actual = %x, XOR %x
Seconday TAG %x
010506b: SCache state error during Hit Writeback on S-Cache dirty line
010506c: Error in Primary Cache TAG after a Hit Writeback cache Op on the SCache
addr %x
Expected cache state: Dirty Exclusive
Primary Data TAG %x
010506d: Data not written back from D-Cache to Memory on a Hit Writeback on the
S-Cache
addr = %x
expected = %x, actual = %x, XOR %x
Seconday TAG %x
Primary Data TAG %x

For errors 0105068 and 010506b, the following additional information
are provided:
Error in Secondary Cache TAG State field
OR Error in Secondary Cache TAG physical tag field
OR Error in Secondary Cache TAG Virtual Address field
Address 0x%08x\nSecondary TAG Data 0x%08x
Expected Cache State: O0x%x = [STATE]

STATE is one of the decoded cache states: Invalid, Clean Exclusive,
Dirty Exclusive, Shared, and Dirty Shared.

cache42 (sd_hitwbinv) - Secondary Hit Writeback Invalidate Test

This test verifies the Hit Writeback Invalidate Cache operation.
It verifies that the data can be written back from the Secondary
or in the case where the primary data is more current that the
data is written from the Primary to memory. Also checked is the
fact that the cache lines are invalidated.

Possible errors:

010506e: Initialization error, unexpected Cache write through to memory
addr = %x

5-28

expected = %x, actual = %x, XOR %x

Seconday TAG %x
010506f: S-Cache TAG error after Hit Writeback Invalidate cacheo
0105070: Data not written back from Scache to Memory after Hit Writeback
Invalidate Cacheop

addr = %x

expected = %x, actual = %x, XOR %x

Seconday TAG $x
0105071: Initialization error, unexpected Cache write through to memory

addr = %x

expected = %X, actual = %x, XOR %x

Seconday TAG %x
0105072: S-Cache TAG error after Hit Writeback Invalidate cachecp, test case 2
0105073: Error in Primary Cache TAG after a Hit Writeback Invalidate cacheop or
the SCache

addr %x

Expected cache state: Invalid

Primary Data TAG %x
0105074: Data not written back from D-Cache to Memory on a Hit Writeback
Invalidate on the S-Cache

addr = %x

expected = %x, actual = %x, XOR %x

Seconday TAG %x

Primary Data TAG %x

For errors 010506f and 0105072, the following additiocnal information
are provided:
Errer in Secondary Cache TAG State field
OR Error in Secondary Cache TAG physical tag field
OR Error in Secondary Cache TAG Virtual Address field
Address 0x%08x\nSecondary TAG Data 0x%08x
Expected Cache State: Ox%x = [STATE]

STATE is one of the decoded cache states: Invalid, Clean Exclusive,
Dirty Exclusive, Shared, and Dirty Shared.

cached43 (cluster) - Secondary Cluster Test

Possible errors:

0105075: SCache data incorrectly written to memory during a dirty writeback
operation

1lst mem block

Mem Address 0x%08x

Expected 0x%08x, Actual 0x%08x, XOR 0x%08x
0105076: SCache data incorrectly written to memory during a dirty writeback
operation

2nd mem block

Mem Address 0x%08x

Expected 0x%08x, Actual 0x%08x, XOR 0x%08x

cache44 (clusterwb) - Secondary Cluster Writeback Test

5-29

" Possible errors:

0105077: SCache data incorrectly written to memory during a dirty writeback
operation on lst block

Mem Address 0x%08x

Expected 0x%08x, Actual 0x%08x, XOR 0x%08x
0105078: SCache data incorrectly written to memory during a dirty writeback
operation on 2nd block

Mem Address Ox%08x

Expected O0x%08x, Actual 0x%08x, XOR 0x%08x
0105079: SCache data incorrectly written to memory during a dirty writeback
operatio on 3rd block

Mem Address 0x%08x

Expected 0x%08x, Actual 0x%08x, XOR 0x%08x

cache45 (hammer_pdcache) - stress primary D-cache--runs icached

Possible error:

010407b: Primary cache stress error at addr : 0x%x Expected 0x%x Got 0x%x

cache46 (hammer_scache) - stress secondary cache--runs icached

Possible error:

010507¢c: Secondary cache stress error at addr : 0x%x Expected 0x%x Got 0x%x

cached47 (cache_stress) - cache stress test
Write/read to one word in every page through 0x80000000 space.
Possible error:

010507a: Secondary cache stress error at addr : Ox%x Expected Ox%x Got Ox%¥x

cached48 (cache_states) - complete cache-state transitions test

The abkbreviation of the following cache states are to be used in the
description of each cache state transition test:

CE clean exclusive
DE dirty exclusive
I invalid

cstate0 (RHH_CE_CE)

Read hit primary (CE) and 2nd (CE). Check that the value is
correct (the physmem addr) and that both tags are still CE.

cstatel (RHH_DE_LE)

5-30

Read hit primary (DE) and 2nd (DE). Check value and that both are
still DE.

cstate2 (WHH_CE_CE)

Write hit primary (CE) and 2nd (CE). Check that 2nd and memory
still have old value and that both cache lines are now LE.

cstate3 (WHH_DE_DE)

Write hit primary (DE) and 2nd (DE). Check that 2nd and memory
still have old value and that both lines are still DE.

cstated (RMH_I_CE)

o

Read miss primary (I) and hit 2nd (CE). Check that 2nd and memory
still have old value and that both lines are CE.

cstateS (RMH_I_DE)

Read miss primary (I) and hit 2nd (DE). Check that 2nd and memory
still have 0ld value and that both lines are DE.

cstateé (RMH_CE_CE)

Read miss primary (CE) and hit 2nd (CE). Check that 2nd and memory
still have old value and that both lines are still CE.

cstate?7 (RMH_DE_DE)

Read miss primary (DE) and hit 2nd (DE). Check that 2nd and memory
still have old value and that both lines are still CE.

cstate8 (WMH_I_CE)

Write miss primary (I) and hit 2nd (CE). Check that 2nd and memory
still have old value and that both lines are DE.

cstate9 (WMH_I_DE)

Write miss primary (I) and hit 2nd (DE). Check that 2nd and memory
still have old value and that both lines are DE.

cstatel0 (WMH_CE_CE)

Write miss primary (CE) and hit 2nd (CE).

cstatell (WMFH_DE_DE)

Write miss primary (DE) and hit 2nd (DE).
cstatel2 (RMM_I_T)

Read miss primary (I) and 2nd (I). Check that value is correct,
that 2nd and memory still have old value and that both lines are CE.

cstatel3 (RMM_I_CE)

5-31

Read miss primary (I) and miss 2nd (CE). Check that value is
correct, that 2nd and memory still have old value and that both lines are CE.

cstateld (RMM_I_DE)

Read miss primary (I) and miss 2nd (DE). Check that 2ndary line

matches memory, that both tags are CE, that the addr tags on both lines

are correct, and that the dirty altaddr secondary line was flushed to memory.

cstatel5 (RMM_CE _CE)

Read miss primary (CE) and miss 2nd (CE). Fill cache lines with

a word from physaddr+2ndcachesize; do a read, then check that the tags for
both lines are CE and have the correct phys addrs, and that the alternate
memory word hasn’'t changed ###.

cstatel6é (RMM_DE DE)

Read miss primary (DE) and miss 2nd (DE). Fill cache lines with

a word from physaddr+2ndcachesize; do a read, then check that the tags for
both lines are now CE and have the correct phys addrs, and that the alternate
memory word was written when the altaddr line was flushed.

cstatel7 (WMM_I_I)

Write miss primary (I) and 2nd (I). Check that 2ndary line matches
memory, that both tags are DE, and that the addr tags on both lines are
correct.

cstatel8 (WMM_I_CE)

-

Write miss primary (I) and miss 2nd (CE). Check that 2ndary line
matches memory, that both tags are DE, and that the addr tags on both lines
are correct.

cstateld (WMM_I_DE)

Write miss primary (I) and miss 2nd (DE). Check that 2ndary line
matches memory, that both tags are DE, that the addr tags on both lines are
correct, and that the dirty altaddr secondary line was flushed to memory.

cstate20 (WMM_CE_CE)

Write miss primary (CE) and miss 2nd (CE). Fill cache lines with

a word from physaddr+2ndcachesize; do a store, then check that the tags for
both lines are DE and have the correct phys addrs, and that the alternate
memory word hasn’'t changed.

cstate2l (WMM_DE_DE)

Write miss primary (DE) and miss 2nd (DE). Check that 2ndary line

matches memory, that both tags are DE, that the addr tags on both lines are
correct, and that the dirty altaddr primary and secondary lines were flushed
to memory.

5-32

Possible errors:

010707d:
010707e:
010707£:
0107080:
0107081:
0107082:
0107083:
0107084:
0107085:
0107086:

RHH_CE_CE : physaddr 0x%x contents incorrect (0x%x)
RHH DE DE : physaddr Ox%x contents incorrect (0x%x)
RMH_I_CE : physaddr 0x%x contents incorrect (0x%x)
RMH_I DE : physaddr 0x%x contents incorrect (0x%x)
RMH _CE CE : physaddr 0x%x contents incorrect (0x%x)
RMH_DE_DE : physaddr 0x%x contents incorrect (0x%x)
RMM I I : physaddr Ox%x contents incorrect (0x%x)
FMM_I_CE : physaddr Ox%x contents incorrect (0x%x)
RMM_I DE : physaddr 0x%x contents incorrect (0x%x)

PRIMARYD cache state error at addr Ox%x : Expected 0x%x Got 0Ox%x

OR PRIMARYI cache state error at addr Ox%x : Expected 0x%x Got 0Ox%x
OR SECONDAR cache state error at addr 0x%x : Expected 0x%x Got 0x%x

0107087: PRIMARYD addr error at slot Ox%x : Expected 0x%x Got Ox%x

OR PRIMARYI addr error at slot Ox%x : Expected 0x%x Got 0x%x
OR SECONDARY addr error at slot 0x%x : Expected Ox%x Got 0x%x

0107088: Mem wvalue error at addr O0x%x : Expected Ox%x Got 0Ox%

01070832: Writeback missed 2ndary level cache at addr 0x%x

010708a: 2ndary cache value error at addr Ox%x : Expected 0x%x Got Ox%x
MC3 IDE Guide

1. boot ide

2. The default report level is 2. Set the report level by typing the following:

report=#

level 5 : debugging messages displayed. Don’'t need this much detail.
level 4 : prints out memory locations as they are written. Will
slow down testing time.
level 3 : prints out l-line functional descriptions within tests. This
is probably the most useful level for general use.
level 2 : prints out only errors and titles.
level 1 : prints out only titles and pass/fail.

level n will print out all messages for level n and below.

3. Quickmode. For right now, you set quick mode like this:

setenv quickmode 1

2And you unset quickmode by doing a : unsetenv quickmode
Eventually ide will have a switch method of setting/unsetting quick
mode.

For the memory tests, quick mode will test every nth byte instead of
every byte, where n varies from 96 to 7680 depending upon the test.
The goal in quick mode is to test 16GB in about 10 minutes-- and this
is accomplished by testing every nth byte. n varies depending upon
how fast or slow a test was timed to run.

4. continue-on-error. For right now, you set this mode like this:

setenv cont_on_err 1

5-33

And you unset it by doing a : unsetenv cont_on_err

Eventually ide will have a switch method of setting/unsetting quick
mode.

For the memory tests, this will continue the test even when an error
has been encountered. Normally, the tests will stop after the first
error.

5. memall and memguick. These are 2 defined commands. Each can be run in quick
mode or in normal mode. memall will run all commands, while memcquick
runs just the faster tests (meml, mem2, mem3, mem5, mem8, mem9, memlO).

6. There are currently 15 memory commands, meml-memlS5S. They are detailed
below:

meml - Read the mc3 configuration registers (real fast)
The following registers are probed:

reg test description

00 Read the BankEnable

01 Read BoardIype

02 Read RevLevel

03 Read AccessControl: endianness, subBlockOrder, ebus=64bitsOrNot
04 Read MemoryErrorInterrupt

05 Read EBUSErrorInterrupt

06 Read BIST result

07 Read DRSC timeout

0a Read LeafControlEnable

Read leaf regs 10-24, 30-33 (leaf0), 50-64, 70-73 (leafl)

meml is very similar to meml4 which is the pod-mode dmc command.

mem2 - Memory sockets connection test (ported from IP17, meml) (real fast)

The memory sockets connection test writes patterns to the first 2Kbytes

of each configured leaf and then reads them back. By writing 2Kbytes,

all simms are ensured of being written to regardless of the interleaving factor
specified.

If the pattern read back does not match, the socket is assumed to have a
connection problem.

mem3 - Walking address test (ported from IP17‘s mem2) (real fast)
This is a traditional test that checks for shorts and opens on the address
lines. Address lines that are greater or equal to the most significant

address lines of the memory bounds are not tested. Testing is done by byte
read/writes from first_address up to last_address.

5-34

memd - Write/read data patterns (ported from IP17's mem3) (4 min / 128MB)

This test does word read/writes of all-1l’s and all-0’s patterns.

It shows if all addresses appear to be writable, and that all bits may
be set to both 1 and 0. However, it provides no address error or
adjacent-bits-shorted detection. The flow is as follows:

(w0), u(r0,wl), d(rl,wSa), u(r5a,ra5), d(ra5) -- word and byte

(read as: write 0 to all locations, read 0 and write 1 to all locations in
ascending order, read 1

and write 5a to all locations in descending order, read 5a and write a5 to
all locations in

ascending order, read a5 from all locations in descending order)

meml3 does byte read/writes in the same pattern. The tests were separated out
since the byte read/writes take a long time.

mem5 - Address in address memory test (4 min / 128MB)

This is a traditional, hueristic, rule-of-thumb, “address-in-address”
memory test. It also puts the complement of the address in the address,
and makes passes in both ascending and descending addressing order.
There are both full memory store then check passes, as well as read-
after-write passes (with complementing) .

memé - walking 1/0 memory test (slow: 40 minutes / 32 MB)

Ancother traditional test - walking 1’s and walking 0’s through memory.
This is a whole-memory test that is very good at shaking out shorted
data bits, but provides little protection for addressing errors.

Described in van de Goor’s bock, “Testing Semiconductor Memories” and has the
following flow:

(w0), u{x0,wl), d(xrl,w0), (x0)

Will detect address decoder faults, stuck-at-faults, transition faults,

coupling faults, and inversion coupling faults(see van de Goor for definitions)

mem8 - MarchY (4 min / 128MB)

Described in van de Goor’s boock, “Testing Semiconductor Memories” and has the
following flow:

(w0), u(x0,wl,rl), dirl,w0,x0), (x0)

Will detect address decoder faults, stuck-at-faults, transition faults,
coupling faults, and linked transition faults(see van de Goor for definitions)

5-35

mem3d - Memory with ecc test (ported from IP1l7's mem6) (2 min /128MB)

This test writes to memory via uncached space and reads back through
cached space (ECC exceptions enabled). Although it provides a simple
level of ECC checking, its main function is to verify that cached and
uncached memory addresses are accessing the same area of physical

memory. The test values used are address-in-address and inverted address-
in-address patterns, so a certain amount of address unigqueness checking
is done as well.

meml0 - Cache write-through memory test (ported from IP17's memS) (2 min /128MB)

This is a traditional, hueristic, rule-of-thumb, “address-in-address”
memory test. It also puts the complement of the address in the address,
making passes in ascending order only. All of memory is stored and then
checked. All reads and writes are made through K0 seg, so the the reads
and writes are cached. However, since the size of main memory exceeds
the cache sizes, all data will be written to main memory and then read
back.

This is not a particularly thorough test, and it depends upon a good
cache to function correctly, but it is fast, at least compared to the
other full-memory tests.

memll - User-specified patter/location write/read test (ported from IP17’'s mem7)

type “memll” without any arguments to see the usage.
Usage: memll [-b|h|w] [-r] [-1] [-v Oxpattern] RANGE

This test is allows the technician to f£ill a range of memory with a specified
test value and read it back, done as a series of byte (-b), half-word (-h),

or word (-w) writes and reads. If the -v option is not used to select the
test pattern, an address-in-address pattern is used instead. (-r) will do read
only and will not do any writes. (-1) will loop forever.

meml2 - Decode a bad address into slot, leaf, bank, simm

Usage: meml2 [-a Oxaddress] [-b xoook] [-s x]
-b expects a hex number showing which bits are bad.
e.g. If bits 1 and 4 are bad, enter: -b 0x5
-s 1, 2, or 4 for byte, half-word or word
-b defaults to 0x0 and -s defaults to 4

For example, to decode address 0x4000 with bad bits 1 and 4 and it’s
a word, type:

meml2 -a 0x4000 =b 0x5 -s 4

meml3 - byte read / write (see memd4) (slow: 15 minutes/32 MBytes)

memld4 - Read the mc3 config register

This is the same as the dmc command from pod mode. See also meml

5-36

meml5 - Double word MarchY pattern test (4 min / 128 MB)

Same as mem8 but does double word writes/reads instead of word writes/reads.

5.2.1 Error Message Syntax

Everest hardware errors are displayed following UNIX kernel panics, in the IDE
standalone diagnostics, and in some of the PROM-based power-on tests. The display
format of the error messages is referred to as the “HARDWARE ERROR STATE,” and is
defined as follows:

— Only bits indicating an error has been detected are displayed. “Normal” bits are
not displayed.

— The display walks through all of the boards in the system and through every
ASIC on each board.

- A HARDWARE ERROR STATE display consists of the banner line “HARDWARE
ERROR STATE:” followed by indented lines prefixed by a “+” sign. Line
indentation, from left to right, indicates the board, the ASIC, the register, and the
bit (see the following example).

HARDWARE STATE:

+ IP19inslot 1 (CPU Board)

+ CCinIP19slot1,CPUD (ASIC on CPU Board)

+ CC ERTOIP Register: Oxffff (Register in the CC and its hex value)
+ Parity Error on TAG RAM Data (Bit in the register that is set)

- Each error register’s value is shown in hexadecimal, followed by a line for each
bit set.

— Each board identifies its location with its board slot number. Each ASIC identifies
its location with some address information; a CC by the CPU it is associated with,
the EPC, F chip, or S chip by its Ibus adapter number.

Note: The F chip also identifies the ASIC that is at the other end of its flatcable.
— The decimal bit number precedes the name of each error bit.
- Some registers have multi-bit values and are displayed in hexadecimal, rather
than as bits.

The kernel will panic in response to many possible hardware errors. The HARDWARE
ERROR STATE messages allow you to trace the error back to the ASIC that originally
detected the fault, thereby identifying the FRU to be replaced. Relate the error message to
a block diagram of the system, and walk the propagated errors backwards to determine
where the fault originated.

As an example, assume that a driver, executing on an IP19 CPU, attempts to read a control
register on a VMEbus device. If the controller fails to respond, the VMEbus will timeout.

5-37

5.3

5-38

" The timeout causes the VMECC to record “VME Bus Error on PIO Read.” The VMECC will

return an error message to the F ASIC. From the F ASIC, the error passes through the IA
ASIC, the A ASIC, the CC chip, and finally reaches the CPU as a bus error. Each of the
ASICs in this sequence may record the error. The kernel will panic and dump all of the set
error register bits. You must understand the possible error propagation paths throughout
the machine in order to distinguish the secondary, propagated errors from the origin of the
fault.

IRIX Error Reporting

5.3.1

5.3.2

This section describes the various types of UNIX kernel messages displayed by the console.
These messages may also appear in /usr/adm/SYSLOG, where they are prefixed by
“<systemname> unix:.” Not all kernel messages appear in the SYSLOG file because a
daemon must be running to transfer the error message from the kernel to the file. If the
system panics, the kernel messages only appear on the console.

There are three types of kernel messages:

¢ Panic messages
* Warning messages

* Driver messages

Panic Messages

The panic message syntax is: PANIC CPU n: xxx, where “n” is the processor number and
“xxx" is the string indicating the general area of the fault. The kernel “panics” when it
cannot continue operation without the risk of corrupting user data. Common causes of
kernel panics are:

~ Detecting problems in the kernel data structures.
- Processor exceptions taken during kernel code, resulting from a software bug.

- Processor exceptions taken during kernel code, resulting from a bus timeout
when hardware doesn’t respond to a PIO operation (such as a read /write to a
control register).

Warning Messages

The warning message syntax is: WARNING: CPU 1 xxx, where “n” is the processor number
and “xxx” is the string indicating the general area of the fault. Warnings often result from
the kernel nearly running out of some resource, indicating that a kernel software
configuration change is needed.

5.3.3 Driver Messages

The driver message syntax is: dddn: xxxx, where “ddd” is a two- or three-character string
indicating the driver name, “n” is a number indicating the controller, and “xxxx” is the
string indicating the general area of the fault. These messages are sometimes embedded
inside a warning message. Driver messages are generally hardware specific and will not

directly cause a kernel panic.
An example of a message from the SCSI driver is: dks0d1s6: invalid partition.

Where “dks” identifies the SCSI driver, “0” indicates which SCSIbus, and “d1s6” identifies
which drive and partition.

5-39

5-40

Chapter 6

Diagnostic Procedures

6.1 Overview

This chapter describes the various diagnostic tools available to manufacturing and field
service. The scenario of a frozen system is provided to demonstrate how the debugging
tools are used.

6.2 Examining a Frozen System

This section provides a step-by-step approach to diagnosing the cause of a frozen system.
1. Examine the System Controller log.
Check the voltages, blower operation and other physical parameters if indicated.

Turn the key switch to the Manager position, select the “Backplane NMI” menu, and
execute a non-maskable interrupt. The NMI should generate a core dump.

4. Reset the system and start UNIX. The operating system creates core files in
fusrfadm/crash, which can then be analyzed to determine the cause of the crash.

5. If the system comes back up, look in usr/adm/SYSLOG for messages from the system
controller daemon. The message syntax is: sysctlrd: event: xokx.

Note: Whenever the system is powerycled, or UNIX is brought up, the contents of the
System Controller error log are dumped to usr/adm/SYSLOG.

6.3 Troubleshooting

6.3.1

This section is a loose grouping of various troubleshooting/debugging tips. Some of the
methods described require equipment that is not readily available in the field, and are
better suited for use by manufacturing or a repair depot.

IP19 Troubleshooting Procedures
This section describes common problems with the IP19 board and their solutions.

Power bricks operating within acceptable voltage levels?

6-1

Note: Before starting to troubleshoot the board, verify that both the 3.3V and 5.0V bricks
are working within acceptable levels. If the 5.0V brick fails while the 3.3V brick
continues to work, the ASICs will overheat.

1. Check the power fault LEDs on the board (refer to Figure 2-3).
2. If the fault LEDs are off, but the bricks are still suspect, check the voltages at the red
and black test points at the back of the board.

Note: If the 5.0V brick has failed, it will still show approximately 2.5V, due to the 3.3V
brick pulling up through the ASICs.

Power levels are within the specified ranges, but the processor LEDs are all off.

1. There is a power or ground short.

2. The LED controller PAL has failed.

3. One or more of the R4KIO PALs has failed. Check the PALs on the failing slices. The
PAL:s are at locations I5SH1, J1IMO, I3]9, and F2E1 for slices 0 through 3, respectively.

Power levels are within the specified ranges, but the processor LEDs are all on.

The processors are not booting from their EAROMs and PROMs.
1. Check for missing clocks.
2. Check for bad PROMs or PALs.

3. Check for a dead processor.

All processor slices have failed.

The clocks may not be running. Check the clocks as follows:

Look for a 50MHz ECL-level clock at pin F8.

Check the MC100E11 backplane clock driver at GOCS8.

Check that the MC100E11 power supply is at 4.5V.

Look for a 50 or 75Mhz TTL-level clock at pin V4.

If no clock is present, check the local crystal at G9K7 or H5K?7.

Check the driver at G9J8. Clock pulses should be present at pins 12, 14, 16 and 18.

o @ L N

A single processor slice has failed.
1. Look for a clock at pin V4 of the failing slice’s CC chip.

2. If notclock is present, check the R4k Reset PAL. The PALs are located at F9GS5, G1K7,
13]9, and I7G5 for processor slices 0 through 3, respectively.
Note: If the clock is running at 25% frequency, it is probable that the EAROM is faulty.

3. Check that the processor is securely seated in the socket. Remove the heat sink and
check for snugness.

" Clocks are good, but the processor LEDs are all on.
1. Check the R4kIO PAL, EAROM, and processor, as noted previously.
2. Replace the EPROM and check the board again.

3. Check the frequency of the ModeClk at N19. The frequency should be approximately
200KHz. If no ModeClk signal is present, the processor has failed.

Check the reset line (pin 20) to the CC chip.

If the reset line does not pulse when the SCLR line is enabled, check pin 17 on the A
chip.

6. If the A chip line doesn’t pulse either, check for a failure in the System Controller.

LED:s begin to go through boot pattern, but registers a failure code before the boot sequence
completes.

This procedure assumes that the processor is basically functional. It can fetch and execute
EPROM instructions, but may be having trouble reaching the bus or ASICs beyond the CC
chip.

1. Record the binary LED value and refer to Section 4.5 for a description of the fault.
2. Check the UART output.

The Enable Register is incorrect.

1. From a working board in the same system, read register 0 on the board under test.
This is done by using the POD command de <slot number> 0. Register 0 contains the
ENABLE vector, which represents the number of processors populating the board
(0x3=2 CPUs, Oxf=4 CPUs).

2. If the register value does not match the number of occupied slices, replace the
CC_SHARED PAL at GOCO.

LEDs show a static Oxe pattern.

The serial clock is not running.
1. Look for approximately 100KHz at pin 20 on the CC chip.

2. If noclock is present, check the System Controller for serial clock generation.

LEDs show a static Oxc pattern.

System is stuck in bootmaster arbitration. Possible cause is a CC clock problem.

1. Replace the CC chip.

2. Replace the EAROM.

LEDs complete boot sequence and display master/slave patterns, but UART output is
garbled or missing.

1. Check UART cable and connections.

2. Verify that the serial clock is matched to the UART speed. When connecting to the
UART, match the speed with the System Controller speed.

6-3

6.3.2

6.3.3

6-4

Note: The standard System Controller produces a 9600 Baud clock.

104 Troubleshooting Procedures

If an IO4 failure occurs during the boot process, the error message will continue to scroll
across the System Controller display until the system is powered off. Clear the display by
first turning the key switch to the Manager position. Enter the Debug Settings menu and
set the “Manu-mode” bit. Setting this bit sends the IP19 PROM error messages to the
external UART on the System Controller (see Section 6.3.3.1).

Using the System Controller

This section contains various troubleshooting procedures utilizing the System Controller.

6.3.3.1 Systems with Dead Monitors or Terminals

This workaround provides a method for connecting an ASCII terminal to a system with a
faulty 104 board, bad meonitor or bad terminal.

The workaround is based on the System Controller’s connection to all of the CC chips on
the lowest-numbered IP19 board, over the Polled Serial Bus. The Polled Serial Bus is
composed of six address lines and two data lines, and is used primarily during the
bootmaster arbitration process. The System Controller can address all of the processors
through their respective CC chips, but only the bootmaster CPU is capable of responding.

There is a port (or UART) tied directly to the System Controller. A terminal can be attached
to this port and used to reach the CPU board by going through the controller and over the
Polled Serial Bus. On the rack-mounted systems, the System Controller UART is located in
the lower left corner of the midplane (when facing the front of the chassis). Deskside

systems have the UART located in the lower, right comner of the backplane (when facing the
rear of the chassis). The port is labelled External Controller Serial on all systems.

Note: The System Controller UART is equipped with a permanently attached cable, with
a DB-25 connector at the terminal end.

Select the Debug Settings menu and toggle bit 7 (the Manu-mode bit) to select the System
Controller UART. Refer to Section 3.5.2 for more information on the Debug Settings menu.

6.3.3.2 Communicating with the System Over the System Controller Port

These are a general collection of commands that can be initiated over the System Controller
port.

Get the selected processor out of slave mode — Type control-x s uz control-y (with
no spaces), where control-x s begins the select command, « indicates the IP19 slot
number, z specifies the slice number, and control -y executes the command.

Select a specific processor to communicate with — Type select x, where x is the processor
slice. The new prompt will take the form POD xx/yy>, where xx indicates the slot

number and yy indicates the slice.

Put all of the processors in a selected slot into POD mode — Type <entrl> p.

To exit this mode — Type reset to return to the PROM Monitor.

To cycle system power — Type control-x ¢ control-y (with no spaces and no return).

To reset the system ~ Type control-x r control-y (with no spaces and no return).

6.3.3.3 Defeating the System Controller
Defeat the System Controller when a dead controller or a bad sensor is suspected.

Cycling the key switch while pressing the Execute button allows the System Controller to
come up without starting the power-on sequence. This is valuable if an error such as a
power fault generates a repeating message on the display. The error log can then be
checked and the voltage protection turned off, using the Debug Settings menu (refer to
Section 3.5.2).

Return to the default debug settings by simultaneously pressing the Menu and Scroll
Down buttons while cycling the key switch.

Cycle the key switch to return to normal controller operation.

6.3.3.4 Communicating With a Disabled Processor

When a processor fails, it is disabled by the system. Because a disabled processor is unable
to talk to the system bus, IDE cannot be used to diagnose the cause of the fault. Enable the
processor by first turning the key switch to the Manager position. Select the debug settings
menu and set the “No Diagnostics” bit. Power-cycle the system to activate the change to
the debug settings menu and enable the faulty processor. See Section 3.5.2 for additional
information on the debug settings menu.

6.3.3.5 Changing the System’s Serial Number

If a System Controller must be replaced, the serial number of the replacement controller
must be set to the value of the original. This is necessary in order to run programs that use
the serial number as a unique machine identifier (such as NetLS).

Change the system’s serial number as follows:

Turn the key switch to the Manager position and select the Debug Settings menu.

Set the PROM Debug Mode bit.

Enter the Command Monitor.

Type serial to display the system’s serial number.

S A

Type serial xxxx, where xxxx is the serial number of the original System Controller.

6-5

6. Type serial again and verify the new serial number.

7. Return to the Debug Settings menu and turn off the PROM Debug Mode bit.

6-6

