OpenGL
Programming Guide

OpenGL Programming Guide — About This Guide - 1

About This Guide

The OpenGL graphics system is a software interface to graphics hardware. (The GL stands for Graph
Library.) It allows you to create interactive programs that produce color images of moving
three—dimensional objects. With OpenGL, you can control computer—graphics technology to produce
realistic pictures or ones that depart from reality in imaginative ways. This guide explains how to
program with the OpenGL graphics system to deliver the visual effect you want.

What This Guide Contains

This guide has 14 chapters, one more than the ideal number. The first five chapters present basic
information that you need to understand to be able to draw a properly colored and lit three—dimension
object on the screen.

Chapter 17Introduction to OpenGL," provides a glimpse into the kinds of things OpenGL can

do. It also presents a simple OpenGL program and explains essential programming details you ne
to know for subsequent chapters.

Chapter 2;State Management and Drawing Geometric Objects,"explains how to create a
three—dimensional geometric description of an object that is eventually drawn on the screen.

Chapter 3}Viewing," describes how such three—dimensional models are transformed before bein
drawn onto a two—dimensional screen. You can control these transformations to show a particula
view of a model.

Chapter 47Color,” describes how to specify the color and shading method used to draw an objec

Chapter 5;Lighting," explains how to control the lighting conditions surrounding an object and
how that object responds to light (that is, how it reflects or absorbs light). Lighting is an important
topic, since objects usually don't look three—dimensional until they're lit.

The remaining chapters explain how to optimize or add sophisticated features to your three—dimensio
scene. You might choose not to take advantage of many of these features until you’re more comfortal
with OpenGL. Particularly advanced topics are noted in the text where they occur.

Chapter 6;Blending, Antialiasing, Fog, and Polygon Offset,"describes techniques essential to
creating a realistic sceflealpha blending (to create transparent objects), antialiasing (to eliminate
jagged edges), atmospheric effects (to simulate fog or smog), and polygon offset (to remove visui
artifacts when highlighting the edges of filled polygons).

Chapter 7;Display Lists," discusses how to store a series of OpenGL commands for execution at
later time. You'll want to use this feature to increase the performance of your OpenGL program.

Chapter 8;Drawing Pixels, Bitmaps, Fonts, and Images,discusses how to work with sets of
two—dimensional data as bitmaps or images. One typical use for bitmaps is describing characters
fonts.

Chapter 9;Texture Mapping,” explains how to map one- and two—dimensional images called

OpenGL Programming Guide — About This Guide - 1

textures onto three—dimensional objects. Many marvelous effects can be achieved through textur
mapping.
Chapter 10'The Framebuffer," describes all the possible buffers that can exist in an OpenGL

implementation and how you can control them. You can use the buffers for such effects as
hidden—surface elimination, stenciling, masking, motion blur, and depth—of-field focusing.

Chapter 11 Tessellators and Quadrics," shows how to use the tessellation and quadrics routines
in the GLU (OpenGL Utility Library).

Chapter 12/Evaluators and NURBS," gives an introduction to advanced techniques for
efficiently generating curves or surfaces.

Chapter 13/Selection and Feedback,"explains how you can use OpenGL'’s selection mechanism
to select an object on the screen. It also explains the feedback mechanism, which allows you to
collect the drawing information OpenGL produces rather than having it be used to draw on the
screen.

Chapter 14'Now That You Know," describes how to use OpenGL in several clever and
unexpected ways to produce interesting results. These techniques are drawn from years of
experience with both OpenGL and the technological precursor to OpenGL, the Silicon Graphics
IRIS Graphics Library.

In addition, there are several appendices that you will likely find useful.

Appendix A,"Order of Operations,” , gives a technical overview of the operations OpenGL
performs, briefly describing them in the order in which they occur as an application executes.

Appendix B,"State Variables," lists the state variables that OpenGL maintains and describes how
to obtain their values.

Appendix C,"OpenGL and Window Systems," briefly describes the routines available in
window-system specific libraries, which are extended to support OpenGL rendering. Window
system interfaces to the X Window System, Apple Maclintosh, IBM 0S/2, and Microsoft Windows
NT and Windows 95 are discussed here.

Appendix D,"Basics of GLUT: The OpenGL Utility Toolkit," discusses the library that handles
window system operations. GLUT is portable and it makes code examples shorter and more
comprehensible.

Appendix E,"Calculating Normal Vectors," tells you how to calculate normal vectors for
different types of geometric objects.

Appendix F,"Homogeneous Coordinates and Transformation Matrices,"explains some of the
mathematics behind matrix transformations.

Appendix G,"Programming Tips," lists some programming tips based on the intentions of the
designers of OpenGL that you might find useful.

OpenGL Programming Guide — About This Guide — 2

Appendix H,"OpenGL Invariance," describes when and where an OpenGL implementation must
generate the exact pixel values described in the OpenGL specification.

Appendix |,"Color Plates," contains the color plates that appear in the printed version of this

guide.

Finally, an extensive Glossary defines the key terms used in this guide.

What's New in This Edition

To the question, "What's new in this edition?" the wiseacre answer is "About 100 pages." The more
informative answer follows.

Detailed information about the following new features of OpenGL Version 1.1 has been added.
- Vertex arrays

- Texturing enhancements, including texture objects (including residency and prioritization),
internal texture image format, texture subimages, texture proxies, and copying textures from
frame buffer data

- Polygon offset
— Logical operation in RGBA mode

Program examples have been converted to Mark Kilgard’s GLUT, which stands for Graphics
Library Utility Toolkit. GLUT is an increasingly popular windowing toolkit, which is
well-documented and has been ported to different window systems.

More detail about some topics that were in the first edition, especially coverage of the OpenGL
Utility (GLU) Library.

— An entire chapter on GLU tessellators and quadrics

— A section (in Chapter 3) on the useghiiProject()andgluUnProject() which mimics or
reverses the operations of

the geometric processing pipeline (This has been the subject of frequent discussions on the
Internet newsgroup on OpenGigmp.graphics.api.opengl

- Expanded coverage (and more diagrams) about images

— Changes to GLU NURBS properties

— Error handling and vendor-specific extensions to OpenGL

— Appendix C expanded to include OpenGL interfaces to several window/operating systems

The first edition’s appendix on the OpenGL Utility Library was removed, and its information has
been integrated into other chapters.

A much larger and more informative index

OpenGL Programming Guide — About This Guide — 3

Bug fixes and minor topic reordering. Moving the display list chapter is the most noticeable chang

What You Should Know Before Reading This Guide

This guide assumes only that you know how to program in the C language and that you have some
background in mathematics (geometry, trigonometry, linear algebra, calculus, and differential geometi
Even if you have little or no experience with computer—graphics technology, you should be able to foll
most of the discussions in this book. Of course, computer graphics is a huge subject, so you may war
enrich your learning experience with supplemental reading.

Computer Graphics: Principles and Practibg James D. Foley, Andries van Dam, Steven K.
Feiner, and John F. Hughes (Reading, MA: Addison-Wesley,[19%03 book is an encyclopedic
treatment of the subject of computer graphics. It includes a wealth of information but is probably
best read after you have some experience with the subject.

3D Computer Graphics: A User’s Guide for Artists and Desighgréndrew S. Glassner (New

York: Design Press, 1989)This book is a nontechnical, gentle introduction to computer graphics.
It focuses on the visual effects that can be achieved rather than on the techniques needed to achi
them.

Once you begin programming with OpenGL, you might want to obtai@genGL Reference Manual

by the OpenGL Architecture Review Board (Reading, MA: Addison-Wesley Developers Press, 1996),
which is designed as a companion volume to this guideREference Manuglrovides a technical view

of how OpenGL operates on data that describes a geometric object or an image to produce an image
the screen. It also contains full descriptions of each set of related OpenGL comrtiegarameters

used by the commands, the default values for those parameters, and what the commands accomplist
Many OpenGL implementations have this same material on-line, in the forampéges or other help
documents, and it's probably more up—to—date. There is also a http version on the World Wide Web;
consult Silicon Graphics OpenGL Web Site (http://www.sgi.com/Technology/openGL) for the latest
pointer.

OpenGL is really a hardware-independent specification of a programming interface, and you use a
particular implementation of it on a particular kind of hardware. This guide explains how to program
with any OpenGL implementation. However, since implementations may vary dlightherformance

and in providing additional, optional features, for exaripfeu might want to investigate whether
supplementary documentation is available for the particular implementation you're using. In addition,
you might have OpenGL-related utilities, toolkits, programming and debugging support, widgets, sam
programs, and demos available to you with your system.

How to Obtain the Sample Code

This guide contains many sample programs to illustrate the use of particular OpenGL programming
techniques. These programs make use of Mark Kilgard’s OpenGL Utility Toolkit (GLUT). GLUT is
documented i©penGL Programming for the X Window SystsnMark Kilgard (Reading, MA:

OpenGL Programming Guide — About This Guide — 4

Addison-Wesley Developers Press, 1996). The section 'OpenGL-Related Libraries' in Chapter 1 and
Appendix D gives more information about using GLUT. If you have access to the Internet, you can
obtain the source code for both the sample programs and GLUT for free via anonymous ftp (file—trans
protocol).

For the source code examples found in this book, grab this file:
ftp://sgigate.sgi.com/pub/opengl/opengll_1.tar.Z
The files you receive are compressadarchives. To uncompress and extract the files, type

uncompress opengll_1.tar
tar xf opengll_1.tar

For Mark Kilgard’s source code for an X Window System version of GLUT, you need to know what the
most current version is. The filename will glet—i.j.tar.Z wherei is the major revision number apé

the minor revision number of the most recent version. Check the directory for the right numbers, then
grab this file:

ftp://sgigate.sgi.com/pub/opengl/xjournal/GLUT/glut-i.j.tar.Z

This file must also be uncompressed and extracted by usitgrtt@mmand. The sample programs and
GLUT library are created as subdirectories from wherever you are in the file directory structure.

Other ports of GLUT (for example, for Microsoft Windows NT) are springing up. A good place to start
searching for the latest developments in GLUT and for OpenGL, in general, is Silicon Graphics’
OpenGL Web Site:

http://www.sgi.com/Technology/openGL

Many implementations of OpenGL might also include the code samples as part of the system. This
source code is probably the best source for your implementation, because it might have been optimiz:
for your system. Read your machine-specific OpenGL documentation to see where the code samples
be found.

Errata

Although this book is ideal and perfec in every conceivable way, there is a a pointer to an errata list fr(
the Silicon Graphics OpenGL Web Site:

http://www.sgi.com/Technology/openGL

The authors are quite certain there will be a little note there to reassure the reader of the pristeen qua
of this book.

Style Conventions
These style conventions are used in this guide:
BoldO Command and routine names and matrices

Italics[] Variables, arguments, parameter names, spatial dimensions, matrix components, and the

OpenGL Programming Guide — About This Guide — 5

first occurrence of key terms

Regulaf]l Enumerated types and defined constants

Code examples are set off from the text in a monospace font, and command summaries are shaded v
gray boxes.

In a command summary, braces are used to identify choices among data types. In the following exam
glCommanchas four possible suffixes: s, i, f, and d, which stand for the data types GLshort, GLint,
GLfloat, and GLdouble. In the function prototype 8€ommandTYPEis a wildcard that represents the
data type indicated by the suffix.

void glCommand{sifd(TYPEx1, TYPEy1, TYPEX2, TYPEy2);

OpenGL Programming Guide — Acknowledgments — 6

Acknowledgments

The second edition of this book required the support of many individuals. The impetus for the second
edition began with Paula Womack and Tom McReynolds of Silicon Graphics, who recognized the nee
for a revision and also contributed some of the new material. John Schimpf, OpenGL Product Manage
Silicon Graphics, was instrumental in getting the revision off and running.

Thanks to many people at Silicon Graphics: Allen Akin, Brian Cabral, Norman Chin, Kathleen
Danielson, Craig Dunwoody, Michael Gold, Paul Ho, Deanna Hohn, Brian Hook, Kevin Hunter, David
Koller, Zicheng Liu, Rob Mace, Mark Segal, Pierre Tardif, and David Yu for putting up with intrusions
and inane questions. Thanks to Dave Orton and Kurt Akeley for executive—level support. Thanks to K
Maitz and Renate Kempf for document production support. And thanks to Cindy Ahuna, for always
keeping an eye out for free food.

Special thanks are due to the reviewers who volunteered and trudged through the six hundred pages
technical material that constitute the second edition: Bill Armstrong of Evans & Sutherland, Patrick
Brown of IBM, Jim Cobb of Parametric Technology, Mark Kilgard of Silicon Graphics, Dale Kirkland of
Intergraph, and Andy Vesper of Digital Equipment. Their careful diligence has greatly improved the
quality of this book.

Thanks to Mike Heck of Template Graphics Software, Gilman Wong of Microsoft, and Suzy Deffeyes
IBM for their contributions to the technical information in Appendix C.

The continued success of the OpenGL owes much to the commitment of the OpenGL Architecture
Review Board (ARB) participants. They guide the evolution of the OpenGL standard and update the
specification to reflect the needs and desires of the graphics industry. Active contributors of the Open
ARB include Fred Fisher of AccelGraphics; Bill Clifford, Dick Coulter, and Andy Vesper of Digital
Equipment Corporation; Bill Armstrong of Evans & Sutherland; Kevin LeFebvre and Randi Rost of
Hewlett—Packard; Pat Brown and Bimal Poddar of IBM; Igor Sinyak of Intel; Dale Kirkland of
Intergraph; Henri Warren of Megatek; Otto Berkes, Drew Bliss, Hock San Lee, and Steve Wright of
Microsoft; Ken Garnett of NCD; Jim Cobb of Parametric Technology; Craig Dunwoody, Chris Frazier,
and Paula Womack of Silicon Graphics; Tim Misner and Bill Sweeney of Sun Microsystems; Mike Hec
of Template Graphics Software; and Andy Bigos, Phil Huxley, and Jeremy Morris of 3Dlabs.

The second edition of this book would not have been possible without the first edition, and neither
edition would have been possible without the creation of OpenGL.

Thanks to the chief architects of OpenGL: Mark Segal and Kurt Akeley. Special recognition goes to th
pioneers who heavily contributed to the initial design and functionality of OpenGL: Allen Akin, David
Blythe, Jim Bushnell, Dick Coulter, John Dennis, Raymond Drewry, Fred Fisher, Chris Frazier, Momi
Furuya, Bill Glazier, Kipp Hickman, Paul Ho, Rick Hodgson, Simon Hui, Lesley Kalmin, Phil Karlton,
On Lee, Randi Rost, Kevin P. Smith, Murali Sundaresan, Pierre Tardif, Linas Vepstas, Chuck Whitme
Jim Winget, and Wei Yen.

Assembling the set of colorplates was no mean feat. The sequence of plates based on the cover imac¢
(Plate 1 through Plate 9) was created by Thad Beier, Seth Katz, and Mason Woo. Plate 10 through PI
12 are snapshots of programs created by Mason. Gavin Bell, Kevin Goldsmith, Linda Roy, and Mark

OpenGL Programming Guide — Acknowledgments — 1

Daly created the fly—through program usedPlate 24. The model for Plate 25 was created by Barry
Brouillette of Silicon Graphics; Doug Voorhies, also of Silicon Graphics, performed some image
processing for the final image. Plate 26 was created by John Rohlf and Michael Jones, both of Silicon
Graphics. Plate 27 was created by Carl Korobkin of Silicon Graphics. Plate 28 is a snapshot from a
program written by Gavin Bell with contributions from the Open Inventor team at Silicon

Graphic§] Alain Dumesny, Dave Immel, David Mott, Howard Look, Paul Isaacs, Paul Strauss, and Rik
Carey. Plate 29 and 30 are snapshots from a visual simulation program created by the Silicon Graphit
IRIS Performer teaim Craig Phillips, John Rohlf, Sharon Clay, Jim Helman, and Michael oinesh

a database produced for Silicon Graphics by Paradigm Simulation, Inc. Plate 31 is a snapshot from
skyfly, the precursor to Performer, which was created by John Rohlf, Sharon Clay, and Ben Garlick, a
of Silicon Graphics.

Several other people played special roles in creating this book. If we were to list other names as authc
on the front of this book, Kurt Akeley and Mark Segal would be there, as honorary yeoman. They help
define the structure and goals of the book, provided key sections of material for it, reviewed it when
everybody else was too tired of it to do so, and supplied that all-important humor and support througt
the process. Kay Maitz provided invaluable production and design assistance. Kathy Gochenour very
generously created many of the illustrations for this book. Susan Riley copyedited the manuscript, whi
is a brave task, indeed.

And now, each of the authors would like to take the 15 minutes that have been allotted to them by An
Warhol to say thank you.

I'd like to thank my managers at Silicon Graphid3ave Larson and Way Tifigand the members of

my group] Patricia Creek, Arthur Evans, Beth Fryer, Jed Hartman, Ken Jones, Robert Reimann, Eve
Stratton (aka Margaret—Anne Halse), John Stearns, and Josie Werferdkeir support during this
lengthy process. Last but surely not least, | want to thank those whose contributions toward this projet
are too deep and mysterious to elucidate: Yvonne Leach, Kathleen Lancaster, Caroline Rose, Cindy
Kleinfeld, and my parents, Florence and Ferdinand Neider.

O JLN

In addition to my parents, Edward and Irene Davis, I'd like to thank the people who taught me most of
what | know about computers and computer graphieaeug Engelbart and Jim Clark.

UTRD

I'd like to thank the many past and current members of Silicon Graphics whose accommodation and
enlightenment were essential to my contribution to this book: Gerald Anderson, Wendy Chin, Bert
Fornaciari, Bill Glazier, Jill Huchital, Howard Look, Bill Mannel, David Marsland, Dave Orton, Linda
Roy, Keith Seto, and Dave Shreiner. Very special thanks to Karrin Nicol, Leilani Gayles, Kevin
Dankwardt, Kiyoshi Hasegawa, and Raj Singh for their guidance throughout my career. | also bestow
much gratitude to my teammates on the Stanford B ice hockey team for periods of glorious distraction
throughout the initial writing of this book. Finally, I'd like to thank my family, especially my mother, Bo,
and my late father, Henry.

0 MW

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 3

Chapter 1
Introduction to OpenGL

Chapter Objectives
After reading this chapter, you'll be able to do the following:
Appreciate in general terms what OpenGL does
Identify different levels of rendering complexity
Understand the basic structure of an OpenGL program
Recognize OpenGL command syntax
Identify the sequence of operations of the OpenGL rendering pipeline

Understand in general terms how to animate graphics in an OpenGL program

This chapter introduces OpenGL. It has the following major sections:
"What Is OpenGL?" explains what OpenGL is, what it does and doesn’t do, and how it works.

"A Smidgen of OpenGL Code" presents a small OpenGL program and briefly discusses it. This
section also defines a few basic computer—graphics terms.

"OpenGL Command Syntax" explains some of the conventions and notations used by OpenGL
commands.

"OpenGL as a State Machine" describes the use of state variables in OpenGL and the command:
guerying, enabling, and disabling states.

"OpenGL Rendering Pipeline" shows a typical sequence of operations for processing geometric &
image data.

"OpenGL-Related Libraries"describes sets of OpenGL-related routines, including an auxiliary
library specifically written for this book to simplify programming examples.

"Animation" explains in general terms how to create pictures on the screen that move.

What Is OpenGL?

OpenGL is a software interface to graphics hardware. This interface consists of about 150 distinct
commands that you use to specify the objects and operations needed to produce interactive
three—dimensional applications.

OpenGL is designed as a streamlined, hardware—-independent interface to be implemented on many
different hardware platforms. To achieve these qualities, no commands for performing windowing task
or obtaining user input are included in OpenGL; instead, you must work through whatever windowing
system controls the particular hardware you're using. Similarly, OpenGL doesn't provide high—level
commands for describing models of three—dimensional objects. Such commands might allow you to

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 1

specify relatively complicated shapes such as automobiles, parts of the body, airplanes, or molecules.
With OpenGL, you must build up your desired model from a small ggarhetric primitives points,
lines, and polygons.

A sophisticated library that provides these features could certainly be built on top of OpenGL. The
OpenGL Utility Library (GLU) provides many of the modeling features, such as quadric surfaces and
NURBS curves and surfaces. GLU is a standard part of every OpenGL implementation. Also, there is
higher—level, object-oriented toolkit, Open Inventor, which is built atop OpenGL, and is available
separately for many implementations of OpenGL. (See "OpenGL-Related Libraries"for more
information about Open Inventor.)

Now that you know what OpenGdoesn’tdo, here’s what lloesdo. Take a look at the color

plates] they illustrate typical uses of OpenGL. They show the scene on the cover of thisdratsted
(which is to say, drawn) by a computer using OpenGL in successively more complicated ways. The
following list describes in general terms how these pictures were made.

"Plate 1" shows the entire scene displayedwasedrame model] that is, as if all the objects in the
scene were made of wire. Edafe of wire corresponds to an edge of a primitive (typically a
polygon). For example, the surface of the table is constructed from triangular polygons that are
positioned like slices of pie.

Note that you can see portions of objects that would be obscured if the objects were solid rather t
wireframe. For example, you can see the entire model of the hills outside the window even thougt
most of this model is normally hidden by the wall of the room. The globe appears to be nearly soli
because it's composed of hundreds of colored blocks, and you see the wireframe lines for all the
edges of all the blocks, even those forming the back side of the globe. The way the globe is
constructed gives you an idea of how complex objects can be created by assembling lower-level
objects.

"Plate 2" shows depth—cuedersion of the same wireframe scene. Note that the lines farther from
the eye are dimmer, just as they would be in real life, thereby giving a visual dejetlof OpenGL
uses atmospheric effects (collectively referred ttogsto achieve depth cueing.

"Plate 3" shows aantialiasedversion of the wireframe scene. Antialiasing is a technique for
reducing the jagged edges (also knowjaggieg created when approximating smooth edges using

pixeld] short for pictureelement8l which are confined to a rectangular grid. Such jaggies are
usually the most visible with near—horizontal or near—vertical lines.

"Plate 4" shows #at-shadedunlit version of the scene. The objects in the scene are now shown as
solid. They appear "flat" in the sense that only one color is used to render each polygon, so they
don’t appear smoothly rounded. There are no effects from any light sources.

"Plate 5" shows &t, smooth—shadearsion of the scene. Note how the scene looks much more
realistic and three—dimensional when the objects are shaded to respond to the light sources in the
room as if the objects were smoothly rounded.

"Plate 6" addshadowsandtexturesto the previous version of the scene. Shadows aren’t an

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 2

explicitly defined feature of OpenGL (there is no "shadow command"), but you can create them
yourself using the techniques described in ChaptefFéxure mappingllows you to apply a
two—dimensional image onto a three—dimensional object. In this scene, the top on the table surfa
the most vibrant example of texture mapping. The wood grain on the floor and table surface are a
texture mapped, as well as the wallpaper and the toy top (on the table).

"Plate 7" shows anotion—blurreabject in the scene. The sphinx (or dog, depending on your
Rorschach tendencies) appears to be captured moving forward, leaving a blurred trace of its path
motion.

"Plate 8" shows the scene as it's drawn for the cover of the book from a different viewpoint. This
plate illustrates that the image really is a snapshot of models of three—dimensional objects.

"Plate 9" brings back the use of fog, which was seen in "Plate 2," to show the presence of smoke
particles in the air. Note how the same effect in "Plate 2" now has a more dramatic impact in "Plat
9'"

"Plate 10" shows theéepth—of-field effeathich simulates the inability of a camera lens to maintain
all objects in a photographed scene in focus. The camera focuses on a particular spot in the scen
Objects that are significantly closer or farther than that spot are somewhat blurred.

The color plates give you an idea of the kinds of things you can do with the OpenGL graphics system.
The following list briefly describes the major graphics operations which OpenGL performs to render at
image on the screen. (See "OpenGL Rendering Pipeline" for detailed information about this order of
operations.)

1. Construct shapes from geometric primitives, thereby creating mathematical descriptions of object
(OpenGL considers points, lines, polygons, images, and bitmaps to be primitives.)

2. Arrange the objects in three—dimensional space and select the desired vantage point for viewing
composed scene.

3. Calculate the color of all the objects. The color might be explicitly assigned by the application,
determined from specified lighting conditions, obtained by pasting a texture onto the objects, or
some combination of these three actions.

4. Convert the mathematical description of objects and their associated color information to pixels ol
the screen. This process is caltadterization

During these stages, OpenGL might perform other operations, such as eliminating parts of objects the
are hidden by other objects. In addition, after the scene is rasterized but before it's drawn on the scree
you can perform some operations on the pixel data if you want.

In some implementations (such as with the X Window System), OpenGL is designed to work even if t}
computer that displays the graphics you create isn’t the computer that runs your graphics program. Tt
might be the case if you work in a networked computer environment where many computers are
connected to one another by a digital network. In this situation, the computer on which your program
runs and issues OpenGL drawing commands is callecliémd, and the computer that receives those

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 3

commands and performs the drawing is calledstrger. The format for transmitting OpenGL

commands (called thaotocol) from the client to the server is always the same, so OpenGL programs
can work across metwork even if the client and server are different kinds of computers. If an OpenGL
program isn’t running across a network, then there’s only one computer, and it is both the client and tt
server.

A Smidgen of OpenGL Code

Because you can do so many things with the OpenGL graphics system, an OpenGL program can be
complicated. However, the basic structure of a useful program can be simple: Its tasks are to initialize
certain states that control how OpenGL renders and to specify objects to be rendered.

Before you look at some OpenGL code, let's go over a few t&erslering which you've already seen
used, is the process by which a computer creates images from modelan®bdesgor objects, are
constructed from geometric primitiiegoints, lines, and polygonksthat are specified by therertices

The final rendered image consists of pixels drawn on the screen; a pixel is the smallest visible elemer
the display hardware can put on the screen. Information about the pixels (for instance, what color they
supposed to be) is organized in memory into bitplandstptane is an area of memory that holds one

bit of information for every pixel on the screen; the bit might indicate how red a particular pixel is
supposed to be, for example. The bitplanes are themselves organizefiantelauffey which holds all

the information that the graphics display needs to control the color and intensity of all the pixels on the
screen.

Now look at what an OpenGL program might look like. Examplerdrders a white rectangle on a
black background, as shown in Figure 1-1

Figure 1-1 White Rectangle on a Black Background

Example 1-1 Chunk of OpenGL Code

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 4

#include <whateverYouNeed.h>

main() {

InitializeAWindowPlease();

glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);
glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
glBegin(GL_POLYGON);
glVertex3f (0.25, 0.25, 0.0);
glVertex3f (0.75, 0.25, 0.0);
glVertex3f (0.75, 0.75, 0.0);
glVertex3f (0.25, 0.75, 0.0);
glEnd();
glFlush();

UpdateTheWindowAndCheckForEvents();
}

The first line of themain()routine initializes avindowon the screen: ThaitializeAWindowPlease()

routine is meant as a placeholder for window system-specific routines, which are generally not Open(
calls. The next two lines are OpenGL commands that clear the window todilalgarColor()

establishes what color the window will be cleared to,gi6tear() actually clears the window. Once the
clearing color is set, the window is cleared to that color whemg@ézar() is called. This clearing color

can be changed with another calpt€learColor(). Similarly, theglColor3f() command establishes what
color to use for drawing objecisin this case, the color is white. All objects drawn after this point use
this color, until it's changed with another call to set the color.

The next OpenGL command used in the prog@@rtho(), specifies theoordinate systemOpenGL
assumes as it draws the final image and how the image gets mapped to the screen. The next calls, wl
are bracketed bglBegin()andglEnd() define the object to be drawirin this example, a polygon with

four vertices. The polygon’s "corners" are defined bygivertex3f()commands. As you might be able

to guess from the arguments, which agey(2 coordinates, the polygon is a rectangle on the z=0 plane.

Finally, gIFlush() ensures that the drawing commands are actually executed rather than stongtein a
awaiting additional OpenGL commands. Thgdate TheWindowAndCheckForEvenidgceholder
routine manages the contents of the window and begins event processing.

Actually, this piece of OpenGL code isn’t well structured. You may be asking, "What happens if | try tc
move or resize the window?" Or, "Do | need to reset the coordinate system each time | draw the
rectangle?" Later in this chapter, you will see replacements folrit#tize AWindowPlease@nd
UpdateTheWindowAndCheckForEventh@t actually work but will require restructuring the code to
make it efficient.

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL -5

OpenGL Command Syntax

As you might have observed from the simple program in the previous section, OpenGL commands us
the prefixgl and initial capital letters for each word making up the command name (recall
glClearColor(), for example). Similarly, OpenGL defined constants begin with GL_, use all capital
letters, and use underscores to separate words (like GL_COLOR_BUFFER_BIT).

You might also have noticed some seemingly extraneous letters appended to some command names
example, théfin glColor3f() and glVertex3f}) It's true that th€olor part of the command name
glColor3f() is enough to define the command as one that sets the current color. However, more than @
such command has been defined so that you can use different types of arguments. In parti@plart the
of the suffix indicates that three arguments are given; another version@dlttrecommand takes four
arguments. Thépart of the suffix indicates that the arguments are floating—point numbers. Having
different formats allows OpenGL to accept the user’s data in his or her own data format.

Some OpenGL commands accept as many as 8 different data types for their arguments. The letters u
as suffixes to specify these data types for ISO C implementations of OpenGL are shown in Table 1-1
along with the corresponding OpenGL type definitions. The particular implementation of OpenGL that
you're using might not follow this scheme exactly; an implementation in C++ or Ada, for example,
wouldn’t need to.

Suffix Data Type Typical Corresponding OpenGL Type Definition
C-Language Type

b 8-hit integer signed char GLbyte

s 16-bit integer short GLshort

i 32-hit integer int or long GLint, GLsizei

f 32-bit floating—point float GLfloat, GLclampf

d 64-bit floating—point double GLdouble, GLclampd

ub 8-bit unsigned integer unsigned char GLubyte, GLboolean

us 16-bit unsigned integer unsigned short GLushort

Ui 32-bit unsigned integer unsigned int or unsign@tluint, GLenum, GLbitfield
long

Table 1-1 Command Suffixes and Argument Data Types
Thus, the two commands

glVertex2i(1, 3);
glVertex2f(1.0, 3.0);

are equivalent, except that the first specifies the vertex’s coordinates as 32-bit integers, and the seco
specifies them as single—precision floating—point numbers.

Note: Implementations of OpenGL have leeway in selecting which C data type to use to represent
OpenGL data types. If you resolutely use the OpenGL defined data types throughout your application,
you will avoid mismatched types when porting your code between different implementations.

Some OpenGL commands can take a final letteshich indicates that the command takes a pointer to a
vector (or array) of values rather than a series of individual arguments. Many commands have both

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 6

vector and nonvector versions, but some commands accept only individual arguments and others req
that at least some of the arguments be specified as a vector. The following lines show how you might
a vector and a nonvector version of the command that sets the current color:

glColor3f(1.0, 0.0, 0.0);

GLfloat color_array[] = {1.0, 0.0, 0.0};
glColor3fv(color_array);

Finally, OpenGL defines the typedef GLvoid. This is most often used for OpenGL commands that acc
pointers to arrays of values.

In the rest of this guide (except in actual code examples), OpenGL commands are referred to by their
base names only, and an asterisk is included to indicate that there may be more to the command narr
For exampleglColor*() stands for all variations of the command you use to set the current color. If we

want to make a specific point about one version of a particular command, we include the suffix neces:
to define that version. For exampigyertex*v()refers to all the vector versions of the command you use
to specify vertices.

OpenGL as a State Machine

OpenGL is a state machine. You put it into various states (or modes) that then remain in effect until yc
change them. As you've already seen, the current color is a state variable. You can set the current co
to white, red, or any other color, and thereafter every object is drawn with that color until you set the
current color to something else. The current color is only one of many state variables that OpenGL
maintains. Others control such things as the current viewing and projection transformations, line and
polygon stipple patterns, polygon drawing modes, pixel-packing conventions, positions and
characteristics of lights, and material properties of the objects being drawn. Many state variables refet
modes that are enabled or disabled with the commkrhble()or glDisable()

Each state variable or mode has a default value, and at any point you can query the system for each
variable’s current value. Typically, you use one of the six following commands to do this:
glGetBooleanv()glGetDoublev()glGetFloatv() glGetintegerv() glGetPointerv() or glisEnabled()

Which of these commands you select depends on what data type you want the answer to be given in.
Some state variables have a more specific query command (sgi@etisght*(), glGetError(), or
glGetPolygonStipple)) In addition, you can save a collection of state variables on an attribute stack wit
glPushAttrib()or glPushClientAttrib() temporarily modify them, and later restore the values with
glPopAittrib() or glPopClientAttrib() For temporary state changes, you should use these commands
rather than any of the query commands, since they’re likely to be more efficient.

See Appendix B for the complete list of state variables you can query. For each variable, the appendi:
also lists a suggestefiGet*() command that returns the variable’s value, the attribute class to which it
belongs, and the variable’s default value.

OpenGL Rendering Pipeline

Most implementations of OpenGL have a similar order of operations, a series of processing stages ca

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 7

the OpenGL rendering pipeline. This ordering, as shown in Figure 1-2 is not a strict rule of how
OpenGL is implemented but provides a reliable guide for predicting what OpenGL will do.

If you are new to three—dimensional graphics, the upcoming description may seem like drinking water
of a fire hose. You can skim this now, but come back to Figure 1-2as you go through each chapter in
book.

The following diagram shows the Henry Ford assembly line approach, which OpenGL takes to
processing data. Geometric data (vertices, lines, and polygons) follow the path through the row of box
that includes evaluators and per—vertex operations, while pixel data (pixels, images, and bitmaps) are
treated differently for part of the process. Both types of data undergo the same final steps (rasterizatic
and per—fragment operations) before the final pixel data is written into the framebuffer.

Figure 1-2 Order of Operations

Now you’ll see more detail about the key stages in the OpenGL rendering pipeline.

Display Lists

All data, whether it describes geometry or pixels, can be savedisplay listfor current or later use.

(The alternative to retaining data in a display list is processing the data immédetayknown as
immediate modgWhen a display list is executed, the retained data is sent from the display list just as i
it were sent by the application in immediate mode. (See Chapter 7 for more information about display
lists.)

Evaluators

All geometric primitives are eventually described by vertices. Parametric curves and surfaces may be
initially described by control points and polynomial functions called basis functions. Evaluators provide
a method to derive the vertices used to represent the surface from the control points. The method is a
polynomial mapping, which can produce surface normal, texture coordinates, colors, and spatial
coordinate values from the control points. (See Chapter 12 to learn more about evaluators.)

Per—Vertex Operations

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 8

For vertex data, next is the "per—vertex operations" stage, which converts the vertices into primitives.
Some vertex data (for example, spatial coordinates) are transformed by 4 x 4 floating—point matrices.
Spatial coordinates are projected from a position in the 3D world to a position on your screen. (See
Chapter 3 for details about the transformation matrices.)

If advanced features are enabled, this stage is even busier. If texturing is used, texture coordinates m
generated and transformed here. If lighting is enabled, the lighting calculations are performed using tF
transformed vertex, surface normal, light source position, material properties, and other lighting
information to produce a color value.

Primitive Assembly

Clipping, a major part of primitive assembly, is the elimination of portions of geometry which fall
outside a half-space, defined by a plane. Point clipping simply passes or rejects vertices; line or poly¢
clipping can add additional vertices depending upon how the line or polygon is clipped.

In some cases, this is followed by perspective division, which makes distant geometric objects appear
smaller than closer objects. Then viewport and depth (z coordinate) operations are applied. If culling i
enabled and the primitive is a polygon, it then may be rejected by a culling test. Depending upon the
polygon mode, a polygon may be drawn as points or lines. (See "Polygon Details" in Chapter 2.)

The results of this stage are complete geometric primitives, which are the transformed and clipped
vertices with related color, depth, and sometimes texture—coordinate values and guidelines for the
rasterization step.

Pixel Operations

While geometric data takes one path through the OpenGL rendering pipeline, pixel data takes a differ
route. Pixels from an array in system memory are first unpacked from one of a variety of formats into 1
proper number of components. Next the data is scaled, biased, and processed by a pixel map. The re
are clamped and then either written into texture memory or sent to the rasterization step. (See "Imagir
Pipeline" in Chapter 8.)

If pixel data is read from the frame buffer, pixel-transfer operations (scale, bias, mapping, and clampi
are performed. Then these results are packed into an appropriate format and returned to an array in
system memory.

There are special pixel copy operations to copy data in the framebuffer to other parts of the framebuffi
or to the texture memory. A single pass is made through the pixel transfer operations before the data
written to the texture memory or back to the framebuffer.

Texture Assembly

An OpenGL application may wish to apply texture images onto geometric objects to make them look
more realistic. If several texture images are used, it's wise to put them into texture objects so that you
easily switch among them.

Some OpenGL implementations may have special resources to accelerate texture performance. Ther
may be specialized, high—performance texture memory. If this memory is available, the texture object:

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 9

may be prioritized to control the use of this limited and valuable resource. (See Chapter 9.)

Rasterization

Rasterization is the conversion of both geometric and pixel datbagiments Each fragment square
corresponds to a pixel in the framebuffer. Line and polygon stipples, line width, point size, shading
model, and coverage calculations to support antialiasing are taken into consideration as vertices are
connected into lines or the interior pixels are calculated for a filled polygon. Color and depth values ar
assigned for each fragment square.

Fragment Operations

Before values are actually stored into the framebuffer, a series of operations are performed that may ¢
or even throw out fragments. All these operations can be enabled or disabled.

The first operation which may be encountered is texturing, whiepeeb(texture element) is generated
from texture memory for each fragment and applied to the fragment. Then fog calculations may be
applied, followed by the scissor test, the alpha test, the stencil test, and the depth-buffer test (the dep
buffer is for hidden—surface removal). Failing an enabled test may end the continued processing of a
fragment’s square. Then, blending, dithering, logical operation, and masking by a bitmask may be
performed. (See Chapter 6 and Chapter 10) Finally, the thoroughly processedfragment is drawn into t
appropriate buffer, where it has finally advanced to be a pixel and achieved its final resting place.

OpenGL-Related Libraries

OpenGL provides a powerful but primitive set of rendering commands, and all higher—level drawing m
be done in terms of these commands. Also, OpenGL programs have to use the underlying mechanisn
the windowing system. A number of libraries exist to allow you to simplify your programming tasks,
including the following:

The OpenGL Utility Library (GLU) contains several routines that use lower-level OpenGL
commands to perform such tasks as setting up matrices for specific viewing orientations and
projections, performing polygon tessellation, and rendering surfaces. This library is provided as pi
of every OpenGL implementation. Portions of the GLU are described dpgbeGL Reference

Manual The more useful GLU routines are described in this guide, where they're relevant to the
topic being discussed, such as in all of Chapter 11 and in the section "The GLU NURBS Interface
in Chapter 12. GLU routines use the praflu.

For every window system, there is a library that extends the functionality of that window system tc
support OpenGL rendering. For machines that use the X Window System, the OpenGL Extensior
the X Window System (GLX) is provided as an adjunct to OpenGL. GLX routines use the prefix
glX. For Microsoft Windows, the WGL routines provide the Windows to OpenGL interface. All
WGL routines use the prefixgl. For IBM OS/2, the PGL is the Presentation Manager to OpenGL
interface, and its routines use the prefgt

All these window system extension libraries are described in more detail in both Appendix C. In

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 10

addition, the GLX routines are also described inQpenGL Reference Manual

The OpenGL Utility Toolkit (GLUT) is a window system—-independent toolkit, written by Mark
Kilgard, to hide the complexities of differing window system APIs. GLUT is the subject of the next
section, and it's described in more detail in Mark Kilgard’'s b@penGL Programming for the X
Window SysterfiSBN 0-201-48359-9). GLUT routines use the giefixX'How to Obtain the

Sample Codefih the Prefacelescribes how to obtain the source code for GLUT, using ftp.

Open Inventor is an object—oriented toolkit based on OpenGL which provides objects and methoc
for creating interactive three—dimensional graphics applications. Open Inventor, which is written ir
C++, provides prebuilt objects and a built-in event model for user interaction, high—level applicati
components for creating and editing three—dimensional scenes, and the ability to print objects ant
exchange data in other graphics formats. Open Inventor is separate from OpenGL.

Include Files

For all OpenGL applications, you want to include the gl.h header file in every file. AlImost all OpenGL
applications use GLU, the aforementioned OpenGL Ultility Library, which requires inclusion of the glu.l
header file. So almost every OpenGL source file begins with

#include <GL/gl.h>
#include <GL/glu.h>

If you are directly accessing a window interface library to support OpenGL, such as GLX, AGL, PGL, «
WGL, you must include additional header files. For example, if you are calling GLX, you may need to
add these lines to your code

#include <X11/Xlib.h>
#include <GL/glx.h>

If you are using GLUT for managing your window manager tasks, you should include
#include <GL/glut.h>

Note that glut.h includes gl.h, glu.h, and glx.h automatically, so including all three files is redundant.
GLUT for Microsoft Windows includes the appropriate header file to access WGL.

GLUT, the OpenGL Utility Toolkit

As you know, OpenGL contains rendering commands but is designed to be independent of any windo
system or operating system. Consequently, it contains no commands for opening windows or reading
events from the keyboard or mouse. Unfortunately, it's impossible to write a complete graphics progra
without at least opening a window, and most interesting programs require a bit of user input or other
services from the operating system or window system. In many cases, complete programs make the r
interesting examples, so this book uses GLUT to simplify opening windows, detecting input, and so or
If you have an implementation of OpenGL and GLUT on your system, the examples in this book shou
run without change when linked with them.

In addition, since OpenGL drawing commands are limited to those that generate simple geometric

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 11

primitives (points, lines, and polygons), GLUT includes several routines that create more complicated
three—dimensional objects such as a sphere, a torus, and a teapot. This way, snapshots of program o
can be interesting to look at. (Note that the OpenGL Utility Library, GLU, also has quadrics routines th
create some of the same three—dimensional objects as GLUT, such as a sphere, cylinder, or cone.)

GLUT may not be satisfactory for full-featured OpenGL applications, but you may find it a useful
starting point for learning OpenGL. The rest of this section briefly describes a small subset of GLUT
routines so that you can follow the programming examples in the rest of this book. (See Appendix D fc
more details about this subset of GLUT, or see Chapters 4 ardenGL Programming for the X
Window Systerfor information about the rest of GLUT.)

Window Management

Five routines perform tasks necessary to initialize a window.

glutlnit(int *argc, char **argy) initializes GLUT and processes any command line arguments (for
X, this would be options like —display and —geomeghydlnit() should be called before any other
GLUT routine.

glutinitDisplayModéunsigned intodg specifies whether to use RGBAor color-index color

model. You can also specify whether you want a single— or double—buffered window. (If you're
working in color-index mode, you'll want to load certain colors into the color map; use
glutSetColor(tto do this.) Finally, you can use this routine to indicate that you want the window to
have an associated depth, stencil, and/or accumulation buffer. For example, if you want a window
with double buffering, the RGBA color model, and a depth buffer, you might call
glutinitDisplayMod¢GLUT_DOUBLE | GLUT_RGB | GLUT_DEP)H

glutinitWindowPositiofint x, int y) specifies the screen location for the upper-left corner of your
window.

glutinitWindowsSiz@nt width, int size specifies the size, in pixels, of your window.

int glutCreateWindo\ichar *string) creates a window with an OpenGL context. It returns a unique
identifier for the new window. Be warned: UngiutMainLoop()is called (see next section), the
window is not yet displayed.

The Display Callback

glutDisplayFun¢void (*fung(void)) is the first and most important event callback function you will see.
Whenever GLUT determines the contents of the window need to be redisplayed, the callback function
registered byglutDisplayFunc()is executed. Therefore, you should put all the routines you need to
redraw the scene in the display callback function.

If your program changes the contents of the window, sometimes you will have to call
glutPostRedisplairoid), which givegylutMainLoop()a nudge to call the registered display callback at
its next opportunity.

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 12

Running the Program

The very last thing you must do is cglutMainLoogvoid). All windows that have been created are now
shown, and rendering to those windows is now effective. Event processing begins, and the registered
display callback is triggered. Once this loop is entered, it is never exited!

Example 1-8hows how you might use GLUT to create the simple program shown in Example 1-1 No
the restructuring of the code. To maximize efficiency, operations that need only be called once (setting
the background color and coordinate system) are now in a procedurdrif{ie@perations to render

(and possibly re-render) the scene are idigpay()procedure, which is the registered GLUT display
callback.

Example 1-2 Simple OpenGL Program Using GLUT: hello.c

#include <GL/gl.h>
#include <GL/glut.h>

void display(void)
{
[* clear all pixels */
glClear (GL_COLOR_BUFFER_BIT);

[* draw white polygon (rectangle) with corners at
* (0.25, 0.25, 0.0) and (0.75, 0.75, 0.0)
*/
glColor3f (1.0, 1.0, 1.0);
gIBegin(GL_POLYGON);
glVertex3f (0.25, 0.25, 0.0);
glVertex3f (0.75, 0.25, 0.0);
glVertex3f (0.75, 0.75, 0.0);
glVertex3f (0.25, 0.75, 0.0);
glEnd();

/* don’t wait!
* start processing buffered OpenGL routines
*/

glFlush ();

void init (void)

{

[* select clearing (background) color */
glClearColor (0.0, 0.0, 0.0, 0.0);

[* initialize viewing values */

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 13

glMatrixMode(GL_PROJECTION);
glLoadldentity();
glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);

/*
* Declare initial window size, position, and display mode
* (single buffer and RGBA). Open window with "hello”
* in its title bar. Call initialization routines.
* Register callback function to display graphics.
* Enter main loop and process events.
*/
int main(int argc, char** argv)
{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutinitWindowsSize (250, 250);
glutinitWindowPosition (100, 100);
glutCreateWindow ("hello");
init ();
glutDisplayFunc(display);
glutMainLoop();
return 0; /*ISO C requires main to return int. */

Handling Input Events
You can use these routines to register callback commands that are invoked when specified events oc

glutReshapeFurfeoid (*fung(int w, int h)) indicates what action should be taken when the window
is resized.

glutkeyboardFuntvoid (*func)(unsigned chakey int x, inty)) andglutMouseFunfvoid (*fung(int
button int state intx, int y)) allow you to link a keyboard key or a mouse button with a routine
that's invoked when the key or mouse button is pressed or released.

glutMotionFungvoid (*fung(int x, inty)) registers a routine to call back when the mouse is moved
while a mouse button is also pressed.

Managing a Background Process

You can specify a function that's to be executed if no other events are perdirexample, when the
event loop would otherwise be idlevith glutldleFungvoid (*fung(void)). This routine takes a pointer
to the function as its only argument. Pass in NULL (zero) to disable the execution of the function.

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 14

Drawing Three—Dimensional Objects

GLUT includes several routines for drawing these three—dimensional objects:

cone icosahedron teapot
cube octahedron tetrahedron
dodecahedron sphere torus

You can draw these objects as wireframes or as solid shaded objects with surface normals defined. F
example, the routines for a cube and a sphere are as follows:

void glutWireCub¢éGLdoublesizé);
void glutSolidCubéGLdoublesize;
void glutWireSpher@sLdoubleradius, GLintslices,GLint stacks;
void glutSolidSphergLdoubleradius GLint slices,GLint stacks;

All these models are drawn centered at the origin of the world coordinate system. (See for informatiot
on the prototypes of all these drawing routines.)

Animation

One of the most exciting things you can do on a graphics computer is draw pictures that move. Whett
you're an engineer trying to see all sides of a mechanical part you're designing, a pilot learning to fly ¢
airplane using a simulation, or merely a computer—game aficionado, it's cleanithation is an

important part of computer graphics.

In a movie theater, motion is achieved by taking a sequence of pictures and projecting them at 24 per
second on the screen. Each frame is moved into position behind the lens, the shutter is opened, and t
frame is displayed. The shutter is momentarily closed while the film is advanced to the next frame, the
that frame is displayed, and so on. Although you're watching 24 different frames each second, your bt
blends them all into a smooth animation. (The old Charlie Chaplin movies were shot at 16 frames per
second and are noticeably jerky.) In fact, most modern projectors display each picture twice at a rate «
48 per second to reduce flickering. Computer—graphics screens typically refresh (redraw the picture)
approximately 60 to 76 times per second, and some even run at about 120 refreshes per second. Cle
60 per second is smoother than 30, and 120 is marginally better than 60. Refresh rates faster than 12
however, are beyond the point of diminishing returns, since the human eye is only so good.

The key reason that motion picture projection works is that each frame is complete when it is displaye
Suppose you try to do computer animation of your million—frame movie with a program like this:
open_window();
for (i=0; i <1000000; i++) {

clear_the_window();

draw_frame(i);

wait_until_a_24th_of a second_is_over();

}

If you add the time it takes for your system to clear the screen and to draw a typical frame, this progra

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 15

gives more and more disturbing results depending on how close to 1/24 second it takes to clear and d
Suppose the drawing takes nearly a full 1/24 second. Items drawn first are visible for the full 1/24 secc
and present a solid image on the screen; items drawn toward the end are instantly cleared as the prog
starts on the next frame. They present at best a ghostlike image, since for most of the 1/24 second yo
eye is viewing the cleared background instead of the items that were unlucky enough to be drawn last
The problem is that this program doesn’t display completely drawn frames; instead, you watch the
drawing as it happens.

Most OpenGL implementations provideuble—bufferind] hardware or software that supplies two
complete color buffers. One is displayed while the other is being drawn. When the drawing of a frame
complete, the two buffers are swapped, so the one that was being viewed is now used for drawing, ar
vice versa. This is like a movie projector with only two frames in a loop; while one is being projected o
the screen, an artist is desperately erasing and redrawing the frame that’s not visible. As long as the ¢
is quick enough, the viewer notices no difference between this setup and one where all the frames are
already drawn and the projector is simply displaying them one after the other. With double-buffering,
every frame is shown only when the drawing is complete; the viewer never sees a partially drawn fran

A modified version of the preceding program that does display smoothly animated graphics might look
like this:

open_window_in_double_buffer_mode();
for (i = 0; i < 1000000; i++) {
clear_the_window();
draw_frame(i);
swap_the_buffers();

}

The Refresh That Pauses

For some OpenGL implementations, in addition to simply swapping the viewable and drawable buffer:
theswap_the_buffersfputine waits until the current screen refresh period is over so that the previous
buffer is completely displayed. This routine also allows the new buffer to be completely displayed,
starting from the beginning. Assuming that your system refreshes the display 60 times per second, thi
means that the fastest frame rate you can achieve is 60 frames per §egoaad(if all your frames can

be cleared and drawn in under 1/60 second, your animation will run smoothly at that rate.

What often happens on such a system is that the frame is too complicated to draw in 1/60 second, so
frame is displayed more than once. If, for example, it takes 1/45 second to draw a frame, you get 30 f]
and the graphics are idle for 1/30-1/45=1/90 second per frame, or one-third of the time.

In addition, the video refresh rate is constant, which can have some unexpected performance
consequences. For example, with the 1/60 second per refresh monitor and a constant frame rate, you
run at 60 fps, 30 fps, 20 fps, 15 fps, 12 fps, and so on (60/1, 60/2, 60/3, 60/4, 60/5, ...). That means th
you're writing an application and gradually adding features (say it's a flight simulator, and you're addir
ground scenery), at first each feature you add has no effect on the overall perfaryauneéll get 60

fps. Then, all of a sudden, you add one new feature, and the system can'’t quite draw the whole thing i

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 16

1/60 of a second, so the animation slows from 60 fps to 30 fps because it misses the first possible
buffer—-swapping time. A similar thing happens when the drawing time per frame is more than 1/30

secondl the animation drops from 30 to 20 fps.

If the scene’s complexity is close to any of the magic times (1/60 second, 2/60 second, 3/60 second, ¢
so on in this example), then because of random variation, some frames go slightly over the time and
some slightly under. Then the frame rate is irregular, which can be visually disturbing. In this case, if y
can’'t simplify the scene so that all the frames are fast enough, it might be better to add an intentional,
tiny delay to make sure they all miss, giving a constant, slower, frame rate. If your frames have
drastically different complexities, a more sophisticated approach might be necessary.

Motion = Redraw + Swap

The structure of real animation programs does not differ too much from this description. Usually, it is
easier to redraw the entire buffer from scratch for each frame than to figure out which parts require
redrawing. This is especially true with applications such as three—dimensional flight simulators where
tiny change in the plane’s orientation changes the position of everything outside the window.

In most animations, the objects in a scene are simply redrawn with different transform#tiens
viewpoint of the viewer moves, or a car moves down the road a bit, or an object is rotated slightly. If
significant recomputation is required for non—drawing operations, the attainable frame rate often slow:
down. Keep in mind, however, that the idle time aftersthap_the_buffersputine can often be used

for such calculations.

OpenGL doesn’'t haveswap_the_ buffersommand because the feature might not be available on all
hardware and, in any case, it's highly dependent on the window system. For example, if you are using
X Window System and accessing it directly, you might use the following GLX routine:

void gIXSwapBuffers(Displaydpy, Windowwindow);

(See Appendix C for equivalent routines for other window systems.)
If you are using the GLUT library, you'll want to call this routine:
void glutSwapBuffers(void);

Example 1-8lustrates the use aflutSwapBuffers(in an example that draws a spinning square as
shown in Figure 1-3 The following example also shows how to use GLUT to control an input device a
turn on and off an idle function. In this example, the mouse buttons toggle the spinning on and off.

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 17

Figure 1-3 Double—Buffered Rotating Square

Example 1-3 Double—-Buffered Program: double.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

static GLfloat spin = 0.0;

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);

}

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT);
glPushMatrix();
glRotatef(spin, 0.0, 0.0, 1.0);
glColor3f(1.0, 1.0, 1.0);
glRectf(-25.0, —25.0, 25.0, 25.0);
glPopMatrix();
glutSwapBuffers();

void spinDisplay(void)
{
spin = spin + 2.0;
if (spin > 360.0)
spin = spin — 360.0;
glutPostRedisplay();
}

void reshape(int w, int h)

{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
glOrtho(-50.0, 50.0, -50.0, 50.0, -1.0, 1.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

OpenGL Programming Guide — Chapter 1, Introduction to OpenGL - 18

void mouse(int button, int state, int x, inty)
{
switch (button) {
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN)
glutldleFunc(spinDisplay);
break;
case GLUT_MIDDLE_BUTTON:
if (state == GLUT_DOWN)
glutldleFunc(NULL);

break;
default:
break;
}
}
/*

* Request double buffer display mode.

* Register mouse input callback functions

*/

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
glutinitWindowsSize (250, 250);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMouseFunc(mouse);
glutMainLoop();
return O;

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 19

Chapter 2
State Management and Drawing Geometric Objects

Chapter Objectives
After reading this chapter, you'll be able to do the following:
Clear the window to an arbitrary color
Force any pending drawing to complete
Draw with any geometric primitiveé points, lines, and polygohkin two or three dimensions
Turn states on and off and query state variables
Control the display of those primitiviédor example, draw dashed lines or outlined polygons
Specifynormal vectorsat appropriate points on the surface of solid objects
Usevertex arraygo store and access a lot of geometric data with only a few function calls

Save and restore several state variables at once

Although you can draw complex and interesting pictures using OpenGL, they’re all constructed from a
small number of primitive graphical items. This shouldn’t be too surpfisiogk at what Leonardo da
Vinci accomplished with just pencils and paintbrushes.

At the highest level of abstraction, there are three basic drawing operations: clearing the window,
drawing a geometric object, and drawing a raster object. Raster objects, which include such things as
two—-dimensional images, bitmaps, and character fonts, are covered inChapter 8. In this chapter, you
learn how to clear the screen and to draw geometric objects, including points, straight lines, and flat
polygons.

You might think to yourself, "Wait a minute. I've seen lots of computer graphics in movies and on
television, and there are plenty of beautifully shaded curved lines and surfaces. How are those drawn
all OpenGL can draw are straight lines and flat polygons?" Even the image on the cover of this book
includes a round table and objects on the table that have curved surfaces. It turns out that all the curv
lines and surfaces you've seen are approximated by large numbers of little flat polygons or straight lin
in much the same way that the globe on the cover is constructed from a large set of rectangular block
The globe doesn’t appear to have a smooth surface because the blocks are relatively large compared
the globe. Later in this chapter, we show you how to construct curved lines and surfaces from lots of
small geometric primitives.

This chapter has the following major sections:

"A Drawing Survival Kit" explains how to clear the window and force drawing to be completed. It
also gives you basic information about controlling the color of geometric objects and describing a
coordinate system.

"Describing Points, Lines, and Polygons" shows you what the set of primitive geometric objects is
and how to draw them.

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 1

"Basic State Management" describes how to turn on and off some states (modes) and query state
variables.

"Displaying Points, Lines, and Polygons" explains what control you have over the details of how
primitives are drawnl for example, what diameter points have, whether lines are solid or dashed,
and whether polygons are outlined or filled.

"Normal Vectors" discusses how to specify normal vectors for geometric objects and (briefly) wha
these vectors are for.

"Vertex Arrays" shows you how to put lots of geometric data into just a few arrays and how, with
only a few function calls, to render the geometry it describes. Reducing function calls may increas
the efficiency and performance of rendering.

"Attribute Groups" reveals how to query the current value of state variables and how to save and
restore several related state values all at once.

"Some Hints for Building Polygonal Models of Surfaces" explores the issues and techniques
involved in constructing polygonal approximations to surfaces.

One thing to keep in mind as you read the rest of this chapter is that with OpenGL, unless you specify
otherwise, every time you issue a drawing command, the specified object is drawn. This might seem
obvious, but in some systems, you first make a list of things to draw. When your list is complete, you t
the graphics hardware to draw the items in the list. The first style is taheediate—modgraphics and

is the default OpenGL style. In addition to using immediate mode, you can choose to save some
commands in a list (calleddisplay lis) for later drawing. Immediate—mode graphics are typically easier
to program, but display lists are often more efficient. Chapter 7 tells you how to use display lists and w
you might want to use them.

A Drawing Survival Kit

This section explains how to clear the window in preparation for drawing, set the color of objects that :
to be drawn, and force drawing to be completed. None of these subjects has anything to do with
geometric objects in a direct way, but any program that draws geometric objects has to deal with thes
issues.

Clearing the Window

Drawing on a computer screen is different from drawing on paper in that the paper starts out white, ar
all you have to do is draw the picture. On a computer, the memory holding the picture is usually filled
with the last picture you drew, so you typically need to clear it to some background color before you st
to draw the new scene. The color you use for the background depends on the application. For a word
processor, you might clear to white (the color of the paper) before you begin to draw the text. If you're
drawing a view from a spaceship, you clear to the black of space before beginning to draw the stars,
planets, and alien spaceships. Sometimes you might not need to clear the screen at all; for example, i
image is the inside of a room, the entire graphics window gets covered as you draw all the walls.

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 2

At this point, you might be wondering why we keep talking alotedaringthe window1 why not just

draw a rectangle of the appropriate color that's large enough to cover the entire window? First, a spec
command to clear a window can be much more efficient than a general-purpose drawing command. |
addition, as you'll see in Chapter 3, OpenGL allows you to set the coordinate system, viewing positior
and viewing direction arbitrarily, so it might be difficult to figure out an appropriate size and location fo
a window—clearing rectangle. Finally, on many machines, the graphics hardware consists of multiple
buffers in addition to the buffer containing colors of the pixels that are displayed. These other buffers
must be cleared from time to time, and it's convenient to have a single command that can clear any
combination of them. (See Chapter 10 for a discussion of all the possible buffers.)

You must also know how the colors of pixels are stored in the graphics hardware krintplaass

There are two methods of storage. Either the red, green, blue, and alpha (RGBA) values of a pixel cal
directly stored in the bitplanes, or a single index value that references a color lookup table is stored.
RGBA color-display mode is more commonly used, so most of the examples in this book use it. (See
Chapter 4 for more information about both display modes.) You can safely ignore all references to alp
values until Chapter 6.

As an example, these lines of code clear an RGBA mode window to black:

glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);

The first line sets the clearing color to black, and the next command clears the entire window to the
current clearing color. The single parametegl@ear() indicates which buffers are to be cleared. In this
case, the program clears only the color buffer, where the image displayed on the screen is kept.
Typically, you set the clearing color once, early in your application, and then you clear the buffers as
often as necessary. OpenGL keeps track of the current clearing color as a state variable rather than
requiring you to specify it each time a buffer is cleared.

Chapter 4 and Chapter 10 talk about how other buffers are used. For now, all you need to know is tha
clearing them is simple. For example, to clear both the color buffer and the depth buffer, you would us
the following sequence of commands:

glClearColor(0.0, 0.0, 0.0, 0.0);
glClearDepth(1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

In this case, the call wlClearColor()is the same as before, thklearDepth()command specifies the
value to which every pixel of the depth buffer is to be set, and the parametegi®léae() command

now consists of the bitwise OR of all the buffers to be cleared. The following sumntaGiesr()

includes a table that lists the buffers that can be cleared, their names, and the chapter where each tyg
buffer is discussed.

void glClearColor(GLclampf red, GLclampf green, GLclampf blue,
GLclampf alpha);

Sets the current clearing color for use in clearing color buffers in RGBA mode. (See Chapter 4 for
more information on RGBA mode.) The red, green, blue, and alpha values are clamped if necess:

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 3

to the range [0,1]. The default clearing color is (0, 0, 0, 0), which is black.

void glClear(GLbitfield mask);
Clears the specified buffers to their current clearing values. The mask argument is a bitwise—ORe
combination of the values listed in Table 2-1

Buffer Name Reference
Color buffer GL_COLOR_BUFFER_BIT Chapter 4
Depth buffer GL_DEPTH_BUFFER_BIT Chapter 10
Accumulation buffer GL_ACCUM_BUFFER_BIT Chapter 10
Stencil buffer GL_STENCIL_BUFFER_BIT Chapter 10

Table 2-1 Clearing Buffers

Before issuing a command to clear multiple buffers, you have to set the values to which each buffer is
be cleared if you want something other than the default RGBA color, depth value, accumulation color,
and stencil index. In addition to tigéClearColor()andglClearDepth()commands that set the current
values for clearing the color and depth buffgit§learindex() gliClearAccum() andglClearStencil()

specify thecolor index accumulation color, and stencil index used to clear the corresponding buffers.
(See Chapter 4 and Chapter 10 for descriptions of these buffers and their uses.)

OpenGL allows you to specify multiple buffers because clearing is generally a slow operation, since
every pixel in the window (possibly millions) is touched, and some graphics hardware allows sets of
buffers to be cleared simultaneously. Hardware that doesn’t support simultaneous clears performs the
sequentially. The difference between

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

and

glClear(GL_COLOR_BUFFER_BIT);
glClear(GL_DEPTH_BUFFER_BIT);

is that although both have the same final effect, the first example might run faster on many machines.
certainly won't run more slowly.

Specifying a Color

With OpenGL, the description of the shape of an object being drawn is independent of the description
its color. Whenever a particular geometric object is drawn, it's drawn using the currently specified
coloring scheme. The coloring scheme might be as simple as "draw everything in fire—engine red," or
might be as complicated as "assume the object is made out of blue plastic, that there’s a yellow spotli
pointed in such and such a direction, and that there’s a general low-level reddish—brown light everyw!
else.” In general, an OpenGL programmer first sets the color or coloring scheme and then draws the
objects. Until the color or coloring scheme is changed, all objects are drawn in that color or using that
coloring scheme. This method helps OpenGL achieve higher drawing performance than would result i
didn’t keep track of the current color.

For example, the pseudocode

set_current_color(red);

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 4

draw_object(A);
draw_object(B);
set_current_color(green);
set_current_color(blue);
draw_object(C);

draws objects A and B in red, and object C in blue. The command on the fourth line that sets the curre
color to green is wasted.

Coloring, lighting, and shading are all large topics with entire chapters or large sections devoted to the
To draw geometric primitives that can be seen, however, you need some basic knowledge of how to <
the current color; this information is provided in the next paragraphs. (See Chapter 4 and Chapter 5 fc
details on these topics.)

To set a color, use the commagi@olor3f(). It takes three parameters, all of which are floating—point
numbers between 0.0 and 1.0. The parameters are, in order, the red, green, eordbunentsf the

color. You can think of these three values as specifying a "mix" of colors: 0.0 means don'’t use any of
that component, and 1.0 means use all you can of that component. Thus, the code

glColor3f(1.0, 0.0, 0.0);

makes the brightest red the system can draw, with no green or blue components. All zeros makes bla
in contrast, all ones makes white. Setting all three components to 0.5 yields gray (halfway between bl:
and white). Here are eight commands and the colors they would set.

glColor3f(0.0, 0.0, 0.0); black
glColor3f(1.0, 0.0, 0.0); red
glColor3f(0.0, 1.0, 0.0); green
glColor3f(1.0, 1.0, 0.0); yellow
glColor3f(0.0, 0.0, 1.0); blue
glColor3f(1.0, 0.0, 1.0); magenta
glColor3f(0.0, 1.0, 1.0); cyan
glColor3f(1.0, 1.0, 1.0); white

You might have noticed earlier that the routine to set the clearing gtidearColor() takes four
parameters, the first three of which match the parametegtGotor3f(). The fourth parameter is the
alpha value; it's covered in detail in "Blending" in Chapter 6. For now, set the fourth parameter of
glClearColor() to 0.0, which is its default value.

Forcing Completion of Drawing

As you saw in "OpenGL Rendering Pipeline" in Chapter 1, most modern graphics systems can be
thought of as an assembly line. The main central processing unit (CPU) issues a drawing command.
Perhaps other hardware does geometric transformations. Clipping is performed, followed by shading
and/or texturing. Finally, the values are written into the bitplanes for display. In high—end architectures
each of these operations is performed by a different piece of hardware that's been designed to perfort
particular task quickly. In such an architecture, there’s no need for the CPU to wait for each drawing
command to complete before issuing the next one. While the CPU is sending a vertex down the pipeli

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 5

the transformation hardware is working on transforming the last one sent, the one before that is being
clipped, and so on. In such a system, if the CPU waited for each command to complete before issuing
next, there could be a huge performance penalty.

In addition, the application might be running on more than one machine. For example, suppose that tf
main program is running elsewhere (on a machine called the client) and that you're viewing the result:
the drawing on your workstation or terminal (the server), which is connected by a network to the client
In that case, it might be horribly inefficient to send each command over the network one at a time, sin
considerable overhead is often associated with each network transmission. Usually, the client gathers
collection of commands into a single network packet before sending it. Unfortunately, the network cod
on the client typically has no way of knowing that the graphics program is finished drawing a frame or
scene. In the worst case, it waits forever for enough additional drawing commands to fill a packet, anc
you never see the completed drawing.

For this reason, OpenGL provides the commgifidush(), which forces the client to send the network
packet even though it might not be full. Where there is no network and all commands are truly execute
immediately on the servaglFlush() might have no effect. However, if you're writing a program that you
want to work properly both with and without a network, include a calRtush()at the end of each

frame or scene. Note thgiFlush() doesn’t wait for the drawing to completét just forces the drawing

to begin execution, thereby guaranteeing that all previous comregecistan finite time even if no

further rendering commands are executed.

There are other situations whegl€&lush() is useful.

Software renderers that build image in system memory and don’t want to constantly update the
screen.

Implementations that gather sets of rendering commands to amortize start-up costs. The
aforementioned network transmission example is one instance of this.

void glFlush(void);
Forces previously issued OpenGL commands to begin execution, thus guaranteeing that they
complete in finite time.

A few commands! for example, commands that swap buffers in double-bufferiiramatematically
flush pending commands onto the network before they can occur.

If glFlush()isn’t sufficient for you, tryglFinish(). This command flushes the networkgiBlush() does

and then waits for notification from the graphics hardware or network indicating that the drawing is
complete in the framebuffer. You might need to gisénish() if you want to synchronize tasksfor

example, to make sure that your three—dimensional rendering is on the screen before you use Display
PostScript to draw labels on top of the rendering. Another example would be to ensure that the drawir
complete before it begins to accept user input. After you isgliérash() command, your graphics

process is blocked until it receives notification from the graphics hardware that the drawing is complet
Keep in mind that excessive usegiffinish() can reduce the performance of your application, especially
if you're running over a network, because it requires round-trip communicatitfiugh()is sufficient

for your needs, use it insteadgbFinish().

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 6

void glFinish(void);
Forces all previously issued OpenGL commands to complete. This command doesn’t return until i
effects from previous commands are fully realized.

Coordinate System Survival Kit

Whenever you initially open a window or later move or resize that window, the window system will ser
an event to notify you. If you are using GLUT, the notification is automated; whatever routine has beel
registered tglutReshapeFuncill be called. You must register a callback function that will

Reestablish the rectangular region that will be the new rendering canvas

Define the coordinate system to which objects will be drawn

In Chapter 3 you'll see how to define three—dimensional coordinate systems, but right now, just create
simple, basic two—-dimensional coordinate system into which you can draw a few objects. Call
glutReshapeFurfeshap@, wherereshape()is the following function shown in Example 2-1

Example 2-1 Reshape Callback Function

void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode (GL_PROJECTION);
glLoadldentity ();
gluOrtho2D (0.0, (GLdouble) w, 0.0, (GLdouble) h);

}

The internals of GLUT will pass this function two arguments: the width and height, in pixels, of the nev
moved, or resized windowlViewport()adjusts the pixel rectangle for drawing to be the entire new
window. The next three routines adjust the coordinate system for drawing so that the lower-left corne
(0, 0), and the upper-right cornemsf) (See Figure 2-1).

To explain it another way, think about a piece of graphing papemw Emelh values inreshape()

represent how many columns and rows of squares are on your graph paper. Then you have to put ax:
the graph paper. ThgguOrtho2D() routine puts the origin, (0, 0), all the way in the lowest, leftmost
square, and makes each square represent one unit. Now when you render the points, lines, and polyc
in the rest of this chapter, they will appear on this paper in easily predictable squares. (For now, keep
your objects two—dimensional.)

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 7

Figure 2-1 Coordinate System Defined by w = 50, h = 50

Describing Points, Lines, and Polygons

This section explains how to describe OpenGL geometric primitives. All geometric primitives are
eventually described in terms of theartice$] coordinates that define the points themselves, the
endpoints of line segments, or the corners of polygons. The next section discusses how these primitiv
are displayed and what control you have over their display.

What Are Points, Lines, and Polygons?

You probably have a fairly good idea of what a mathematician means by the@ténthine, and
polygon. The OpenGL meanings are similar, but not quite the same.

One difference comes from the limitations of computer—based calculations. In any OpenGL
implementation, floating—point calculations are of finite precision, and they have round-off errors.
Consequently, the coordinates of OpenGL points, lines, and polygons suffer from the same problems.

Another more important difference arises from the limitations of a raster graphics display. On such a
display, the smallest displayable unit is a pixel, and although pixels might be less than 1/100 of an inc
wide, they are still much larger than the mathematician’s concepts of infinitely small (for points) or
infinitely thin (for lines). When OpenGL performs calculations, it assumes points are represented as
vectors of floating—point numbers. However, a point is typically (but not always) drawn as a single pixt
and many different points with slightly different coordinates could be drawn by OpenGL on the same
pixel.

Points

A point is represented by a set of floating—point numbers caliedex. All internal calculations are
done as if vertices are three—dimensional. Vertices specified by the user as two—-dimensional (that is,
only x andy coordinates) are assigned eoordinate equal to zero by OpenGL.

Advanced

OpenGL works in thomogeneous coordinatesf three—dimensional projective geometry, so for

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 8

internal calculations, all vertices are represented with four floating—point coordingtesw). If w is
different from zero, these coordinates correspond to the Euclidean three—dimensiondlpaifv

z/w). You can specify ther coordinate in OpenGL commands, but that's rarely done. iftb@ordinate
isn't specified, it's understood to be 1.0. (See Appendix F for more information about homogeneous
coordinate systems.)

Lines

In OpenGL, the terrine refers to dine segmentnot the mathematician’s version that extends to infinity
in both directions. There are easy ways to specify a connected series of line segments, or even a clos
connected series of segments (see Figure 2-2. In all cases, though, the lines constituting the connect
series are specified in terms of the vertices at their endpoints.

Figure 2-2 Two Connected Series of Line Segments

Polygons

Polygons are the areas enclosed by single closed loops of line segments, where the line segments ar
specified by the vertices at their endpoints. Polygons are typically drawn with the pixels in the interior
filled in, but you can also draw them as outlines or a set of points. (See "Polygon Details.")

In general, polygons can be complicated, so OpenGL makes some strong restrictions on what constiti
a primitive polygon. First, the edges of OpenGL polygons can’t intersect (a mathematician would call ¢
polygon satisfying this conditionsimple polygoh Second, OpenGL polygons mustdm#vex meaning

that they cannot have indentations. Stated precisely, a region is convex if, given any two points in the
interior, the line segment joining them is also in the interior. See Figure 2-3for some examples of vali(
and invalid polygons. OpenGL, however, doesn't restrict the number of line segments making up the
boundary of a convex polygon. Note that polygons with holes can’t be described. Thegp@mevex

and they can’t be drawn with a boundary made up of a single closed loop. Be aware that if you preser
OpenGL with a nonconvex filled polygon, it might not draw it as you expect. For instance, on most
systems no more than tbhenvex hull of the polygon would be filled. On some systems, less than the
convex hull might be filled.

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 9

Figure 2-3 Valid and Invalid Polygons

The reason for the OpenGL restrictions on valid polygon types is that it's simpler to provide fast
polygon-rendering hardware for that restricted class of polygons. Simple polygons can be rendered
quickly. The difficult cases are hard to detect quickly. So for maximum performance, OpenGL crosses
fingers and assumes the polygons are simple.

Many real-world surfaces consist of nonsimple polygons, nonconvex polygons, or polygons with hole:
Since all such polygons can be formed from unions of simple convex polygons, some routines to builc
more complex objects are provided in the GLU library. These routines take complex descriptions and
tessellate them, or break them down into groups of the simpler OpenGL polygons that can then be
rendered. (See "Polygon Tessellation" in Chapter 11 for more information abtagsgiéation

routines.)

Since OpenGL vertices are always three—dimensional, the points forming the boundary of a particular
polygon don’t necessarily lie on the same plane in space. (Of course, they do in manyifcabte z
coordinates are zero, for example, or if the polygortimagle.) If a polygon’s vertices don't lie in the
same plane, then after various rotations in space, changes in the viewpoint, and projection onto the
display screen, the points might no longer form a simple convex polygon. For example, imagine a
four—poinguadrilateralwhere the points are slightly out of plane, and look at it almost edge-on. You cz
get a nonsimple polygon that resembles a bow tie, as shown in Figure 2—4 which isn’t guaranteed to t
rendered correctly. This situation isn’t all that unusual if you approximate curved surfaces by
guadrilaterals made of points lying on the true surface. You can always avoid the problem by using
triangles, since any three points always lie on a plane.

Figure 2—-4 Nonplanar Polygon Transformed to Nonsimple Polygon

Rectangles

Since rectangles are so common in graphics applications, OpenGL provides a filled-rectangle drawin
primitive, glRect*() You can draw a rectangle as a polygon, as described in "OpenGL Geometric
Drawing Primitives," but your particular implementation of OpenGL might have optingiRstt*() for

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 10

rectangles.

void glRect{sifd}(TYPEx1, TYPEy1, TYPEX2, TYPEY2);

void glRect{sifd}v(TYPE*v1, TYPE*v2);
Draws the rectangle defined by the corner points (x1, y1) and (x2, y2). The rectangle lies in the
plane z=0 and has sides parallel to the x—nalxes. If the vector form of the function is used, the
corners are given by two pointers to arrays, each of which contains an (x, y) pair.

Note that although the rectangle begins with a particular orientation in three—dimensional space (in th
x—yplane and parallel to the axes), you can change this by applying rotations or other transformations.
(See Chapter 3 for information about how to do this.)

Curves and Curved Surfaces

Any smoothly curved line or surface can be approxinatedany arbitrary degree of accuratpy

short line segments or small polygonal regions. Thus, subdividing curved lines and surfaces sufficient
and then approximating them with straight line segments or flat polygons makes them appear curved
Figure 2-5. If you're skeptical that this really works, imagine subdividing until each line segment or
polygon is so tiny that it's smaller than a pixel on the screen.

Figure 2-5 Approximating Curves

Even though curves aren’t geometric primitives, OpenGL does provide some direct support for
subdividing and drawing them. (See Chapter 12 for information about how to draw curves and curved
surfaces.)

Specifying Vertices

With OpenGL, all geometric objects are ultimately described as an ordered set of vertices. You use th
glVertex*() command to specify a vertex.

void glVertex{234}{sifd}[v](TYPEcoords);
Specifies a vertex for use in describing a geometric object. You can supply up to four coordinates
Yy, z, w) for a particular vertex or as few as two (X, y) by selecting the appropriate version of the
command. If you use a version that doesn’t explicitly specify z or w, zis understood to be 0 and w
understood to be 1. Calls to glVertex*() are only effective between a gIiBegin() and glEnd() pair.

Example 2-provides some examples of usigkyertex*()

Example 2-2 Legal Uses of glVertex*()

glVertex2s(2, 3);
glVertex3d(0.0, 0.0, 3.1415926535898);

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 11

glVertex4f(2.3, 1.0, -2.2, 2.0);

GLdouble dvect[3] ={5.0, 9.0, 1992.0};
glVertex3dv(dvect);

The first example represents a vertex with three—dimensional coordinates (2, 3, 0). (Remember that if
isn’t specified, the coordinate is understood to be 0.) The coordinates in the second example are (0.0,
0.0, 3.1415926535898) (double—precision floating—point numbers). The third example represents the
vertex with three—dimensional coordinates (1.15, 0.5, —-1.1). (Remember ¥hat &inelz coordinates

are eventually divided by th&coordinate.) In the final exampldyectis a pointer to an array of three
double—precision floating—point numbers.

On some machines, the vector forngbfertex*() is more efficient, since only a single parameter needs
to be passed to the graphics subsystem. Special hardware might be able to send a whole series of
coordinates in a single batch. If your machine is like this, it's to your advantage to arrange your data s
that the vertex coordinates are packed sequentially in memory. In this case, there may be some gain i
performance by using the vertex array operations of OpenGL. (See "Vertex Arrays.")

OpenGL Geometric Drawing Primitives

Now that you've seen how to specify vertices, you still need to know how to tell OpenGL to create a st
of points, a line, or a polygon from those vertices. To do this, you bracket each set of vertices betweet
call toglBegin()and a call t@lEnd() The argument passeddtBegin()determines what sort of

geometric primitive is constructed from the vertices. For example, Example 2-3 specifies the vertices 1
the polygon shown in Figure 2—-6

Example 2-3 Filled Polygon

glBegin(GL_POLYGON);
glVertex2f(0.0, 0.0);
glVertex2f(0.0, 3.0);
glVertex2f(4.0, 3.0);
glVertex2f(6.0, 1.5);
glVertex2f(4.0, 0.0);
glEnd();

Figure 2-6 Drawing a Polygon or a Set of Points

If you had used GL_POINTS instead of GL_POLYGON, the primitive would have been simply the five
points shown in Figure 2—-6 Table 2r2he following function summary fagiBegin()lists the ten
possible arguments and the corresponding type of primitive.

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 12

void glBegin(GLenum mode);
Marks the beginning of a vertex—data list that describes a geometric primitive. The type of primitiv
is indicated by mode, which can be any of the values shown in Table 2-2

Value Meaning

GL_POINTS individual points

GL_LINES pairs of vertices interpreted as individual line segments

GL_LINE_STRIP series of connected line segments

GL_LINE_LOOP same as above, with a segment added between last and first
vertices

GL_TRIANGLES triples of vertices interpreted as triangles

GL_TRIANGLE_STRIP linked strip of triangles

GL_TRIANGLE_FAN linked fan of triangles

GL_QUADS qguadruples of vertices interpreted as four—sided polygons

GL_QUAD_STRIP linked strip of quadrilaterals

GL_POLYGON boundary of a simple, convex polygon

Table 2-2 Geometric Primitive Names and Meanings

void glEnd(void);

Marks the end of a vertex—data list.
Figure 2—-7shows examples of all the geometric primitives listed in Table 2-2 The paragraphs that foll
the figure describe the pixels that are drawn for each of the objects. Note that in addition to points,

several types of lines and polygons are defined. Obviously, you can find many ways to draw the same
primitive. The method you choose depends on your vertex data.

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 13

Figure 2—-7 Geometric Primitive Types

As you read the following descriptions, assume thagrtices (vO, v1, v2, ..., vn—1) are described

between alBegin()andglEnd() pair.
GL_POINTS Draws a point at each of theertices.

GL_LINES Draws a series of unconnected line segments. Segments are
drawn between vO and v1, between v2 and v3, and somn. If
is odd, the last segment is drawn between vn-3 and vn-2, and
vn-1 is ignored.

GL_LINE_STRIP Draws a line segment from vO to v1, then from v1 to v2, and so
on, finally drawing the segment from vn-2 to vn-1. Thus, a
total of n-1 line segments are drawn. Nothing is drawn untess
is larger than 1. There are no restrictions on the vertices
describing a line strip (or a line loop); the lines can intersect

arbitrarily.

GL_LINE_LOOP Same as GL_LINE_STRIP, except that a final line segment is
drawn from vn-1 to v0O, completing a loop.

GL_TRIANGLES Draws a series of triangles (three-sided polygons) using

vertices vO, v1, v2, then v3, v4, v5, and so om. isn’'t an
exact multiple of 3, the final one or two vertices are ignored.
GL_TRIANGLE_STRIP Draws a series of triangles (three—sided polygons) using

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 14

vertices vO, v1, v2, then v2, v1, v3 (note the order), then v2,
v3, v4, and so on. The ordering is to ensure that the triangles
are all drawn with the same orientation so that the strip can
correctly form part of a surface. Preserving the orientation is
important for some operations, such as culling. (See
"Reversing and Culling Polygon Faces"jnust be at least 3
for anything to be drawn.

GL_TRIANGLE_FAN Same as GL_TRIANGLE_STRIP, except that the vertices are
v0, v1, v2, then vO, v2, v3, then vO, v3, v4, and so on (see
Figure 2-7).

GL_QUADS Draws a series of quadrilaterals (four—sided polygons) using

vertices vO, v1, v2, v3, then v4, v5, v6, v7, and so amidf’t

a multiple of 4, the final one, two, or three vertices are ignored.
GL_QUAD_STRIP Draws a series of quadrilaterals (four—sided polygons)

beginning with v0, v1, v3, v2, then v2, v3, v5, v4, then v4, v5,

V7, v6, and so on (see Figure 2+/must be at least 4 before

anything is drawn. If is odd, the final vertex is ignored.
GL_POLYGON Draws a polygon using the points vO, ... , vn—1 as vertices.

must be at least 3, or nothing is drawn. In addition, the polygon
specified must not intersect itself and must be convex. If the
vertices don't satisfy these conditions, the results are
unpredictable.

Restrictions on Using glBegin() and glEnd()

The most important information about vertices is their coordinates, which are specified by the
glVertex*() command. You can also supply additional vertex—specific data for eaclih@iteior, a
normal vector, texture coordinates, or any combination of theseng special commands. In addition, a

few other commands are valid betweeagilegin()andglEnd()pair. Table 2—-3contains a complete list
of such valid commands.

Command Purpose of Command Reference
glVertex*() set vertex coordinates Chapter 2
glColor*() set current color Chapter 4
glindex*() set current color index Chapter 4
glNormal*() set normal vector coordinates Chapter 2
glTexCoord*() set texture coordinates Chapter 9
glEdgeFlag*() control drawing of edges Chapter 2
glMaterial*() set material properties Chapter 5
glArrayElement() extract vertex array data Chapter 2
glEvalCoord*(), glEvalPoint*() generate coordinates Chapter 12
glCallList(), glCallLists() execute display list(s) Chapter 7

Table 2-3Valid Commands between glBegin() and glEnd()

No other OpenGL commands are valid betwegtBagin()andglEnd() pair, and making most other

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 15

OpenGL calls generates an error. Some vertex array commands, gliehaseClientState@nd
glVertexPointer() when called betweeagiBegin()andglEnd(), have undefined behavior but do not
necessarily generate an error. (Also, routines related to OpenGL, gyl&ti(gsoutines have undefined
behavior betweeglBegin()andglEnd()) These cases should be avoided, and debugging them may be
more difficult.

Note, however, that only OpenGL commands are restricted; you can certainly include other
programming—language constructs (except for calls, such as the aforemegikdf)embutines). For
example, Example 2-e4aws an outlined circle.

Example 2-4 Other Constructs between glBegin() and glEnd()

#define PI 3.1415926535898

GLint circle_points = 100;

glBegin(GL_LINE_LOOP);

for (i = 0; i < circle_points; i++) {
angle = 2*PI*i/circle_points;
glVertex2f(cos(angle), sin(angle));

}

glEnd();

Note: This example isn’'t the most efficient way to draw a circle, especially if you intend to do it
repeatedly. The graphics commands used are typically very fast, but this code calculates an angle an
calls thesin() andcos()routines for each vertex; in addition, there’s the loop overhead. (Another way to
calculate the vertices of a circle is to use a GLU routine; see "Quadrics: Rendering Spheres, Cylinder:
and Disks" in Chapter 11.) If you need to draw lots of circles, calculate the coordinates of the vertices
once and save them in an array and create a display list (see Chapter 7), or use vertex arrays to rend
them.

Unless they are being compiled into a display listglertex*()commands should appear between
someglBegin()andglEnd()combination. (If they appear elsewhere, they don’t accomplish anything.) If
they appear in a display list, they are executed only if they appear betgisga()and aglEnd()

(See Chapter 7 for more information about display lists.)

Although many commands are allowed betwgiegin()andglEnd() vertices are generated only when
aglVertex*()command is issued. At the mome@hVertex*()is called, OpenGL assigns the resulting
vertex the current color, texture coordinates, normal vector information, and so on. To see this, look a
the following code sequence. The first point is drawn in red, and the second and third ones in blue,
despite the extra color commands.

glBegin(GL_POINTS);

glColor3f(0.0, 1.0, 0.0); [* green */
glColor3f(1.0, 0.0, 0.0); [* red */
glVertex(...);

glColor3f(1.0, 1.0, 0.0); /* yellow */
glColor3f(0.0, 0.0, 1.0); /* blue */
glVertex(...);

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 16

glVertex(...);
glEnd();

You can use any combination of the 24 versions oft¥iertex*()command betweeglBegin()and

glEnd(), although in real applications all the calls in any particular instance tend to be of the same forn
If your vertex—data specification is consistent and repetitive (for exagt@tdor*, glVertex* glColor*,
glVertex*...), you may enhance your program’s performance by using vertex arrays. (See "Vertex
Arrays.")

Basic State Management

In the previous section, you saw an example of a state variable, the current RGBA color, and how it c:
be associated with a primitive. OpenGL maintains many states and state variables. An object may be
rendered with lighting, texturing, hidden surface removal, fog, or some other states affecting its
appearance.

By default, most of these states are initially inactive. These states may be costly to activate; for examj
turning on texture mapping will almost certainly slow down the speed of rendering a primitive. Howeve
the quality of the image will improve and look more realistic, due to the enhanced graphics capabilities

To turn on and off many of these states, use these two simple commands:

void glEnable(GLenum cap);
void glDisable(GLenum cap);

glEnable() turns on a capability, and glDisable() turns it off. There are over 40 enumerated values
that can be passed as a parameter to glEnable() or gIDisable(). Some examples of these are
GL_BLEND (which controls blending RGBA values), GL_DEPTH_TEST (which controls depth
comparisons and updates to the depth buffer), GL_FOG (which controls fog), GL_LINE_STIPPLE
(patterned lines), GL_LIGHTING (you get the idea), and so forth.

You can also check if a state is currently enabled or disabled.

GLboolean glisEnabled(GLenum capability)
Returns GL_TRUE or GL_FALSE, depending upon whether the queried capability is currently
activated.

The states you have just seen have two settings: on and off. However, most OpenGL routines set valt
for more complicated state variables. For example, the ragittaor3f() sets three values, which are

part of the GL_CURRENT_COLOR state. There are five querying routines used to find out what value
are set for many states:

void glGetBooleanv(GLenum pname, GLboolean *params);
void glGetintegerv(GLenum pname, GLint *params);

void glGetFloatv(GLenum pname, GLfloat *params);

void glGetDoublev(GLenum pname, GLdouble *params);
void glGetPointerv(GLenum pname, GLvoid **params);

Obtains Boolean, integer, floating—point, double—precision, or pointer state variablgmarhe
argument is a symbolic constant indicating the state variable to return, and params is a pointer to
an array of the indicated type in which to place the returned data. See the tables in Appendix B fo

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 17

the possible values for pname. For example, to get the current RGBA color, a table in Appendix B
suggests you use glGetintegerv(GL_CURRENT_COLOR, params) or
glGetFloatv(GL_CURRENT_COLOR, params). A type conversion is performed if necessary to
return the desired variable as the requested data type.

These querying routines handle most, but not all, requests for obtaining state information. (See "The
Query Commands" in Appendix B for an additional 16 querying routines.)

Displaying Points, Lines, and Polygons

By default, a point is drawn as a single pixel on the screen, a line is drawn solid and one pixel wide, al
polygons are drawn solidly filled in. The following paragraphs discuss the details of how to change the
default display modes.

Point Details

To control the size of a rendered point, ghointSize(and supply the desired size in pixels as the
argument.

void glPointSize(GLfloat size);
Sets the width in pixels for rendered points; size must be greater than 0.0 and by default is 1.0.

The actual collection of pixels on the screen which are drawn for various point widths depends on
whether antialiasing is enabled. (Antialiasing is a technique for smoothing points and lines as they're
rendered; see "Antialiasing" in Chapter 6 for more detail.) If antialiasing is disabled (the default),
fractional widths are rounded to integer widths, and a screen—aligned square region of pixels is drawn
Thus, if the width is 1.0, the square is 1 pixel by 1 pixel; if the width is 2.0, the square is 2 pixels by 2
pixels, and so on.

With antialiasing enabled, a circulgiroup of pixels is drawn, and the pixels on the boundaries are
typically drawn at less than full intensity to give the edge a smoother appearance. In this mode,
non-integer widths aren’t rounded.

Most OpenGL implementations support very large point sizes. The maximum size for antialiased poin
is queryable, but the same information is not available for standard, aliased points. A particular
implementation, however, might limit the size of standard, aliased points to not less than its maximum
antialiased point size, rounded to the nearest integer value. You can obtain this floating—point value b
using GL_POINT_SIZE_RANGE witglGetFloatv()

Line Details

With OpenGL, you can specify lines with different widths and lines thadtgmgledin various
wayd] dotted, dashed, drawn with alternating dots and dashes, and so on.

Wide Lines

void glLineWidth(GLfloat width);
Sets the width in pixels for rendered lines; width must be greater than 0.0 and by default is 1.0.

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 18

The actual rendering of lines is affected by the antialiasing mode, in the same way as for points. (See
"Antialiasing" in Chapter 6.) Without antialiasing, widths of 1, 2, and 3 draw lines 1, 2, and 3 pixels
wide. With antialiasing enabled, non—integer line widths are possible, and pixels on the boundaries ar
typically drawn at less than full intensity. As with point sizes, a particular OpenGL implementation
might limit the width of nonantialiased lines to its maximum antialiased line width, rounded to the
nearest integer value. You can obtain this floating—point value by using GL_LINE_WIDTH_RANGE
with glGetFloatv()

Note: Keep in mind that by default lines are 1 pixel wide, so they appear wider on lower-resolution
screens. For computer displays, this isn’t typically an issue, but if you're using OpenGL to render to a
high-resolution plotter, 1-pixel lines might be nearly invisible. To obtain resolution-independent line

widths, you need to take into account the physical dimensions of pixels.
Advanced

With nonantialiased wide lines, the line width isn’'t measured perpendicular to the line. Instead, it's
measured in thg direction if the absolute value of the slope is less than 1.0; otherwise, it's measured ir
thex direction. The rendering of an antialiased line is exactly equivalent to the rendering of a filled
rectangle of the given width, centered on the exact line.

Stippled Lines

To make stippled (dotted or dashed) lines, you use the congliandStipple()to define thestipple
pattern, and then you enable line stippling vgllEnable()

glLineStipple(1, Ox3F07);
glEnable(GL_LINE_STIPPLE);

void glLineStipple(GLint factor, GLushort pattern);

Sets the current stippling pattern for lines. The pattern argument is a 16-bit series of Os and 1s, a
it's repeated as necessary to stipple a given line. A 1 indicates that drawing occurs, and 0 that it
does not, on a pixel-by—pixel basis, beginning with the low-order bit of the pattern. The pattern ci
be stretched out by using factor, which multiplies each subseries of consecutive 1s and 0s. Thus,
three consecutive 1s appear in the pattern, they're stretched to six if factor is 2. factor is clamped
lie between 1 and 255. Line stippling must be enabled by passing GL_LINE_STIPPLE to glEnable
it's disabled by passing the same argument to glDisable().

With the preceding example and the pattern 0x3F07 (which translates to 0011111100000111 in binanr
line would be drawn with 3 pixels on, then 5 off, 6 on, and 2 off. (If this seems backward, remember th
the low-order bit is used first.)ftfctor had been 2, the pattern would have been elongated: 6 pixels on,
10 off, 12 on, and 4 off. Figure 2-8shows lines drawn with different patterns and repeat factors. If you
don’t enable line stippling, drawing proceeds gmiternwere OxFFFF anthctor 1. (UseglDisable()

with GL_LINE_STIPPLE to disable stippling.) Note that stippling can be used in combination with wide
lines to produce wide stippled lines.

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 19

Figure 2—8 Stippled Lines

One way to think of the stippling is that as the line is being drawn, the pattern is shifted by 1 bit each
time a pixel is drawn (ofactorpixels are drawn, ifactorisn’t 1). When a series of connected line
segments is drawn between a singlRegin()andglEnd() the pattern continues to shift as one segment
turns into the next. This way, a stippling pattern continues across a series of connected line segments
WhenglEnd() is executed, the pattern is reset,@nfdmore lines are drawn before stippling is

disabled] the stippling restarts at the beginning of the pattern. If you're drawing lines with GL_LINES,
the pattern resets for each independent line.

Example 2-8lustrates the results of drawing with a couple of different stipple patterns and line widths.
It also illustrates what happens if the lines are drawn as a series of individual segments instead of a si
connected line strip. The results of running the program appear in Figure 2-9

Figure 2—-9 Wide Stippled Lines

Example 2-5 Line Stipple Patterns: lines.c

#include <GL/gl.h>
#include <GL/glut.h>

#define drawOneLine(x1,y1,x2,y2) glBegin(GL_LINES); \
glVertex2f ((x1),(y1)); glVertex2f ((x2),(y2)); glEnd();

void init(void)

{

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 20

glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);

}

void display(void)
{

int i

glClear (GL_COLOR_BUFFER_BIT);
/* select white for all lines */
glColor3f (1.0, 1.0, 1.0);

/*in 1st row, 3 lines, each with a different stipple */
glEnable (GL_LINE_STIPPLE);

glLineStipple (1, 0x0101); /* dotted */
drawOneLine (50.0, 125.0, 150.0, 125.0);
glLineStipple (1, OXO0FF); /* dashed */
drawOneLine (150.0, 125.0, 250.0, 125.0);
glLineStipple (1, O0x1C47); /* dash/dot/dash */
drawOneLine (250.0, 125.0, 350.0, 125.0);
/*in 2nd row, 3 wide lines, each with different stipple */
glLineWidth (5.0);
glLineStipple (1, 0x0101); /* dotted */
drawOneLine (50.0, 100.0, 150.0, 100.0);
glLineStipple (1, OXO0FF); /* dashed */
drawOneLine (150.0, 100.0, 250.0, 100.0);
glLineStipple (1, 0x1C47); /* dash/dot/dash */
drawOneLine (250.0, 100.0, 350.0, 100.0);
glLineWidth (1.0);

/*in 3rd row, 6 lines, with dash/dot/dash stipple */
[* as part of a single connected line strip */
glLineStipple (1, 0x1C47); /* dash/dot/dash */
glBegin (GL_LINE_STRIP);
for (1=0;i<7;i++)
glvertex2f (50.0 + ((GLfloat) i * 50.0), 75.0);
glEnd ();

/* in 4th row, 6 independent lines with same stipple */
for (i=0;i<6;i++){
drawOneLine (50.0 + ((GLfloat) i * 50.0), 50.0,
50.0 + ((GLfloat)(i+1) * 50.0), 50.0);

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 21

/*in 5th row, 1 line, with dash/dot/dash stipple */

[* and a stipple repeat factor of 5 */
glLineStipple (5, 0x1C47); /* dash/dot/dash */
drawOneLine (50.0, 25.0, 350.0, 25.0);

glDisable (GL_LINE_STIPPLE);
glFlush ();

}

void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadldentity ();
gluOrtho2D (0.0, (GLdouble) w, 0.0, (GLdouble) h);
}
int main(int argc, char** argv)
{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutinitWindowsSize (400, 150);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();
return O;

}

Polygon Details

Polygons are typically drawn by filling in all the pixels enclosed within the boundary, but you can also
draw them as outlined polygons or simply as points at the vertices. A filled polygon might be solidly
filled or stippled with a certain pattern. Although the exact details are omitted here, filled polygons are
drawn in such a way that if adjacent polygons share an edge or vertex, the pixels making up the edge
vertex are drawn exactly oridehey’re included in only one of the polygons. This is done so that
partially transparent polygons don’t have their edges drawn twice, which would make those edges apj
darker (or brighter, depending on what color you're drawing with). Note that it might result in narrow
polygons having no filled pixels in one or more rows or columns of pixels. Antialiasing polygons is moi
complicated than for points and lines. (See "Antialiasing" in Chapter 6 for details.)

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 22

Polygons as Points, Outlines, or Solids

A polygon has two sidésfront and backl and might be rendered differently depending on which side is
facing the viewer. This allows you to have cutaway views of solid objects in which there is an obvious
distinction between the parts that are inside and those that are outside. By default, both front and bacl
faces are drawn in the same way. To change this, or to draw only outlines or vertices, use
glPolygonMode()

void glPolygonMode(GLenum face, GLenum mode);
Controls the drawing mode for a polygon’s front and back faces. The parameter face can be
GL_FRONT_AND_BACK, GL_FRONT, or GL_BACK; mode can be GL_POINT, GL_LINE, or
GL_FILL to indicate whether the polygon should be drawn as points, outlined, or filled. By default,
both the front and back faces are drawn filled.

For example, you can have tinent faces filled and theback facesoutlined with two calls to this
routine:

glPolygonMode(GL_FRONT, GL_FILL);
glPolygonMode(GL_BACK, GL_LINE);

Reversing and Culling Polygon Faces

By convention, polygons whose vertices appear in counterclockwise order on the screen are called
front—facing. You can construct the surface of any "reasonablellsolidathematician would call such a
surface an orientable manifold (spheres, donuts, and teapots are orientable; Klein bottles and M&bius
aren’t)] from polygons of consistent orientation. In other words, you can use all clockwise polygons, o
all counterclockwise polygons. (This is essentially the mathematical definitaieafable)

Suppose you've consistently described a model of an orientable surface but that you happen to have:
clockwise orientation on the outside. You can swap what OpenGL considers the back face by using tF
functionglFrontFace() supplying the desired orientation for front—facing polygons.

void glFrontFace(GLenum mode);
Controls how front—facing polygons are determined. By defaotte is GL_CCW, which
corresponds to a counterclockwise orientation of the ordered vertices of a projected polygon in
window coordinates. If mode is GL_CW, faces with a clockwise orientation are considered
front—facing.

In a completely enclosed surface constructed from opaque polygons with a consistent orientation, nor
the back—facing polygons are ever vidibthey’re always obscured by the front-facing polygons. If you
are outside this surface, you might enahling to discard polygons that OpenGL determines are
back-facing. Similarly, if you are inside the object, only back—facing polygons are visible. To instruct
OpenGL to discard front— or back—facing polygons, use the congitatiéFace()and enable culling

with glEnable()

void glCullFace(GLenum mode);
Indicates which polygons should be discarded (culled) before they’'re converted to screen
coordinates. The mode is either GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK to indicate

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 23

front-facing, back—facing, or all polygons. To take effect, culling must be enablegiEsaide()
with GL_CULL_FACE; it can be disabled with gIDisable() and the same argument.

Advanced

In more technical terms, the decision of whether a face of a polygon is front— or back—facing depends
the sign of the polygon’s area computed in window coordinates. One way to compute this area is

wherex andyj are thexandy window coordinates of thi¢h vertex of then—vertex polygon and

Assuming that GL_CCW has been specified>d, the polygon corresponding to that vertex is
considered to be front—facing; otherwise, it's back—facing. If GL_CW is specifiedas@d tifien the
corresponding polygon is front—facing; otherwise, it's back—facing.

Try This

Modify Example 2-By adding some filled polygons. Experiment with different colors. Try different
polygon modes. Also enable culling to see its effect.

Stippling Polygons

By default, filled polygons are drawn with a solid pattern. They can also be filled with a 32-bit by 32-t
window-alignedstipple pattern, which you specify wigtPolygonStipple()

void glPolygonStipple(const GLubyte *mask);
Defines the current stipple pattern for filled polygons. The argument mask is a pointert®2a 32
bitmap that's interpreted as a mask of 0Os and 1s. Where a 1 appears, the corresponding pixel in tl
polygon is drawn, and where a 0 appears, nothing is drawn. Figureshois how a stipple
pattern is constructed from the characters in mask. Polygon stippling is enabled and disabled by
using glEnable() and glDisable() with GL_POLYGON_STIPPLE as the argument. The
interpretation of the mask data is affected by the glPixelStore*() GL_UNPACK* modes. (See
"Controlling Pixel-Storage Modes" in Chapte)y 8

In addition to defining the current polygon stippling pattern, you must enable stippling:
glEnable(GL_POLYGON_STIPPLE);
UseglDisable() with the same argument to disable polygon stippling.

Figure 2—-11shows the results of polygons drawn unstippled and then with two different stippling
patterns. The program is shown in Example 2—-6 The reversal of white to black (from Figure 2-10to

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 24

Figure 2—-11) occurs because the program draws in white over a black background, using the pattern i
Figure 2-10as a stencil.

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 25

Figure 2-10 Constructing a Polygon Stipple Pattern

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 26

Figure 2-11 Stippled Polygons

Example 2-6 Polygon Stipple Patterns: polys.c

#include <GL/gl.h>

#include <GL/glut.h>

void display(void)

{

GLubyte fly[] ={
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x03, 0x80, 0x01, 0xCO, 0x06, OxCO, 0x03, 0x60,
0x04, 0x60, 0x06, 0x20, 0x04, 0x30, 0x0C, 0x20,
0x04, 0x18, 0x18, 0x20, 0x04, 0x0C, 0x30, 0x20,
0x04, 0x06, 0x60, 0x20, 0x44, 0x03, 0xCO, 0x22,
0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
0x66, 0x01, 0x80, 0x66, 0x33, 0x01, 0x80, OXCC,
0x19, 0x81, 0x81, 0x98, Ox0C, 0xC1, 0x83, 0x30,
0x07, Oxel, 0x87, 0xe0, 0x03, Ox3f, Oxfc, 0xcO,
0x03, 0x31, 0x8c, 0xc0, 0x03, 0x33, Oxcc, 0xcO,
0x06, 0x64, 0x26, 0x60, 0x0c, Oxcc, 0x33, 0x30,
0x18, Oxcc, 0x33, 0x18, 0x10, Oxc4, 0x23, 0x08,
0x10, 0x63, 0xC6, 0x08, 0x10, 0x30, 0x0c, 0x08,
0x10, 0x18, 0x18, 0x08, 0x10, 0x00, 0x00, 0x08};
GLubyte halftone[] ={

OxAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, 0xAA, 0x55, 0x55, 0x55, 0x55,

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 27

OxAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxXAA, 0xAA, 0x55, 0x55, 0x55, 0x55};

glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);

[* draw one solid, unstippled rectangle, */
/* then two stippled rectangles */
glRectf (25.0, 25.0, 125.0, 125.0);
glEnable (GL_POLYGON_STIPPLE);
glPolygonStipple (fly);
glRectf (125.0, 25.0, 225.0, 125.0);
glPolygonStipple (halftone);
glRectf (225.0, 25.0, 325.0, 125.0);
glDisable (GL_POLYGON_STIPPLE);

glFlush ();

void init (void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);

}

void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadldentity ();
gluOrtho2D (0.0, (GLdouble) w, 0.0, (GLdouble) h);

}

int main(int argc, char** argv)
{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutlnitWindowsSize (350, 150);
glutCreateWindow (argv[0]);

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 28

init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();

return O;

}

You might want to use display lists to store polygon stipple patterns to maximize efficiency. (See
"Display-List Design Philosophy" in Chapter 7

Marking Polygon Boundary Edges
Advanced

OpenGL can render only convex polygons, but many nonconvex polygons arise in practice. To draw
these nonconvex polygons, you typically subdivide them into convex poljgensally triangles, as

shown in Figure 2-12and then draw the triangles. Unfortunately, if you decompose a general polygon
into triangles and draw the triangles, you can't reallygiBelygonMode(Jo draw the polygon’s outline,
since you get all the triangle outlines inside it. To solve this problem, you can tell OpenGL whether a
particular vertex precedes a boundary edge; OpenGL keeps track of this information by passing alonc
with each vertex a bit indicating whether that vertex is followed by a boundary edge. Then, when a
polygon is drawn in GL_LINE mode, the nonboundary edges aren’t drawn. In Figure 2-12 the dashed
lines represent added edges.

Figure 2-12 Subdividing a Nonconvex Polygon

By default, all vertices are marked as preceding a boundary edge, but you can manually control the
setting of theedge flagwith the commandIEdgeFlag*() This command is used betwegiBegin()and
glEnd() pairs, and it affects all the vertices specified after it until thegiEdgeFlag()call is made. It
applies only to vertices specified for polygons, triangles, and quads, not to those specified for strips of
triangles or quads.

void glEdgeFlag(GLboolean flag);
void glEdgeFlagv(const GLboolean *flag);

Indicates whether a vertex should be considered as initializing a boundary edge of a polygon. If fl¢
is GL_TRUE, the edge flag is set to TRUE (the default), and any vertices created are considered "
precede boundary edges until this function is called again with flag being GL_FALSE.

As an example, Example 2—7 draws the outline shown in Figure 2-13

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 29

Figure 2-13 Outlined Polygon Drawn Using Edge Flags

Example 2-7 Marking Polygon Boundary Edges

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glBegin(GL_POLYGON);

glEdgeFlag(GL_TRUE);

glVertex3fv(VO0);

glEdgeFlag(GL_FALSE);

glVertex3fv(V1);

glEdgeFlag(GL_TRUE);

glVertex3fv(V2);
glEnd();

Normal Vectors

A normal vector(or normal, for short) is a vector that points in a direction that's perpendicular to a
surface. For a flat surface, one perpendicular direction is the same for every point on the surface, but
a general curved surface, the normal direction might be different at each point on the surface. With
OpenGL, you can specify a normal for each polygon or for each vertex. Vertices of the same polygon
might share the same normal (for a flat surface) or have different normals (for a curved surface). But y
can't assign normals anywhere other than at the vertices.

An object’s normal vectors define the orientation of its surface in Bpiscparticular, its orientation

relative to light sources. These vectors are used by OpenGL to determine how much light the object
receives at its vertices. Lightiniga large topic by itselfl is the subject of Chapter 5, and you might want
to review the following information after you've read that chapter. Normal vectors are discussed briefly
here because you define normal vectors for an object at the same time you define the object’'s geome

You usegINormal*() to set the current normal to the value of the argument passed in. Subsequent call:
glVertex*() cause the specified vertices to be assigned the current normal. Often, each vertex has a
different normal, which necessitates a series of alternating calls, as in Example 2-8

Example 2-8 Surface Normals at Vertices

glBegin (GL_POLYGON);
glNormal3fv(n0);
glVertex3fv(v0);
glNormal3fv(nl);
glVertex3fv(vl);

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 30

gINormal3fv(n2);
glVertex3fv(v2);
gINormal3fv(n3);
glVertex3fv(v3);
glEnd();
void gINormal3{bsidf}(TYPEnx, TYPEny, TYPEnz);
void gINormal3{bsidf}v(const TYPE *v);
Sets the current normal vector as specified by the arguments. The nonvector version (without the
takes three arguments, which specify an (nx, ny, nz) vector that's taken to be the normal.
Alternatively, you can use the vector version of this function (with the v) and supply a single array
three elements to specify the desired normal. The b, s, and i versions scale their parameter value:
linearly to the range [-1.0,1.0].

There’s no magic to finding the normals for an oljeetost likely, you have to perform some
calculations that might include taking derivatiidsut there are several techniques and tricks you can
use to achieve certain effects. Appendix E explains how to find normal vectors for surfaces. If you
already know how to do this, if you can count on always being supplied with normal vectors, or if you
don’t want to use the lighting facility provided by OpenGL lighting facility, you don’t need to read this
appendix.

Note that at a given point on a surface, two vectors are perpendicular to the surface, and they point in
opposite directions. By convention, the normal is the one that points to the outside of the surface bein
modeled. (If you get inside and outside reversed in your model, just change every normal vectqr from

y,Jto (%, Y, 2).

Also, keep in mind that since normal vectors indicate direction only, their length is mostly irrelevant.
You can specify normals of any length, but eventually they have to be converted to having a length of
before lighting calculations are performed. (A vector that has a length of 1 is said to be of unit length,
normalized.) In general, you should supply normalized normal vectors. To make a normal vector of un
length, divide each of its, y, zcomponents by the length of the normal:

Normal vectors remain normalized as long as your model transformations include only rotations and
translations. (See Chapter 3 for a discussion of transformations.) If you perform irregular transformatic
(such as scaling or multiplying by a shear matrix), or if you specify nonunit-length normals, then you
should have OpenGL automatically normalize your normal vectors after the transformations. To do thi
call glEnable()with GL_NORMALIZE as its argument. By default, automatic normalization is disabled.
Note that automatic normalization typically requires additional calculations that might reduce the
performance of your application.

Vertex Arrays

You may have noticed that OpenGL requires many function calls to render geometric primitives.

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 31

Drawing a 20-sided polygon requires 22 function calls: one gaBégin() one call for each of the
vertices, and a final call @End(). In the two previous code examples, additional information (polygon
boundary edge flags or surface normals) added function calls for each vertex. This can quickly double
triple the number of function calls required for one geometric object. For some systems, function calls
have a great deal of overhead and can hinder performance.

An additional problem is the redundant processing of vertices that are shared between adjacent polyg
For example, the cube in Figure 2-14has six faces and eight shared vertices. Unfortunately, using the
standard method of describing this object, each vertex would have to be specified three times: once fc
every face that uses it. So 24 vertices would be processed, even though eight would be enough.

Figure 2-14 Six Sides; Eight Shared Vertices

OpenGL has vertex array routines that allow you to specify a lot of vertex—related data with just a few
arrays and to access that data with equally few function calls. Using vertex array routines, all 20 vertic
in a 20-sided polygon could be put into one array and called with one function. If each vertex also hac
surface normal, all 20 surface normals could be put into another array and also called with one functic

Arranging data in vertex arrays may increase the performance of your application. Using vertex arrays
reduces the number of function calls, which improves performance. Also, using vertex arrays may alla
non-redundant processing of shared vertices. (Vertex sharing is not supported on all implementations
OpenGL.)

Note: Vertex arrays are standard in version 1.1 of OpenGL but were not part of the OpenGL 1.0
specification. With OpenGL 1.0, some vendors have implemented vertex arrays as an extension.

There are three steps to using vertex arrays to render geometry.

1. Activate (enable) up to six arrays, each to store a different type of data: vertex coordinates, RGB/
colors, color indices, surface normals, texture coordinates, or polygon edge flags.

2. Putdata into the array or arrays. The arrays are accessed by the addresses of (that is, pointers tc
their memory locations. In the client-server model, this data is stored in the client’'s address space

3. Draw geometry with the data. OpenGL obtains the data from all activated arrays by dereferencing
the pointers. In the client—server model, the data is transferred to the server's address space. The
are three ways to do this:

1. Accessing individual array elements (randomly hopping around)
2. Creating a list of individual array elements (methodically hopping around)

3. Processing sequential array elements

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 32

The dereferencing method you choose may depend upon the type of problem you encounter.

Interleaved vertex array data is another common method of organization. Instead of having up to six
different arrays, each maintaining a different type of data (color, surface normal, coordinate, and so ot
you might have the different types of data mixed into a single array. (See "Interleaved Arrays" for two
methods of solving this.)

Step 1: Enabling Arrays

The first step is to callEnableClientStatefyith an enumerated parameter, which activates the chosen
array. In theory, you may need to call this up to six times to activate the six available arrays. In practic
you'll probably activate only between one to four arrays. For example, it is unlikely that you would
activate both GL_COLOR_ARRAY and GL_INDEX_ARRAY, since your program’s display mode
supports either RGBA mode or color-index mode, but probably not both simultaneously.

void glEnableClientState(GLenum array)
Specifies the array to enable. Symbolic constants GL_VERTEX_ARRAY, GL_COLOR_ARRAY,
GL_INDEX_ARRAY, GL_NORMAL_ARRAY, GL_TEXTURE_COORD_ARRAY, and
GL_EDGE_FLAG_ARRAY are acceptable parameters.

If you use lighting, you may want to define a surface normal for every vertex. (See "Normal Vectors.")
To use vertex arrays for that case, you activate both the surface normal and vertex coordinate arrays:

glEnableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);

Suppose that you want to turn off lighting at some point and just draw the geometry using a single col:
You want to callglDisable()to turn off lighting states (see Chapter 5). Now that lighting has been
deactivated, you also want to stop changing the values of the surface normal state, which is wasted e
To do that, you call

glDisableClientState(GL_NORMAL_ARRAY);

void glDisableClientState(GLenum array);
Specifies the array to disable. Accepts the same symbolic constants as glEnableClientState().

You might be asking yourself why the architects of OpenGL created these new (and long!) command
namesgl*ClientState() Why can’t you just caljiEnable()andglDisable()? One reason is that
glEnable()andglDisable() can be stored in a display list, but the specification of vertex arrays cannot,
because the data remains on the client’s side.

Step 2: Specifying Data for the Arrays

There is a straightforward way by which a single command specifies a single array in the client space.
There are six different routines to specify arfaygse routine for each kind of array. There is also a
command that can specify several client-space arrays at once, all originating from a single interleave:
array.

void glVertexPointer(GLint size, GLenum type, GLsizei stride,

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 33

const GLvoid *pointer);
Specifies where spatial coordinate data can be accessed. pointer is the memory address of the fir
coordinate of the first vertex in the array. type specifies the data type (GL_SHORT, GL_INT,
GL_FLOAT, or GL_DOUBLE) of each coordinate in the array. size is the number of coordinates
per vertex, which must be 2, 3, or 4. stride is the byte offset between consecutive vertexes. If stric
0, the vertices are understood to be tightly packed in the array.

To access the other five arrays, there are five similar routines:

void glColorPointer(GLint size, GLenum type, GLsizei stride,

const GLvoid *pointer);

void glindexPointer(GLenum type, GLsizei stride, const GLvoid *pointer);
void gINormalPointer(GLenum type, GLsizei stride,

const GLvoid *pointer);

void glTexCoordPointer(GLint size, GLenum type, GLsizei stride,

const GLvoid *pointer);

void glEdgeFlagPointer(GLsizei stride, const GLvoid *pointer);

The main differences among the routines are whether size and type are unique or must be specified. |
example, a surface normal always has three components, so it is redundant to specify its size. An edc

flag is always a single Boolean, so neither size nor type needs to be mentioned. Table 2-4displays le
values for size and data types.

Command Sizes Values for type Argument

glVertexPointer 2,3,4 GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glNormalPointer 3 GL_BYTE, GL_SHORT, GL_INT, GL_FLOAT,
GL_DOUBLE

glColorPointer 3,4 GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,

GL_UNSIGNED_SHORT, GL_INT,
GL_UNSIGNED_INT, GL_FLOAT, GL_DOUBLE

glindexPointer 1 GL_UNSIGNED_BYTE, GL_SHORT, GL_INT,
GL_FLOAT, GL_DOUBLE

glTexCoordPointer 1,2,3,4 GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glEdgeFlagPointer 1 no type argument (type of data must be GLboolean)

Table 2-4Vertex Array Sizes (Values per Vertex) and Data Types(continued)

Example 2-8ses vertex arrays for both RGBA colors and vertex coordinates. RGB floating—point valu
and their corresponding (x, y) integer coordinates are loaded into the GL_COLOR_ARRAY and
GL_VERTEX_ARRAY.

Example 2-9 Enabling and Loading Vertex Arrays: varray.c

static GLint vertices[] = {25, 25,
100, 325,
175, 25,
175, 325,
250, 25,
325, 325},
static GLfloat colors[] = {1.0, 0.2, 0.2,
0.2,0.2, 1.0,

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 34

0.8, 1.0, 0.2,
0.75, 0.75, 0.75,
0.35, 0.35, 0.35,
0.5, 0.5, 0.5};

glEnableClientState (GL_COLOR_ARRAY);
glEnableClientState (GL_VERTEX_ARRAY);

glColorPointer (3, GL_FLOAT, 0, colors);
glVertexPointer (2, GL_INT, O, vertices);

Stride

With a stride of zero, each type of vertex array (RGB color, color index, vertex coordinate, and so on)
must be tightly packed. The data in the array must be homogeneous; that is, the data must be all RGE
color values, all vertex coordinates, or all some other data similar in some fashion.

Using a stride of other than zero can be useful, especially when dealing with interleaved arrays. In the
following array of GLfloats, there are six vertices. For each vertex, there are three RGB color values,
which alternate with the (x, y, z) vertex coordinates.

static GLfloat intertwined[] =
{1.0, 0.2, 1.0, 100.0, 100.0, 0.0,
1.0,0.2,0.2, 0.0, 200.0, 0.0,
1.0, 1.0, 0.2, 100.0, 300.0, 0.0,
0.2, 1.0, 0.2, 200.0, 300.0, 0.0,
0.2, 1.0, 1.0, 300.0, 200.0, 0.0,
0.2,0.2, 1.0, 200.0, 100.0, 0.0};

Stride allows a vertex array to access its desired data at regular intervals in the array. For example, ta
reference only the color values in tinéertwinedarray, the following call starts from the beginning of

the array (which could also be passediasertwined[0]) and jumps ahead 6sizeofGLfloat) bytes,

which is the size of both the color and vertex coordinate values. This jump is enough to get to the
beginning of the data for the next vertex.

glColorPointer (3, GL_FLOAT, 6 * sizeof(GLfloat), intertwined);

For the vertex coordinate pointer, you need to start from further in the array, at the fourth element of
intertwined(remember that C programmers start counting at zero).

glVertexPointer(3, GL_FLOAT,6*sizeof(GLfloat), &intertwined[3]);

Step 3: Dereferencing and Rendering

Until the contents of the vertex arrays are dereferenced, the arrays remain on the client side, and theil
contents are easily changed. In Step 3, contents of the arrays are obtained, sent down to the server, ¢
then sent down the graphics processing pipeline for rendering.

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 35

There are three ways to obtain data: from a single array element (indexed location), from a sequence
array elements, and from an ordered list of array elements.

Dereference a Single Array Element

void glArrayElement(GLint ith)
Obtains the data of one (the ith) vertex for all currently enabled arrays. For the vertex coordinate
array, the corresponding command would be glVertex[size][type]v(), where size is one of [2,3,4],
and type is one of [s,i,f,d] for GLshort, GLint, GLfloat, and GLdouble respectively. Both size and
type were defined by glVertexPointer(). For other enabled arrays, glArrayElement() calls
glEdgeFlagv(), glTexCoord[size][type]v(), glColor[size][type]v(), glindex[type]v(), and
glNormal[type]v(). If the vertex coordinate array is enabled, the glVertex*v() routine is executed
last, after the execution (if enabled) of up to five corresponding array values.

glArrayElement()is usually called betweagiBegin()andglEnd(). (If called outsideglArrayElement()

sets the current state for all enabled arrays, except for vertex, which has no current state.) In Example
2-10a triangle is drawn using the third, fourth, and sixth vertices from enabled vertex arrays (again,
remember that C programmers begin counting array locations with zero).

Example 2-10 Using glArrayElement() to Define Colors and Vertices

glEnableClientState (GL_COLOR_ARRAY);
glEnableClientState (GL_VERTEX_ARRAY);
glColorPointer (3, GL_FLOAT, 0, colors);
glVertexPointer (2, GL_INT, O, vertices);

glBegin(GL_TRIANGLES);
glArrayElement (2);
glArrayElement (3);
glArrayElement (5);
glEnd();

When executed, the latter five lines of code has the same effect as

glBegin(GL_TRIANGLES);
glColor3fv(colors+(2*3*sizeof(GLfloat));
glVertex3fv(vertices+(2*2*sizeof(GLint));
glColor3fv(colors+(3*3*sizeof(GLfloat));
glVertex3fv(vertices+(3*2*sizeof(GLint));
glColor3fv(colors+(5*3*sizeof(GLfloat));
glVertex3fv(vertices+(5*2*sizeof(GLint));
glEnd();

SinceglArrayElement()s only a single function call per vertex, it may reduce the number of function
calls, which increases overall performance.

Be warned that if the contents of the array are changed beg&syin() andglEnd(), there is no
guarantee that you will receive original data or changed data for your requested element. To be safe,

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 36

don’t change the contents of any array element which might be accessed until the primitive is complet

Dereference a List of Array Elements

glArrayElement()is good for randomly "hopping around" your data arrays. A similar routine,
glDrawElements()is good for hopping around your data arrays in a more orderly manner.

void glDrawElements(GLenum mode, GLsizei count, GLenum type,

void *indices);
Defines a sequence of geometric primitives using count number of elements, whose indices are
stored in the array indices. type must be one of GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT
or GL_UNSIGNED_INT, indicating the data type of the indices array. mode specifies what kind of
primitives are constructed and is one of the same values that is accepted by glBegin(); for exampl
GL_POLYGON, GL_LINE_LOOP, GL_LINES, GL_POINTS, and so on.

The effect ofglDrawElements()s almost the same as this command sequence:
inti;
glBegin (mode);
for (i = 0; i < count; i++)
glArrayElement(indicesli]);
glEnd();

glDrawElements(additionally checks to make surede count andtypeare valid. Also, unlike the
preceding sequence, executgirawElements(Jeaves several states indeterminate. After execution of
glDrawElements()current RGB color, color index, normal coordinates, texture coordinates, and edge
flag are indeterminate if the corresponding array has been enabled.

With glDrawElements()the vertices for each face of the cube can be placed in an array of indices.
Example 2-1%hows two ways to uggDrawElements(}o render the cube. Figure 2-15shows the
numbering of the vertices used in Example 2-11

Figure 2-15 Cube with Numbered Vertices

Example 2-11 Two Ways to Use glDrawElements()

static GLubyte frontindices = {4, 5, 6, 7};
static GLubyte rightindices = {1, 2, 6, 5}
static GLubyte bottomindices = {0, 1, 5, 4};

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 37

static GLubyte backindices = {0, 3, 2, 1};
static GLubyte leftindices ={0, 4, 7, 3};
static GLubyte topindices = {2, 3, 7, 6};

glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, frontindices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, rightindices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, bottomindices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, backindices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, leftindices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, topindices);

Or better still, crunch all the indices together:

static GLubyte allindices = {4, 5,6, 7,1, 2, 6, 5,
0,1,5,4,0,3,2,1,
0,4,7,3,2,3,7, 6}

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE, allindices);
Note: Itis an error to encapsulagédDrawElements(between alBegin(JglEnd() pair.

With bothglArrayElement(andglDrawElements()it is also possible that your OpenGL implementation
caches recently processed vertices, allowing your application to "share" or "reuse" vertices. Take the
aforementioned cube, for example, which has six faces (polygons) but only eight vertices. Each verte»
used by exactly three faces. WithglArrayElement(Jor gIDrawElements()rendering all six faces

would require processing twenty—four vertices, even though sixteen vertices would be redundant. You
implementation of OpenGL may be able to minimize redundancy and process as few as eight vertices
(Reuse of vertices may be limited to all vertices within a siglideawElements(xall or, for
glArrayElement() within oneglBegin(JglEnd() pair.)

Dereference a Sequence of Array Elements

While glArrayElement(andglDrawElements(Yhop around” your data arraygDrawArrays()plows
straight through them.

void glDrawArrays(GLenum mode, GLint first, GLsizei count);
Constructs a sequence of geometric primitives using array elements starting at first and ending at
first+count-1 of each enabled arragode specifies what kinds of primitives are constructed and is
one of the same values accepted by glBegin(); for example, GL_POLYGON, GL_LINE_LOOP,
GL_LINES, GL_POINTS, and so on.

The effect ofglDrawArrays()is almost the same as this command sequence:
inti;
glBegin (mode);
for (i = 0; i < count; i++)
glArrayElement(first + i);
glEnd();

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 38

As is the case withlDrawElements()glDrawArrays() also performs error checking on its parameter
values and leaves the current RGB color, color index, normal coordinates, texture coordinates, and ec
flag with indeterminate values if the corresponding array has been enabled.

Try This

Change the icosahedron drawing routine in Example ®-dse vertex arrays.

Interleaved Arrays
Advanced

Earlier in this chapter (in "Stride"), the special case of interleaved arrays was examined. In that sectio
the arrayintertwined which interleaves RGB color and 3D vertex coordinates, was accessed by calls tc
glColorPointer() andglVertexPointer() Careful use of stride helped properly specify the arrays.

static GLfloat intertwined[] =
{1.0, 0.2, 1.0, 100.0, 100.0, 0.0,
1.0,0.2,0.2, 0.0, 200.0, 0.0,
1.0, 1.0, 0.2, 100.0, 300.0, 0.0,
0.2, 1.0, 0.2, 200.0, 300.0, 0.0,
0.2, 1.0, 1.0, 300.0, 200.0, 0.0,
0.2,0.2, 1.0, 200.0, 100.0, 0.0};

There is also a behemoth routigéinterleavedArrays()that can specify several vertex arrays at once.
glinterleavedArrays(plso enables and disables the appropriate arrays (so it combines both Steps 1 an
2). The arrayntertwinedexactly fits one of the fourteen data interleaving configurations supported by
glinterleavedArrays()So to specify the contents of the ariatgrtwinedinto the RGB color and vertex
arrays and enable both arrays, call

glinterleavedArrays (GL_C3F_V3F, 0, intertwined);

This call toglinterleavedArrays(enables the GL_COLOR_ARRAY and GL_VERTEX_ARRAY
arrays. It disables the GL_INDEX_ARRAY, GL_TEXTURE_COORD_ARRAY,
GL_NORMAL_ARRAY, and GL_EDGE_FLAG_ARRAY.

This call also has the same effect as caljji@€plorPointer() andglVertexPointer()to specify the values
for six vertices into each array. Now you are ready for Step 3: CalikrgayElement()
glDrawElements()or gIDrawArrays()to dereference array elements.

void glinterleavedArrays(GLenum format, GLsizei stride, void *pointer)
Initializes all six arrays, disabling arrays that are not specified in format, and enabling the arrays
that are specified. format is one of 14 symbolic constants, which represent 14 data configurations
Table 2—5lisplays format values. stride specifies the byte offset between consecutive vertexes. If
stride is 0, the vertexes are understood to be tightly packed in the array. pointer is the memory
address of the first coordinate of the first vertex in the array.

Note thaglinterleavedArrays(does not support edge flags.

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 39

The mechanics dflinterleavedArrays(are intricate and require reference to Example and2rable
2-51n that example and table, you'll segeg, and ¢, which are the boolean values for the enabled or

disabled texture coordinate, color, and normal arrays, and you'lt, sgeand g, which are the sizes
(number of components) for the texture coordinate, color, and vertex agraythe data type for RGBA
color, which is the only array that can have non-float interleaved vajues, and g are the calculated

strides for jumping over individual color, normal, and vertex values, and s is the stride (if one is not
specified by the user) to jump from one array element to the next.

The effect ofglinterleavedArrays()s the same as calling the command sequence in Example 2-12 with
many values defined in Table 2A8 pointer arithmetic is performed in units of
sizeofGL_UNSIGNED_BYTE).

Example 2-12 Effect of glinterleavedArrays(format, stride, pointer)
int str;

[* sete te c,c¢nS t:S ¢S wv,t ¢»P P NP v.ands
* as a function of Table 2-5 and the value of format

*/

str = stride;

if (str==0)
str=s;

glDisableClientState(GL_EDGE_FLAG_ARRAY);
glDisableClientState(GL_INDEX_ARRAY);

ife t){
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(s t , GL_FLOAT, str, pointer);

}

else
glDisableClientState(GL_TEXTURE_COORD_ARRAY);

ife c){
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(s c,t ¢, str, pointer+p c);

}

else
glDisableClientState(GL_COLOR_ARRAY);

ife n){
glEnableClientState(GL_NORMAL_ARRAY);
gINormalPointer(GL_FLOAT, str, pointer+p n);

}

else

glDisableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(s v, GL_FLOAT, str, pointer+p v);

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 40

In Table 2-5T and F are True and False. §izeofGL_FLOAT). c is 4 times
sizeofGL_UNSIGNED_BYTE), rounded up to the nearest multiple of f.

format et €c en St Sc Sy tC Pc Pn Pv S
GL_V2F F F F 2 0 2f
GL_V3F F F F 3 0 3f
GL_C4UB_V2F F T F 4 2 GL_UNSIGNED B 0 c c+2A
YTE
GL_C4UB_V3F F T F 4 3 GL_UNSIGNED B 0 c cH3f
YTE
GL_C3F_V3F F T F 3 3 GL_FLOAT 0 3 6f
GL_N3F_V3F F F T 3 0 3f 6f
GLC4AF N3FV3F F T T 4 3 GL_FLOAT 0 4f 7t 10f
GL_T2F V3F T F EF 2 3 2f 5f
GL_T4F_VAF T F F 4 4 af 8f
GLT2F CAUBV3F T T F 2 4 3 GL_UNSIGNED B 2f c+2f c+5f
YTE
GLT2FC3FV3F T T F 2 3 3 GLFLOAT 2f 5f 8f
GLT2FN3FV3F T F T 2 3 2f 5f 8f
GLT2F CAF N3F_. T T T 2 4 3 GLFLOAT 2f 6f of 12f
V3F
GLTAF CAF N3F_. T T T 4 4 4 GL_FLOAT 4f 8f 11f 15f
VAF

Table 2—-5 (continued) Variables that Direct glinterleavedArrays()

Start by learning the simpler formats, GL_V2F, GL_V3F, and GL_C3F_V3F. If you use any of the
formats with C4UB, you may have to use a struct data type or do some delicate type casting and poin
math to pack four unsigned bytes into a single 32-bit word.

For some OpenGL implementations, use of interleaved arrays may increase application performance.
With an interleaved array, the exact layout of your data is known. You know your data is tightly packet
and may be accessed in one chunk. If interleaved arrays are not used, the stride and size information
to be examined to detect whether data is tightly packed.

Note: glinterleavedArrays(only enables and disables vertex arrays and specifies values for the
vertex—array data. It does not render anything. You must still complete Step 3 gitAr@lElement()
glDrawElements()or gIDrawArrays()to dereference the pointers and render graphics.

Attribute Groups

In "Basic State Management," you saw how to set or query an individual state or state variable. Well,
can also save and restore the values of a collection of related state variables with a single command.

OpenGL groups related state variables intatiibute group . For example, the GL_LINE_BIT

attribute consists of five state variables: the line width, the GL_LINE_STIPPLE enable status, the line
stipple pattern, the line stipple repeat counter, and the GL_LINE_SMOOTH enable status. (See
"Antialiasing” in Chapter 6.) With the commargi®ushAttrib()andglPopAttrib() you can save and
restore all five state variables, all at once.

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 41

Some state variables are in more than one attribute group. For example, the state variable,
GL_CULL_FACE, is part of both the polygon and the enable attribute groups.

In OpenGL Version 1.1, there are now two different attribute stacks. In addition to the original attribute
stack (which saves the values of server state variables), there is also a client attribute stack, accessib
the commandglPushClientAttrib(JandglPopClientAttrib()

In general, it's faster to use these commands than to get, save, and restore the values yourself. Some
values might be maintained in the hardware, and getting them might be expensive. Also, if you're
operating on a remote client, all the attribute data has to be transferred across the network connectior
back as it is obtained, saved, and restored. However, your OpenGL implementation keeps the attribut
stack on the server, avoiding unnecessary network delays.

There are about twenty different attribute groups, which can be saved and restifeashwttrib(Jand
glPopAttrib(). There are two client attribute groups, which can be saved and restored by
glPushClientAttrib(JandglPopClientAttrib() For both server and client, the attributes are stored on a
stack, which has a depth of at least 16 saved attribute groups. (The actual stack depths for your
implementation can be obtained using GL_MAX_ATTRIB_STACK DEPTH and
GL_MAX_CLIENT_ATTRIB_STACK_DEPTH withglGetintegerv() Pushing a full stack or popping
an empty one generates an error.

(See the tables in Appendix B to find out exactly which attributes are saved for particular mask values
that is, which attributes are in a particular attribute group.)

void glPushAttrib(GLbitfield mask);
void glPopAttrib(void);

glPushAttrib() saves all the attributes indicated by bits in mask by pushing them onto the attribute
stack. glPopAttrib() restores the values of those state variables that were saved with the last
glPushAttrib(). Table 2-ists the possible mask bits that can be logically ORed together to save an
combination of attributes. Each bit corresponds to a collection of individual state variables. For
example, GL_LIGHTING_BIT refers to all the state variables related to lighting, which include the
current material color, the ambient, diffuse, specular, and emitted light, a list of the lights that are
enabled, and the directions of the spotlights. When glPopAttrib() is called, all those variables are
restored.

The special mask, GL_ALL_ATTRIB_BITS, is used to save and restore all the state variables in all the
attribute groups.

Mask Bit

Attribute Group

GL_ACCUM_BUFFER BIT
GL_ALL_ATTRIB_BITS

accum-buffer

GL_COLOR_BUFFER_BIT color-buffer
GL_CURRENT_BIT current
GL_DEPTH_BUFFER_BIT depth-buffer
GL_ENABLE_BIT enable
GL_EVAL_BIT eval
GL_FOG_BIT fog
GL_HINT_BIT hint
GL_LIGHTING_BIT lighting

OpenGL Programming Guide — Chapter 2,

State Management and Drawing Geometric Objects — 42

GL_LINE_BIT line

GL_LIST_BIT list
GL_PIXEL_MODE_BIT pixel
GL_POINT_BIT point
GL_POLYGON_BIT polygon
GL_POLYGON_STIPPLE_BIT polygon-stipple
GL_SCISSOR_BIT scissor
GL_STENCIL_BUFFER_BIT stencil-buffer
GL_TEXTURE_BIT texture
GL_TRANSFORM_BIT transform
GL_VIEWPORT_BIT viewport

Table 2-6 (continued) Attribute Groups

void glPushClientAttrib(GLbitfield mask);
void glPopClientAttrib(void);

glPushClientAttrib() saves all the attributes indicated by bits in mask by pushing them onto the cli¢
attribute stack. glPopClientAttrib() restores the values of those state variables that were saved wit
the last glPushClientAttrib(). Table 243ts the possible mask bits that can be logically ORed
together to save any combination of client attributes.

There are two client attribute groups, feedback and select, that cannot be saved or restored with t
stack mechanism.

Mask Bit Attribute Group
GL_CLIENT_PIXEL_STORE_BIT pixel-store
GL_CLIENT_VERTEX_ARRAY_BIT vertex—array
GL_ALL_CLIENT_ATTRIB_BITS -

can'’t be pushed or popped feedback
can'’t be pushed or popped select

Table 2—7 Client Attribute Groups

Some Hints for Building Polygonal Models of Surfaces

Following are some techniques that you might want to use as you build polygonal approximations of
surfaces. You might want to review this section after you've read Chapter 5 on lighting and Chapter 7
display lists. The lighting conditions affect how models look once they're drawn, and some of the
following techniques are much more efficient when used in conjunction with display lists. As you read
these techniques, keep in mind that when lighting calculations are enabled, normal vectors must be
specified to get proper results.

Constructing polygonal approximations to surfaces is an art, and there is no substitute for experience.
This section, however, lists a few pointers that might make it a bit easier to get started.

Keep polygon orientations consistent. Make sure that when viewed from the outside, all the
polygons on the surface are oriented in the same direction (all clockwise or all counterclockwise).
Consistent orientation is important for polygon culling and two-sided lighting. Try to get this right
the first time, since it's excruciatingly painful to fix the problem later. (If youglSeale*()to

reflect geometry around some axis of symmetry, you might change the orientation with

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 43

glFrontFace()to keep the orientations consistent.)

When you subdivide a surface, watch out for any nontriangular polygons. The three vertices of a
triangle are guaranteed to lie on a plane; any polygon with four or more vertices might not.
Nonplanar polygons can be viewed from some orientation such that the edges cross each other, i
OpenGL might not render such polygons correctly.

There’s always a trade—off between the display speed and the quality of the image. If you subdivi
a surface into a small number of polygons, it renders quickly but might have a jagged appearance
you subdivide it into millions of tiny polygons, it probably looks good but might take a long time to
render. Ideally, you can provide a parameter to the subdivision routines that indicates how fine a
subdivision you want, and if the object is farther from the eye, you can use a coarser subdivision.
Also, when you subdivide, use large polygons where the surface is relatively flat, and small
polygons in regions of high curvature.

For high—quality images, it's a good idea to subdivide more on the silhouette edges than in the
interior. If the surface is to be rotated relative to the eye, this is tougher to do, since the silhouette
edges keep moving. Silhouette edges occur where the normal vectors are perpendicular to the ve
from the surface to the viewpolnthat is, when their vector dot product is zero. Your subdivision
algorithm might choose to subdivide more if this dot product is near zero.

Try to avoid T—intersections in your models (see Figure)2As6hown, there’s no guarantee that

the line segments AB and BC lie on exactly the same pixels as the segment AC. Sometimes they
and sometimes they don’t, depending on the transformations and orientation. This can cause crac
to appear intermittently in the surface.

Figure 2-16 Modifying an Undesirable T-intersection

If you're constructing a closed surface, make sure to use exactly the same numbers for coordinat
at the beginning and end of a closed loop, or you can get gaps and cracks due to numerical
round-off. Here’s a two—dimensional example of bad code:

/* don't use this code */
#define PI 3.14159265
#define EDGES 30

[* draw a circle */
gIBegin(GL_LINE_STRIP);
for (i=0; i <= EDGES; i++)

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 44

glVertex2f(cos((2*PI*)/EDGES), sin((2*PI*)/EDGES));
glEnd();

The edges meet exactly only if your machine manages to calculate the sine and cosine of 0 and ¢
(2*PI*EDGES/EDGES) and gets exactly the same values. If you trust the floating—point unit on yc
machine to do this right, the authors have a bridge they’d like to sell you.... To correct the code,
make sure that whan== EDGES, you use 0 for the sine and cosine, not 2*PI*EDGES/EDGES. (Ol
simpler still, use GL_LINE_LOOP instead of GL_LINE_STRIP, and change the loop termination
condition to i < EDGES.)

An Example: Building an Icosahedron

To illustrate some of the considerations that arise in approximating a surface, let's look at some exam
code sequences. This code concerns the vertices of a regular icosahedron (which is a Platonic solid
composed of twenty faces that span twelve vertices, each face of which is an equilateral triangle). An
icosahedron can be considered a rough approximation for a sphere. Examplefide$3he vertices

and triangles making up an icosahedron and then draws the icosahedron.

Example 2-13 Drawing an Icosahedron

#define X .525731112119133606
#define Z .850650808352039932

static GLfloat vdata[12][3] = {
{-X, 0.0, z}, {X, 0.0, Z}, {-X, 0.0, -7}, {X, 0.0, -Z},
{0.0, Z, X}, {0.0, Z, =X}, {0.0, -Z, X}, {0.0, -Z, —-X},
{Z, X, 0.0}, {-Z, X, 0.0}, {Z, -X, 0.0}, {-Z, —-X, 0.0}

h

static GLuint tindices[20][3] = {
{0,4,1}, {0,9,4}, {9,5,4}, {4,5,8}, {4,8,1},
{8,10,1}, {8,3,10}, {5,3,8}, {5,2,3}, {2,7,3},
{7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0,1,6},
{6,1,10}, {9,0,11}, {9,11,2}, {9,2,5}, {7,2,11} };

inti;

glBegin(GL_TRIANGLES);

for (i=0; i< 20; i++) {
/* color information here */
glVertex3fv(&vdata[tindicesJi][O]][0]);
glVertex3fv(&vdata[tindices[i][1]][0]);
glVertex3fv(&vdata[tindices]i][2]][0]);

}
glEnd();

The strange numbeksandZ are chosen so that the distance from the origin to any of the vertices of the

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 45

icosahedron is 1.0. The coordinates of the twelve vertices are given in thedatay{] , where the

zeroth vertex is {=, 0.0,Z}, the first is {X, 0.0, 4, and so on. The arrajndices[][] tells how to link the
vertices to make triangles. For example, the first triangle is made from the zeroth, fourth, and first vert
If you take the vertices for triangles in the order given, all the triangles have the same orientation.

The line that mentions color information should be replaced by a command that sets the colth of the
face. If no code appears here, all faces are drawn in the same color, and it'll be impossible to discern
three—dimensional quality of the object. An alternative to explicitly specifying colors is to define surfac
normals and use lighting, as described in the next subsection.

Note: In all the examples described in this section, unless the surface is to be drawn only once, you
should probably save the calculated vertex and normal coordinates so that the calculations don’t neec
be repeated each time that the surface is drawn. This can be done using your own data structures or |
constructing display lists. (See Chapter 7.)

Calculating Normal Vectors for a Surface

If a surface is to be lit, you need to supply the vector normal to the surface. Calculating the normalizec
cross product of two vectors on that surface provides normal vector. With the flat surfaces of an
icosahedron, all three vertices defining a surface have the same normal vector. In this case, the norm
needs to be specified only once for each set of three vertices. The code in Example 2-14can replace
"color information here" line in Example 2-13for drawing the icosahedron.

Example 2-14 Generating Normal Vectors for a Surface

GLfloat d1[3], d2[3], norm[3];
for (j=0;j<3;j++) {
d1[j] = vdata[tindicesl[i][0]][j] — vdata[tindices[i][1]][i];
d2[j] = vdata[tindices][i][1]][j] — vdata[tindices[i][2]][i];
}
normcrossprod(dl, d2, norm);
glNormal3fv(norm);

The functionnormcrossprod(produces the normalized cross product of two vectors, as shown in
Example 2-15

Example 2-15 Calculating the Normalized Cross Product of Two Vectors

void normalize(float v[3]) {
GLfloat d = sqrt(v[0]*v[O]+Vv[1]*v[1]+V[2]*V[2]);
if (d ==10.0) {
error("zero length vector");
return;
}
v[0] /=d; v[1] /= d; v[2] /= d;
}

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 46

void normcrossprod(float v1[3], float v2[3], float out[3])
{

GLinti, j;

GLfloat length;

out[0] = v1[1]*v2[2] - v1[2]*v2[1];
out[1] = v1[2]*v2[0] — v1[0]*v2[2];
out[2] = v1[0]*v2[1] - v1[1]*v2[O];
normalize(out);

}

If you're using an icosahedron as an approximation for a shaded sphere, you'll want to use normal
vectors that are perpendicular to the true surface of the sphere, rather than being perpendicular to the
faces. For a sphere, the normal vectors are simple; each points in the same direction as the vector frg
the origin to the corresponding vertex. Since the icosahedron vertex data is for an icosahedron of radi
1, the normal and vertex data is identical. Here is the code that would draw an icosahedral approxima
of a smoothly shaded sphere (assuming that lighting is enabled, as described in Chapter 5):

glBegin(GL_TRIANGLES);

for (i=0;i<20; i++) {
gINormal3fv(&vdata[tindices[i][0]][0]);
glVertex3fv(&vdataftindices[i][0]][0]);
gINormal3fv(&vdata[tindices[i][1]][0]);
glVertex3fv(&vdataltindices[i][1]][0]);
gINormal3fv(&vdata[tindices][i][2]][0]);
glVertex3fv(&vdataltindices[i][2]][0]);

}
glEnd();

Improving the Model

A twenty-sided approximation to a sphere doesn’t look good unless the image of the sphere on the s¢
is quite small, but there’s an easy way to increase the accuracy of the approximation. Imagine the
icosahedron inscribed in a sphere, and subdivide the triangles as shown in Figure 2-17. The newly
introduced vertices lie slightly inside the sphere, so push them to the surface by normalizing them
(dividing them by a factor to make them have length 1). This subdivision process can be repeated for
arbitrary accuracy. The three objects shown in Figure 2-17use 20, 80, and 320 approximating triangle¢
respectively.

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 47

Figure 2—-17 Subdividing to Improve a Polygonal Approximation to a Surface
Example 2-16erforms a single subdivision, creating an 80—sided spherical approximation.

Example 2-16 Single Subdivision

void drawtriangle(float *v1, float *v2, float *v3)
{
glBegin(GL_TRIANGLES);
gINormal3fv(vl); viVertex3fv(vl);
glNormal3fv(v2); viVertex3fv(v2);
gINormal3fv(v3); viVertex3fv(v3);
glEnd();
}

void subdivide(float *v1, float *v2, float *v3)
{

GLfloat v12[3], v23[3], v31[3];

GLint i;

for(i=0;i<3;i++) {

v12[i] = va[i]+v2]i];

v23[i] = v2[i]+Vv3[il;

v31[i] = v3[i]+va]i];
}
normalize(v12);
normalize(v23);
normalize(v31);
drawtriangle(vl, v12, v31);
drawtriangle(v2, v23, v12);
drawtriangle(v3, v31, v23);
drawtriangle(v12, v23, v31);

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 48

for (i=0; i< 20; i++) {
subdivide(&vdata[tindices[i][0]][0],
&vdata[tindices][i][1]][0],
&vdataltindices]i][2]][0]);
}

Example 2-1i& a slight modification of Example 2—-16 which recursively subdivides the triangles to the
proper depth. If the depth value is 0, no subdivisions are performed, and the triangle is drawn as is. If
depth is 1, a single subdivision is performed, and so on.

Example 2-17 Recursive Subdivision

void subdivide(float *v1, float *v2, float *v3, long depth)
{

GLfloat v12[3], v23[3], v31][3];

GLint i;

if (depth == 0) {
drawtriangle(vl, v2, v3);
return;
}
for (i=0;i<3;i++){
v12[i] = va[i]+v2]i];
v23[i] = v2[i]+v3[il;
v31[i] = v3[i]+va]i];
}
normalize(v12);
normalize(v23);
normalize(v31);
subdivide(vl, v12, v31, depth-1);
subdivide(v2, v23, v12, depth-1);
subdivide(v3, v31, v23, depth-1);
subdivide(v12, v23, v31, depth-1);

Generalized Subdivision

A recursive subdivision technique such as the one described in Example 2-17 can be used for other t
of surfaces. Typically, the recursion ends either if a certain depth is reached or if some condition on th
curvature is satisfied (highly curved parts of surfaces look better with more subdivision).

To look at a more general solution to the problem of subdivision, consider an arbitrary surface
parameterized by two variablef)] andu[1]. Suppose that two routines are provided:

void surf(GLfloat u[2], GLfloat vertex[3], GLfloat normal[3]);
float curv(GLfloat u[2]);

OpenGL Programming Guide — Chapter 2, State Management and Drawing Geometric Objects — 49

If surf()is passedl[], the corresponding three—dimensional vertex and normal vectors (of length 1) are
returned. Iu[] is passed tourv(), the curvature of the surface at that point is calculated and returned.
(See an introductory textbook on differential geometry for more information about measuring surface
curvature.)

Example 2-18hows the recursive routine that subdivides a triangle either until the maximum depth is
reached or until the maximum curvature at the three vertices is less than some cutoff.

Example 2-18 Generalized Subdivision

void subdivide(float ul[2], float u2[2], float u3[2],
float cutoff, long depth)

GLfloat v1[3], v2[3], v3[3], n1][3], n2[3], n3[3];
GLfloat u12[2], u23[2], u32[2];
GLint i;

if (depth == maxdepth || (curv(ul) < cutoff &&
curv(u2) < cutoff && curv(u3) < cutoff)) {
surf(ul, v1, nl); surf(u2, v2, n2); surf(u3, v3, n3);
glBegin(GL_POLYGON);
gINormal3fv(nl); glVertex3fv(vl);
gINormal3fv(n2); glVertex3fv(v2);
gINormal3fv(n3); glVertex3fv(v3);
glEnd();
return;
}
for(i=0;i<2;i++){
ul2[i] = (ul[i] + u2[i])/2.0;
u23[i] = (u2[i] + u3[i})/2.0;
u31[i] = (u3[i] + ul[i]/2.0;
}
subdivide(ul, ul2, u3l, cutoff, depth+1);
subdivide(u2, u23, ul2, cutoff, depth+1);
subdivide(u3, u31, u23, cutoff, depth+1);
subdivide(ul2, u23, u3l, cutoff, depth+1);

OpenGL Programming Guide — Chapter 3, Viewing — 50

Chapter 3
Viewing

Chapter Objectives

After reading this chapter, you'll be able to do the following:
View ageometric modeh any orientation by transforming it in three—dimensional space
Control the location in three—dimensional space from which the model is viewed
Clip undesired portions of the model out of the scene that’s to be viewed

Manipulate the appropriate matrix stacks that control model transformation for viewing and projec
the model onto the screen

Combine multiple transformations to mimic sophisticated systems in motion, such as a solar syste
or an articulated robot arm

Reverse or mimic the operations of the geometric processing pipeline

Chapter 2 explained how to instruct OpenGL to draw the geometric models you want displayed in you
scene. Now you must decide how you want to position the models in the scene, and you must choose
vantage point from which to view the scene. You can use the default positioning and vantage point, bt
most likely you want to specify them.

Look at the image on the cover of this book. The program that produced that image contained a single
geometric description of a building block. Each block was carefully positioned in the scene: Some bloc
were scattered on the floor, some were stacked on top of each other on the table, and some were
assembled to make the globe. Also, a particular viewpoint had to be chosen. Obviously, we wanted to
look at the corner of the room containing the globe. But how far away from thélsaedevhere

exactly] should the viewer be? We wanted to make sure that the final image of the scene contained a
good view out the window, that a portion of the floor was visible, and that all the objects in the scene
were not only visible but presented in an interesting arrangement. This chapter explains how to use
OpenGL to accomplish these tasks: how to position and orient models in three—dimensional space an
how to establish the locatidinalso in three—dimensional spdoef the viewpoint. All of these factors

help determine exactly what image appears on the screen.

You want to remember that the point of computer graphics is to create a two—dimensional image of
three—dimensional objects (it has to be two—dimensional because it's drawn on a flat screen), but you
to think in three—dimensional coordinates while making many of the decisions that determine what get
drawn on the screen. A common mistake people make when creating three—dimensional graphics is t
start thinking too soon that the final image appears on a flat, two—dimensional screen. Avoid thinking
about which pixels need to be drawn, and instead try to visualize three—dimensional space. Create yo
models in some three—dimensional universe that lies deep inside your computer, and let the computel
its job of calculating which pixels to color.

A series of three computer operations convert an object’s three—dimensional coordinates to pixel

OpenGL Programming Guide — Chapter 3, Viewing -1

positions on the screen.

Transformations, which are represented by matrix multiplication, include modeling, viewing, and
projection operations. Such operations include rotation, translation, scaling, reflecting, orthograph
projection, and perspective projection. Generally, you use a combination of several transformatior
to draw a scene.

Since the scene is rendered on a rectangular window, objects (or parts of objects) that lie outside
window must be clipped. In three—dimensional computer graphics, clipping occurs by throwing ou
objects on one side of a clipping plane.

Finally, a correspondence must be established between the transformed coordinates and screen
pixels. This is known asdewporttransformation.

This chapter describes all of these operations, and how to control them, in the following major section

"Overview: The Camera Analogy" gives an overview of the transformation process by describing
the analogy of taking a photograph with a camera, presents a simple example program that
transforms an object, and briefly describes the basic OpenGL transformation commands.

"Viewing and Modeling Transformations" explains in detail how to specify and to imagine the effe
of viewing and modeling transformations. These transformations orient the model and the camere
relative to each other to obtain the desired final image.

"Projection Transformations" describes how to specify the shape and orientatiowiefiimg

volume The viewing volume determines how a scene is projected onto the screen (with a
perspective or orthographic projection) and which objects or parts of objects are clipped out of the
scene.

"Viewport Transformation" explains how to control the conversion of three—dimensional model
coordinates to screen coordinates.

"Troubleshooting Transformations" presents some tips for discovering why you might not be gettil
the desired effect from your modeling, viewing, projection, and viewport transformations.

"Manipulating the Matrix Stacks" discusses how to save and restore certain transformations. This
particularly useful when you're drawing complicated objects that are built up from simpler ones.

"Additional Clipping Planes" describes how to specify additional clipping planes beyond those
defined by the viewing volume.

"Examples of Composing Several Transformations" walks you through a couple of more
complicated uses for transformations.

"Reversing or Mimicking Transformations" shows you how to take a transformed point in window
coordinates and reverse the transformation to obtain its original object coordinates. The
transformation itself (without reversal) can also be emulated.

OpenGL Programming Guide — Chapter 3, Viewing — 2

Overview: The Camera Analogy

The transformation process to produce the desired scene for viewing is analogous to taking a photogr
with a camera. As shown in Figure 3-1, the steps with a camera (or a computer) might be the followin

1. Set up your tripod and pointing the camera at the scene (viewing transformation).
2. Arrange the scene to be photographed into the desired composition (modeling transformation).

3. Choose a camera lens or adjust the zoom (projection transformation).

4. Determine how large you want the final photograph o foe example, you might want it enlarged
(viewport transformation).

After these steps are performed, the picture can be snapped or the scene can be drawn.

OpenGL Programming Guide — Chapter 3, Viewing — 3

OpenGL Programming Guide — Chapter 3, Viewing — 4

Figure 3—1 The Camera Analogy

Note that these steps correspond to the order in which you specify the desired transformations in youl
program, not necessarily the order in which the relevant mathematical operations are performed on at
object’s vertices. The viewing transformations must precede the modeling transformations in your cod
but you can specify the projection and viewport transformations at any point before drawing occurs.
Figure 3—-2shows the order in which these operations occur on your computer.

Figure 3-2 Stages of Vertex Transformation

To specify viewing, modeling, and projection transformations, you construet endtrixM, which is
then multiplied by the coordinates of each vextéx the scene to accomplish the transformation

Vv'=Mv

(Remember that vertices always have four coordinates ¢, W, though in most casesis 1 and for
two—-dimensional datais 0.) Note that viewing and modeling transformations are automatically applied
to surface normal vectors, in addition to vertices. (Normal vectors are used eptydoordinates)

This ensures that the normal vector’s relationship to the vertex data is properly preserved.

The viewing and modeling transformations you specify are combined to form the modelview matrix,
which is applied to the incomimapject coordinatesto yield eye coordinates. Next, if you've specified
additional clipping planes to remove certain objects from the scene or to provide cutaway views of
objects, these clipping planes are applied.

After that, OpenGL applies the projection matrix to yigig coordinates This transformation defines a
viewing volume; objects outside this volume are clipped so that they’re not drawn in the final scene.
After this point, theperspective divisionis performed by dividing coordinate valuesviyto produce
normalized device coordinatelSee Appendix F for more information about the meaning ofithe
coordinate and how it affects matrix transformations.) Finally, the transformed coordinates are conver
towindow coordinatesby applying the viewport transformation. You can manipulate the dimensions of
the viewport to cause the final image to be enlarged, shrunk, or stretched.

You might correctly suppose that th@ndy coordinates are sufficient to determine which pixels need to
be drawn on the screen. However, all the transformations are performedzaodhdinates as well.
This way, at the end of this transformation processz tledues correctly reflect the depth of a given

OpenGL Programming Guide — Chapter 3, Viewing -5

vertex (measured in distance away from the screen). One use for this depth value is to eliminate
unnecessary drawing. For example, suppose two vertices have the sadyesalues but differert

values. OpenGL can use this information to determine which surfaces are obscured by other surfaces
can then avoid drawing the hidden surfaces. (See Chapter 10 for more information about this techniqt
which is callechidden-surface removal

As you've probably guessed by now, you need to know a few things about matrix mathematics to get-
most out of this chapter. If you want to brush up on your knowledge in this area, you might consult a
textbook on linear algebra.

A Simple Example: Drawing a Cube

Example 3—-tiraws a cube that's scaled by a modeling transformation (see Figure 3-3. The viewing
transformationgluLookAt() positions and aims the camera towards where the cube is drawn. A
projection transformation and a viewport transformation are also specified. The rest of this section wal
you through Example 3-ahd briefly explains the transformation commands it uses. The succeeding
sections contain the complete, detailed discussion of all OpenGL's transformation commands.

Figure 3—-3 Transformed Cube

Example 3-1 Transformed Cube: cube.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);

}

void display(void)
{
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);
glLoadldentity (); /* clear the matrix */
/* viewing transformation */
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

OpenGL Programming Guide — Chapter 3, Viewing — 6

glScalef (1.0, 2.0, 1.0); /* modeling transformation */
glutWireCube (1.0);
glFlush ();

}

void reshape (int w, int h)

{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadldentity ();
glFrustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
glMatrixMode (GL_MODELVIEW);

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutinitWindowsSize (500, 500);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();
return O;

The Viewing Transformation

Recall that the viewing transformation is analogous to positioning and aiming a camera. In this code
example, before the viewing transformation can be specifiedutinent matrix is set to the identity

matrix with glLoadldentity() This step is necessary since most of the transformation commands
multiply the current matrix by the specified matrix and then set the result to be the current matrix. If yo
don't clear the current matrix by loading it with the identity matrix, you continue to combine previous
transformation matrices with the new one you supply. In some cases, you do want to perform such
combinations, but you also need to clear the matrix sometimes.

In Example 3-Jafter the matrix is initialized, the viewing transformation is specified ghithookAt()

The arguments for this command indicate where the camera (or eye position) is placed, where it is air
and which way is up. The arguments used here place the camera at (0, 0, 5), aim the camera lens tov
(0, 0, 0), and specify thep—vectoras (0, 1, 0). The up—vector defines a unique orientation for the
camera.

If gluLookAt()was not called, the camera has a default position and orientation. By default, the camere

OpenGL Programming Guide — Chapter 3, Viewing — 7

situated at the origin, points down the negativaxis, and has an up-vector of (0, 1, 0). Emample
3-1the overall effect is th@luLookAt()moves the camera 5 units along the z—axis."{8ewing and
Modeling Transformations" for more information about viewing transformations.)

The Modeling Transformation

You use the modeling transformation to position and orient the model. For example, you can rotate,
translate, or scale the modebr perform some combination of these operations. In Example 3-1
glScalef()is the modeling transformation that is used. The arguments for this command specify how
scaling should occur along the three axes. If all the arguments are 1.0, this command has no effect. Ir
Example 3-1the cube is drawn twice as large in thdirection. Thus, if one corner of the cube had
originally been at (3.0, 3.0, 3.0), that corner would wind up being drawn at (3.0, 6.0, 3.0). The effect of
this modeling transformation is to transform the cube so that it isn’t a cube but a rectangular box.

Try This

Change th@luLookAt()call in Example 3-tb the modeling transformatiagTranslatef()with
parameters (0.0, 0.0, —5.0). The result should look exactly the same as when ybul wsddht() Why
are the effects of these two commands similar?

Note that instead of moving the camera (with a viewing transformation) so that the cube could be
viewed, you could have moved the cube away from the camera (with a modeling transformation). This
duality in the nature of viewing and modeling transformations is why you need to think about the effec
of both types of transformations simultaneously. It doesn’t make sense to try to separate the effects, k
sometimes it's easier to think about them one way rather than the other. This is also why modeling an
viewing transformations are combined into thedelview matrixbefore the transformations are applied.
(See "Viewing and Modeling Transformations" for more detail on how to think about modeling and
viewing transformations and how to specify them to get the result you want.)

Also note that the modeling and viewing transformations are included disghiay() routine, along with

the call that's used to draw the cubgiytWireCube()This way,display() can be used repeatedly to draw
the contents of the window if, for example, the window is moved or uncovered, and you've ensured th
each time, the cube is drawn in the desired way, with the appropriate transformations. The potential
repeated use afisplay() underscores the need to load the identity matrix before performing the viewing
and modeling transformations, especially when other transformations might be performed between ca
to display()

The Projection Transformation

Specifying the projection transformation is like choosing a lens for a camera. You can think of this

transformation as determining what the field of view or viewing volume is and therefore what objects ¢
inside it and to some extent how they look. This is equivalent to choosing among wide—angle, normal,
and telephoto lenses, for example. With a wide-angle lens, you can include a wider scene in the final
photograph than with a telephoto lens, but a telephoto lens allows you to photograph objects as thoug
they’re closer to you than they actually are. In computer graphics, you don't have to pay $10,000 for a
2000—millimeter telephoto lens; once you've bought your graphics workstation, all you need to do is u:

OpenGL Programming Guide — Chapter 3, Viewing — 8

a smaller number for your field of view.

In addition to the field-of-view considerations, the projection transformation determines how objects ¢
projectedonto the screen, as its name suggests. Two basic types of projections are provided for you b
OpenGL, along with several corresponding commands for describing the relevant parameters in differ
ways. One type is theerspectiveprojection, which matches how you see things in daily life. Perspective
makes objects that are farther away appear smaller; for example, it makes railroad tracks appear to
converge in the distance. If you're trying to make realistic pictures, you'll want to choose perspective
projection, which is specified with tligFrustum()command in this code example.

The other type of projection @thographic, which maps objects directly onto the screen without
affecting their relative size. Orthographic projection is used in architectural and computer—aided desig
applications where the final image needs to reflect the measurements of objects rather than how they
might look. Architects create perspective drawings to show how particular buildings or interior spaces
look when viewed from various vantage points; the need for orthographic projection arises when
blueprint plans or elevations are generated, which are used in the construction of buildings. (See
"Projection Transformations" for a discussion of ways to specify both kinds of projection
transformations.)

BeforeglFrustum()can be called to set the projection transformation, some preparation needs to happe
As shown in theeshape()routine in Example 3-1, the command califidatrixMode()is used first,

with the argument GL_PROJECTION. This indicates that the current matrix specifies the projection
transformation; the following transformation calls then affeciptiofection matrix. As you can see, a

few lines lateglMatrixMode()is called again, this time with GL_MODELVIEW as the argument. This
indicates that succeeding transformations now affect the modelview matrix instead of the projection
matrix. (See "Manipulating the Matrix Stacks" for more information about how to control the projection
and modelview matrices.)

Note thaglLoadldentity()is used to initialize the current projection matrix so that only the specified
projection transformation has an effect. Nglwrustum()can be called, with arguments that define the
parameters of the projection transformation. In this example, both the projection transformation and th
viewport transformation are contained in teshape(youtine, which is called when the window is first
created and whenever the window is moved or reshaped. This makes sense, since both projecting (th
width to height aspect ratio of the projection viewing volume) and applying the viewport relate directly
to the screen, and specifically to the size or aspect ratio of the window on the screen.

Try This

Change thglFrustum()call in Example 3-tb the more commonly used Utility Library routine
gluPerspective(ith parameters (60.0, 1.0, 1.5, 20.0). Then experiment with different values, especiall
for fovy andaspect

The Viewport Transformation

Together, the projection transformation and the viewport transformation determine how a scene gets
mapped onto the computer screen. The projection transformation specifies the mechanics of how the
mapping should occur, and the viewport indicates the shape of the available screen area into which tr

OpenGL Programming Guide — Chapter 3, Viewing — 9

scene is mapped. Since the viewport specifies the region the image occupies on the computer screen
can think of the viewport transformation as defining the size and location of the final processed

photographl for example, whether the photograph should be enlarged or shrunk.

The arguments tglViewport() describe the origin of the available screen space within the wingow

0) in this example and the width and height of the available screen area, all measured in pixels on the
screen. This is why this command needs to be called witkimape()! if the window changes size, the
viewport needs to change accordingly. Note that the width and height are specified using the actual w
and height of the window; often, you want to specify the viewport this way rather than giving an absolt
size. (See "Viewport Transformation” for more information about how to define the viewport.)

Drawing the Scene

Once all the necessary transformations have been specified, you can draw the scene (that is, take the
photograph). As the scene is drawn, OpenGL transforms each vertex of every object in the scene by t
modeling and viewing transformations. Each vertex is then transformed as specified by the projection
transformation and clipped if it lies outside the viewing volume described by the projection
transformation. Finally, the remaining transformed vertices are dividedamd mapped onto the

viewport.

General-Purpose Transformation Commands

This section discusses some OpenGL commands that you might find useful as you specify desired
transformations. You've already seen a couple of these comnuhtdgrixMode()andglLoadldentity()

The other two commands described hegh_oadMatrix*() andgIMultMatrix*() O allow you to specify

any transformation matrix directly and then to multiply the current matrix by that specified matrix. More
specific transformation commaridsuch agjluLookAt()andglScale*()J are described in later sections.

As described in the preceding section, you need to state whether you want to modify the modelview o
projection matrix before supplying a transformation command. You choose the matrix with
glMatrixMode() When you use nested sets of OpenGL commands that might be called repeatedly,
remember to reset the matrix mode correctly. (@hatrixMode()command can also be used to

indicate theexture matrix ; texturing is discussed in detail in "The Texture Matrix Stack" in Chapter 9.)

void glMatrixMode(GLenum mode);
Specifies whether the modelview, projection, or texture matrix will be modified, using the argumer
GL_MODELVIEW, GL_PROJECTION, or GL_TEXTURE for mode. Subsequent transformation
commands affect the specified matrix. Note that only one matrix can be modified at a time. By
default, the modelview matrix is the one that's modifiable, and all three matrices contain the identi
matrix.

You use th@lLoadldentity()command to clear the currently modifiable matrix for future transformation
commands, since these commands modify the current matrix. Typically, you always call this comman
before specifying projection or viewing transformations, but you might also call it before specifying a
modeling transformation.

OpenGL Programming Guide — Chapter 3, Viewing — 10

void glLoadldentity(void);
Sets the currently modifiable matrix to thetddentity matrix.

If you want to specify explicitly a particular matrix to be loaded as the current matrix, use
glLoadMatrix*(). Similarly, useglMultMatrix*() to multiply the current matrix by the matrix passed in as
an argument. The argument for both these commands is a vector of sixteenmh)ugs (.. ,m16) that
specifies a matrid as follows:

Remember that you might be able to maximize efficiency by using display lists to store frequently use:
matrices (and their inverses) rather than recomputing them. (See "Display-List Design Philosophy" in
Chapter 7.) (OpenGL implementations often must compute the inverse of the modelview matrix so the
normals and clipping planes can be correctly transformed to eye coordinates.)

Caution: If you're programming in C and you declare a matrixrg][4], then the elememrnl[i][j] is in
theith column angith row of the OpenGL transformation matrix. This is the reverse of the standard C
convention in whichm[i][j] is in rowi and column. To avoid confusion, you should declare your

matrices asn16].

void glLoadMatrix{fd}(const TYPE *m);
Sets the sixteen values of the current matrix to those specified by m.

void glMultMatrix{fd}(const TYPE *m);
Multiplies the matrix specified by the sixteen values pointed to by m by the current matrix and stor
the result as the current matrix.

Note: All matrix multiplication with OpenGL occurs as follows: Suppose the current maithaizd the
matrix specified witlgiIMultMatrix*() or any of the transformation commandMisAfter multiplication,

the final matrix is alway€M. Since matrix multiplication isn’t generally commutative, the order makes
a difference.

Viewing and Modeling Transformations

Viewing and modeling transformations are inextricably related in OpenGL and are in fact combined in
a single modelview matrix. (See "A Simple Example: Drawing a Cube."”) One of the toughest problems
newcomers to computer graphics face is understanding the effects of combined three—dimensional
transformations. As you've already seen, there are alternative ways to think about transfdrnaations
you want to move the camera in one direction, or move the object in the opposite direction? Each way
thinking about transformations has advantages and disadvantages, but in some cases one way more
naturally matches the effect of the intended transformation. If you can find a natural approach for your
particular application, it's easier to visualize the necessary transformations and then write the

OpenGL Programming Guide — Chapter 3, Viewing — 11

corresponding code to specify the matrix manipulations. The first part of this section discusses how to
think about transformations; later, specific commands are presented. For now, we use only the
matrix—-manipulation commands you've already seen. Finally, keep in mind that you must call
glMatrixMode()with GL_MODELVIEW as its argument prior to performing modeling or viewing
transformations.

Thinking about Transformations

Let’s start with a simple case of two transformations: a 45—-degree counterclockwise rotation about the
origin around the-axis, and a translation down th@xis. Suppose that the object you're drawing is
small compared to the translation (so that you can see the effect of the translation), and that it's origin
located at the origin. If you rotate the object first and then translate it, the rotated object appears on th
x—axis. If you translate it down tkeaxis first, however, and then rotate about the origin, the object is on
the liney=x, as shown in Figure 3-4 In general, the order of transformations is critical. If you do
transformation A and then transformation B, you almost always get something different than if you do
them in the opposite order.

Figure 3—-4 Rotating First or Translating First

Now let’s talk about the order in which you specify a series of transformations. All viewing and
modeling transformations are represented-dsmatrices. Each successigultMatrix*() or
transformation command multiplies a newd4matrix M by the current modelview matr& to yieldCM.
Finally, verticesy are multiplied by the current modelview matrix. This process means that the last
transformation command called in your program is actually the first one applied to the vEtlees:

Thus, one way of looking at it is to say that you have to specify the matrices in the reverse order. Like
many other things, however, once you've gotten used to thinking about this correctly, backward will
seem like forward.

Consider the following code sequence, which draws a single point using three transformations:

gIMatrixMode(GL_MODELVIEW);
glLoadldentity();

OpenGL Programming Guide — Chapter 3, Viewing — 12

glMultMatrixf(N); * apply transformation N */

glMultMatrixf(M); /* apply transformation M */
glMultMatrixf(L); * apply transformation L */
glBegin(GL_POINTS);

glVertex3f(v); [* draw transformed vertex v */
glEnd();

With this code, the modelview matrix successively contaiNsNM, and finallyNML, wherel

represents the identity matrix. The transformed vertdBdMkv. Thus, the vertex transformation is
N(M(Lv)) that is,v is multiplied first byL, the resultind.v is multiplied byM, and the resultinyiLv is
multiplied byN. Notice that the transformations to verteaffectively occur in the opposite order than
they were specified. (Actually, only a single multiplication of a vertex by the modelview matrix occurs;
in this example, th&l, M, andL matrices are already multiplied into a single matrix before it's applied to
V.)

Grand, Fixed Coordinate System

Thus, if you like to think in terms of a grand, fixed coordinate syiStemwhich matrix multiplications

affect the position, orientation, and scaling of your madelu have to think of the multiplications as
occurring in the opposite order from how they appear in the code. Using the simple example shown ol
the left side of Figure 3—4(a rotation about the origin and a translation aloxggtkis), if you want the
object to appear on the axis after the operations, the rotation must occur first, followed by the translati
To do this, you'll need to reverse the order of operations, so the code looks something like thiR (where
is the rotation matrix and is the translation matrix):

glMatrixMode(GL_MODELVIEW);
glLoadldentity();

glMultMatrixf(T); [* translation */
glMultMatrixf(R); [* rotation */
draw_the_object();

Moving a Local Coordinate System

Another way to view matrix multiplications is to forget about a grand, fixed coordinate system in which
your model is transformed and instead imagine that a local coordinate system is tied to the object you
drawing. All operations occur relative to this changing coordinate system. With this approach, the mat
multiplications now appear in the natural order in the code. (Regardless of which analogy you're using
the code is the same, but how you think about it differs.) To see this in the translation—rotation examp
begin by visualizing the object with a coordinate system tied to it. The translation operation moves the
object and its coordinate system downxhkaexis. Then, the rotation occurs about the (now-translated)
origin, so the object rotates in place in its position on the axis.

This approach is what you should use for applications such as articulated robot arms, where there are
joints at the shoulder, elbow, and wrist, and on each of the fingers. To figure out where the tips of the
fingers go relative to the body, you'd like to start at the shoulder, go down to the wrist, and so on,

applying the appropriate rotations and translations at each joint. Thinking about it in reverse would be

OpenGL Programming Guide — Chapter 3, Viewing — 13

more confusing.

This second approach can be problematic, however, in cases where scaling occurs, and especially sc
when the scaling is nonuniform (scaling different amounts along the different axes). After uniform
scaling, translations move a vertex by a multiple of what they did before, since the coordinate system
stretched. Nonuniform scaling mixed with rotations may make the axes of the local coordinate system
nonperpendicular.

As mentioned earlier, you normally issue viewing transformation commands in your program before ai
modeling transformations. This way, a vertex in a model is first transformed into the desired orientatio
and then transformed by the viewing operation. Since the matrix multiplications must be specified in
reverse order, the viewing commands need to come first. Note, however, that you don’t need to speci
either viewing or modeling transformations if you're satisfied with the default conditions. If there’s no
viewing transformation, the "camera" is left in the default position at the origin, pointed toward the
negativez—axis; if there’s no modeling transformation, the model isn’t moved, and it retains its specifiec
position, orientation, and size.

Since the commands for performing modeling transformations can be used to perform viewing
transformations, modeling transformations disezussedirst, even if viewing transformations are
actuallyissuedfirst. This order for discussion also matches the way many programmers think when
planning their code: Often, they write all the code necessary to compose the scene, which involves
transformations to position and orient objects correctly relative to each other. Next, they decide where
they want the viewpoint to be relative to the scene they’'ve composed, and then they write the viewing
transformations accordingly.

Modeling Transformations

The three OpenGL routines for modeling transformationgldranslate*() glRotate*(), andglScale*().

As you might suspect, these routines transform an object (or coordinate system, if you're thinking of it
that way) by moving, rotating, stretching, shrinking, or reflecting it. All three commands are equivalent
to producing an appropriate translation, rotation, or scaling matrix, and then giMinigMatrix*() with

that matrix as the argument. However, these three routines might be faster thaytiMisitddatrix*().
OpenGL automatically computes the matrices for you. (See Appendix F if you're interested in the
details.)

In the command summaries that follow, each matrix multiplication is described in terms of what it does
to the vertices of a geometric object using the fixed coordinate system approach, and in terms of whai
does to the local coordinate system that's attached to an object.

Translate

void glTranslate{fd}(TYPEx, TYPE y, TYPEZz);
Multiplies the current matrix by a matrix that moves (translates) an object by the given x, y, and z
values (or moves the local coordinate system by the same amounts).

Figure 3-5shows the effect gfTranslate*()

OpenGL Programming Guide — Chapter 3, Viewing — 14

Figure 3-5 Translating an Object

Note that using (0.0, 0.0, 0.0) as the argumengiftranslate*()is the identity operatidnthat is, it has
no effect on an object or its local coordinate system.

Rotate

void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE 2z);
Multiplies the current matrix by a matrix that rotates an object (or the local coordinate system) in a
counterclockwise direction about the ray from the origin through the point (X, y,). The angle
parameter specifies the angle of rotation in degrees.

The effect ofglRotatefd5.0, 0.0, 0.0, 1)0which is a rotation of 45 degrees aboutzhaxis, is shown in
Figure 3-6

OpenGL Programming Guide — Chapter 3, Viewing — 15

Figure 3—-6 Rotating an Object

Note that an object that lies farther from the axis of rotation is more dramatically rotated (has a larger
orbit) than an object drawn near the axis. Also, ifahgleargument is zero, thgRotate*()command
has no effect.

Scale

void glScale{fdi(TYPEx, TYPE y, TYPEZ);
Multiplies the current matrix by a matrix that stretches, shrinks, or reflects an object along the axe
Each x, y, and z coordinate of every point in the object is multiplied by the corresponding argumer
X, ¥, or z. With the local coordinate system approach, the local coordinate axes are stretched,
shrunk, or reflected by the x, y, and z factors, and the associated object is transformed with them.

Figure 3—-7shows the effect gfScalefp.0, —-0.5, 1)0

Figure 3-7 Scaling and Reflecting an Object

glScale*()is the only one of the three modeling transformations that changes the apparent size of an
object: Scaling with values greater than 1.0 stretches an object, and using values less than 1.0 shrink:
Scaling with a —1.0 value reflects an object across an axis. The identity values for scaling are (1.0, 1.C
1.0). In general, you should limit your usegt6cale*()to those cases where it is necessary. Using
glScale*()decreases the performance of lighting calculations, because the normal vectors have to be
renormalized after transformation.

Note: A scale value of zero collapses all object coordinates along that axis to zero. It's usually not a
good idea to do this, because such an operation cannot be undone. Mathematically speaking, the ma
cannot be inverted, and inverse matrices are required for certain lighting operations. (See Chapter 5.)
Sometimes collapsing coordinates does make sense, however; the calculation of shadows on a plana
surface is a typical application. (See "Shadows" in Chapter 14.) In general, if a coordinate system is tc
collapsed, the projection matrix should be used rather than the modelview matrix.

OpenGL Programming Guide — Chapter 3, Viewing — 16

A Modeling Transformation Code Example

Example 3-1 a portion of a program that renders a triangle four times, as shown in Figurbee8
are the four transformed triangles.

A solid wireframe triangle is drawn with no modeling transformation.

The same triangle is drawn again, but with a dashed line stipple and translated (taltaieftthe
negative x—axis).

A triangle is drawn with a long dashed line stipple, with its heigraXis) halved and its width
(x—axis) increased by 50%.

A rotated triangle, made of dotted lines, is drawn.

Figure 3-8 Modeling Transformation Example

Example 3-2 Using Modeling Transformations: model.c

glLoadldentity();
glColor3f(1.0, 1.0, 1.0);
draw_triangle(); /* solid lines */

glEnable(GL_LINE_STIPPLE); [* dashed lines */
glLineStipple(1, OxFOFO0);

glLoadldentity();

glTranslatef(-20.0, 0.0, 0.0);

draw_triangle();

glLineStipple(1, 0xFOOF); /*long dashed lines */
glLoadldentity();

glScalef(1.5, 0.5, 1.0);

draw_triangle();

glLineStipple(1, 0x8888); /* dotted lines */
glLoadldentity();

glRotatef (90.0, 0.0, 0.0, 1.0);

draw_triangle ();

glDisable (GL_LINE_STIPPLE);

OpenGL Programming Guide — Chapter 3, Viewing — 17

Note the use dflLoadldentity()to isolate the effects of modeling transformations; initializing the matrix
values prevents successive transformations from having a cumulative effect. Even though using
glLoadldentity()repeatedly has the desired effect, it may be inefficient, because you may have to
respecify viewing or modeling transformations. (See "Manipulating the Matrix Stacks" for a better way
to isolate transformations.)

Note: Sometimes, programmers who want a continuously rotating object attempt to achieve this by
repeatedly applying a rotation matrix that has small values. The problem with this technique is that
because of round-off errors, the product of thousands of tiny rotations gradually drifts away from the
value you really want (it might even become something that isn't a rotation). Instead of using this
technique, increment the angle and issue a new rotation command with the new angle at each update

Viewing Transformations

A viewing transformation changes the position and orientation of the viewpoint. If you recall the camet
analogy, the viewing transformation positions the camera tripod, pointing the camera toward the mode
Just as you move the camera to some position and rotate it until it points in the desired direction, view
transformations are generally composed of translations and rotations. Also remember that to achieve
certain scene composition in the final image or photograph, you can either move the camera or move
the objects in the opposite direction. Thus, a modeling transformation that rotates an object
counterclockwise is equivalent to a viewing transformation that rotates the camera clockwise, for
example. Finally, keep in mind that the viewing transformation commands must be called before any
modeling transformations are performed, so that the modeling transformations take effect on the obje«
first.

You can manufacture a viewing transformation in any of several ways, as described next. You can als
choose to use the default location and orientation of the viewpoint, which is at the origin, looking dowr
the negativer-axis.

Use one or more modeling transformation commands (thgiffimnslate*()andglRotate*()). You
can think of the effect of these transformations as moving the camera position or as moving all th
objects in the world, relative to a stationary camera.

Use the Utility Library routinggluLookAt()to define a line of sight. This routine encapsulates a
series of rotation and translation commands.

Create your own utility routine that encapsulates rotations and translations. Some applications mi
require custom routines that allow you to specify the viewing transformation in a convenient way.
For example, you might want to specify the roll, pitch, and heading rotation angles of a plane in
flight, or you might want to specify a transformation in terms of polar coordinates for a camera
that’s orbiting around an object.

Using glTranslate*() and glRotate*()

When you use modeling transformation commands to emulate viewing transformations, you're trying t
move the viewpoint in a desired way while keeping the objects in the world stationary. Since the
viewpoint is initially located at the origin and since objects are often most easily constructed there as\

OpenGL Programming Guide — Chapter 3, Viewing — 18

(see Figure 3-9, in general you have to perform some transformation so that the objects can be view:
Note that, as shown in the figure, the camera initially points down the negsaixis. (You're seeing the
back of the camera.)

Figure 3—-9 Object and Viewpoint at the Origin

In the simplest case, you can move the viewpoint backward, away from the objects; this has the same
effect as moving the objects forward, or away from the viewpoint. Remember that by default forward i
down the negative-axis; if you rotate the viewpoint, forward has a different meaning. So, to put 5 units
of distance between the viewpoint and the objects by moving the viewpoint, as shown in Figure 3-1Q

glTranslatef(0.0, 0.0, —5.0);

This routine moves the objects in the scene =5 units alomgiee This is also equivalent to moving the
camera +5 units along tlzeaxis.

OpenGL Programming Guide — Chapter 3, Viewing — 19

Figure 3—-10 Separating the Viewpoint and the Object

Now suppose you want to view the objects from the side. Should you issue a rotate command before
after the translate command? If you're thinking in terms of a grand, fixed coordinate system, first
imagine both the object and the camera at the origin. You could rotate the object first and then move i
away from the camera so that the desired side is visible. Since you know that with the fixed coordinate
system approach, commands have to be issued in the opposite order in which they should take effect
know that you need to write the translate command first in your code and follow it with the rotate
command.

Now let’s use the local coordinate system approach. In this case, think about moving the object and it:
local coordinate system away from the origin; then, the rotate command is carried out using the
now-translated coordinate system. With this approach, commands are issued in the order in which th:
applied, so once again the translate command comes first. Thus, the sequence of transformation
commands to produce the desired result is

glTranslatef(0.0, 0.0, —5.0);
glRotatef(90.0, 0.0, 1.0, 0.0);

If you're having trouble keeping track of the effect of successive matrix multiplications, try using both
the fixed and local coordinate system approaches and see whether one makes more sense to you. Nt
that with the fixed coordinate system, rotations always occur about the grand origin, whereas with the
local coordinate system, rotations occur about the origin of the local system. You might also try using
gluLookAt()utility routine described in the next section.

Using the gluLookAt() Utility Routine

Often, programmers construct a scene around the origin or some other convenient location, then they
want to look at it from an arbitrary point to get a good view of it. As its name suggesiisiLtbekAt()

OpenGL Programming Guide — Chapter 3, Viewing — 20

utility routine is designed for just this purpose. It takes three sets of arguments, which specify the
location of the viewpoint, define a reference point toward which the camera is aimed, and indicate whi
direction is up. Choose the viewpoint to yield the desired view of the scene. The reference point is
typically somewhere in the middle of the scene. (If you've built your scene at the origin, the reference
point is probably the origin.) It might be a little trickier to specify the correct up—vector. Again, if you've
built some real-world scene at or around the origin and if you've been taking the poaitigdo point
upward, then that's your up—vector §dtwuLookAt() However, if you're designing a flight simulator, up is
the direction perpendicular to the plane’s wings, from the plane toward the sky when the plane is
right-side up on the ground.

ThegluLookAt()routine is particularly useful when you want to pan across a landscape, for instance.
With a viewing volume that's symmetric in bottandy, the eyex, eyey, eyppoint specified is always

in the center of the image on the screen, so you can use a series of commands to move this point slig
thereby panning across the scene.

void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble centery
GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz);
Defines a viewing matrix and multiplies it to the right of the current matrix. The desired viewpoint i
specified by eyex, eyey, and eyez. The centerx, centery, and centerz arguments specify any point
along the desired line of sight, but typically they’re some point in the center of the scene being
looked at. The upx, upy, and upz arguments indicate which direction is up (that is, the direction frc
the bottom to the top of the viewing volume).

In the default position, the camera is at the origin, is looking down the negatixis, and has the
positivey—axis as straight up. This is the same as calling

gluLookat (0.0, 0.0, 0.0, 0.0, 0.0, —100.0, 0.0, 1.0, 0.0);

Thez value of the reference point is —100.0, but could be any negatieeause the line of sight will
remain the same. In this case, you don't actually want tglcdlbokAt() because this is the default (see
Figure 3—-11) and you are already there! (The lines extending from the camera represent the viewing
volume, which indicates its field of view.)

OpenGL Programming Guide — Chapter 3, Viewing — 21

Figure 3—-11 Default Camera Position

Figure 3—12shows the effect of a typighlLookAt()routine. The camera positioayex, eyey, eyes at
(4, 2, 1). In this case, the camera is looking right at the model, so the reference point is at (2, 4, —-3). A
orientation vector of (2, 2, —1) is chosen to rotate the viewpoint to this 45—-degree angle.

Figure 3—-12 Using gluLookAt()
So, to achieve this effect, call
gluLookAt(4.0, 2.0, 1.0, 2.0, 4.0, -3.0, 2.0, 2.0, —-1.0);

Note thagluLookAt()is part of the Utility Library rather than the basic OpenGL library. This isn’t
because it's not useful, but because it encapsulates several basic OpenGL caispaciisally,
glTranslate*()andglRotate*() To see this, imagine a camera located at an arbitrary viewpoint and
oriented according to a line of sight, both as specified ghithookAt()and a scene located at the origin.

OpenGL Programming Guide — Chapter 3, Viewing — 22

To "undo" whagluLookAt()does, you need to transform the camera so that it sits at the origin and poir
down the negative-axis, the default position. A simple translate moves the camera to the origin. You
can easily imagine a series of rotations about each of the three axes of a fixed coordinate system that
would orient the camera so that it pointed toward negatihadues. Since OpenGL allows rotation about
an arbitrary axis, you can accomplish any desired rotation of the camera with glfioggee*()

command.

Note: You can have only one active viewing transformation. You cannot try to combine the effects of
two viewing transformations, any more than a camera can have two tripods. If you want to change the
position of the camera, make sure you gllbadldentity()to wipe away the effects of any current

viewing transformation.

Advanced

To transform any arbitrary vector so that it's coincident with another arbitrary vector (for instance, the
negativez—axis), you need to do a little mathematics. The axis about which you want to rotate is given
the cross product of the two normalized vectors. To find the angle of rotation, normalize the initial two
vectors. The cosine of the desired angle between the vectors is equal to the dot product of the normal
vectors. The angle of rotation around the axis given by the cross product is always between 0 and 18(
degrees. (See Appendix E for definitions of cross and dot products.)

Note that computing the angle between two normalized vectors by taking the inverse cosine of their di
product is not very accurate, especially for small angles. But it should work well enough to get you
started.

Creating a Custom Utility Routine
Advanced

For some specialized applications, you might want to define your own transformation routine. Since th
is rarely done and in any case is a fairly advanced topic, it's left mostly as an exercise for the reader. -
following exercises suggest two custom viewing transformations that might be useful.

Try This

Suppose you're writing a flight simulator and you'd like to display the world from the point of view
of the pilot of a plane. The world is described in a coordinate system with the origin on the runway
and the plane at coordinatesy, 2. Suppose further that the plane has sostiepitch, and
heading(these are rotation angles of the plane relative to its center of gravity).

Show that the following routine could serve as the viewing transformation:

void pilotView{GLdouble planex, GLdouble planey,
GLdouble planez, GLdouble roll,
GLdouble pitch, GLdouble heading)

glRotated(roll, 0.0, 0.0, 1.0);

glRotated(pitch, 0.0, 1.0, 0.0);
glRotated(heading, 1.0, 0.0, 0.0);

OpenGL Programming Guide — Chapter 3, Viewing — 23

glTranslated(—planex, —planey, —planez);

}

Suppose your application involves orbiting the camera around an object that's centered at the ori
In this case, you'd like to specify the viewing transformation by using polar coordinates. Let the
distancevariable define the radius of the orbit, or how far the camera is from the origin. (Initially,
the camera is movatistanceunits along the positive-axis.) Thazimuthdescribes the angle of
rotation of the camera about the object inxthgplane, measured from the positireaxis. Similarly,
elevationis the angle of rotation of the camera in yheplane, measured from the positireaxis.
Finally, twist represents the rotation of the viewing volume around its line of sight.

Show that the following routine could serve as the viewing transformation:

void polarView{GLdouble distance, GLdouble twist,
GLdouble elevation, GLdouble azimuth)

{
glTranslated(0.0, 0.0, —distance);
glRotated(-twist, 0.0, 0.0, 1.0);
glRotated(—elevation, 1.0, 0.0, 0.0);
glRotated(azimuth, 0.0, 0.0, 1.0);

}

Projection Transformations

The previous section described how to compose the desired modelview matrix so that the correct
modeling and viewing transformations are applied. This section explains how to define the desired
projection matrix, which is also used to transform the vertices in your scene. Before you issue any of t
transformation commands described in this section, remember to call

glMatrixMode(GL_PROJECTION);
glLoadldentity();

so that the commands affect the projection matrix rather than the modelview matrix and so that you a\
compound projection transformations. Since each projection transformation command completely
describes a particular transformation, typically you don’t want to combine a projection transformation
with another transformation.

The purpose of the projection transformation is to defiviewaing volumewhich is used in two ways.

The viewing volume determines how an object is projected onto the screen (that is, by using a
perspective or an orthographic projection), and it defines which objects or portions of objects are clipp
out of the final image. You can think of the viewpoint we've been talking about as existing at one end
the viewing volume. At this point, you might want to reread "A Simple Example: Drawing a Cube" for
its overview of all the transformations, including projection transformations.

Perspective Projection

The most unmistakable characteristic of perspective projection is foreshortening: the farther an object

OpenGL Programming Guide — Chapter 3, Viewing — 24

from the camera, the smaller it appears in the final image. This occurs because the viewing volume fo
perspective projection isfeustum of a pyramid (a truncated pyramid whose top has been cut off by a
plane parallel to its base). Objects that fall within the viewing volume are projected toward the apex of
the pyramid, where the camera or viewpoint is. Objects that are closer to the viewpoint appear larger
because they occupy a proportionally larger amount of the viewing volume than those that are farther
away, in the larger part of the frustum. This method of projection is commonly used for animation, vist
simulation, and any other applications that strive for some degree of realism because it's similar to ho
our eye (or a camera) works.

The command to define a frustugifFrustum() calculates a matrix that accomplishes perspective
projection and multiplies the current projection matrix (typically the identity matrix) by it. Recall that the
viewing volume is used to clip objects that lie outside of it; the four sides of the frustum, its top, and its
base correspond to the six clipping planes of the viewing volume, as shown in Figure 3-13 Objects ot
parts of objects outside these planes are clipped from the final image. Ngfiéthstum()doesn't

require you to define a symmetric viewing volume.

Figure 3-13 Perspective Viewing Volume Specified by glFrustum()

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);
Creates a matrix for a perspective—-view frustum and multiplies the current matrix by it. The
frustum’s viewing volume is defined by the parameters: (left, bottom,)-amebfright, top, —nejr
specify the (x, y, z) coordinates of the lower-left and upper-right corners of the near clipping plan
near and far give the distances from the viewpoint to the near and far clipping planes. They shouli
always be positive.

The frustum has a default orientation in three—dimensional space. You can perform rotations or
translations on the projection matrix to alter this orientation, but this is tricky and nearly always
avoidable.

Advanced

Also, the frustum doesn’t have to be symmetrical, and its axis isn't necessarily aligned witaxise

OpenGL Programming Guide — Chapter 3, Viewing — 25

For example, you can ugéFrustum()to draw a picture as if you were looking through a rectangular
window of a house, where the window was above and to the right of you. Photographers use such a
viewing volume to create false perspectives. You might use it to have the hardware calculate images
much higher than normal resolutions, perhaps for use on a printer. For example, if you want an image
that has twice the resolution of your screen, draw the same picture four times, each time using the
frustum to cover the entire screen with one—quarter of the image. After each quarter of the image is
rendered, you can read the pixels back to collect the data for the higher-resolution im&jaeed

for more information about reading pixel data.)

Although it's easy to understand conceptualfsrustum()isn’t intuitive to use. Instead, you might try

the Utility Library routinegluPerspective()This routine creates a viewing volume of the same shape as
glFrustum()does, but you specify it in a different way. Rather than specifying corners of the near
clipping plane, you specify the angle of the field of vi€@y ¢r theta, in Figure 3-14) in tlyadirection

and the aspect ratio of the width to heighiy\. (For a square portion of the screen, the aspect ratio is
1.0.) These two parameters are enough to determine an untruncated pyramid along the line of sight, ¢
shown in Figure 3-14 You also specify the distance between the viewpoint and the near and far clippi
planes, thereby truncating the pyramid. Note thaPerspective()s limited to creating frustums that are
symmetric in both th& and/—axes along the line of sight, but this is usually what you want.

Figure 3-14 Perspective Viewing Volume Specified by gluPerspective()

void gluPerspective(GLdouble fovy, GLdouble aspect,
GLdouble near, GLdouble far);

Creates a matrix for a symmetric perspective—view frustum and multiplies the current matrix by it.
fovy is the angle of the field of view in the glane; its value must be in the range [0.0,180.0].
aspect is the aspect ratio of the frustum, its width divided by its height. near and far values the
distances between the viewpoint and the clipping planes, along the negative z—axis. They should
always be positive.

Just as witlglFrustum(), you can apply rotations or translations to change the default orientation of the
viewing volume created byluPerspective()With no such transformations, the viewpoint remains at the
origin, and the line of sight points down the negavexis.

OpenGL Programming Guide — Chapter 3, Viewing — 26

With gluPerspective()you need to pick appropriate values for the field of view, or the image may look
distorted. For example, suppose you're drawing to the entire screen, which happens to be 11 inches t
If you choose a field of view of 90 degrees, your eye has to be about 7.8 inches from the screen for th
image to appear undistorted. (This is the distance that makes the screen subtend 90 degrees.) If your
is farther from the screen, as it usually is, the perspective doesn't look right. If your drawing area
occupies less than the full screen, your eye has to be even closer. To get a perfect field of view, figure
how far your eye normally is from the screen and how big the window is, and calculate the angle the
window subtends at that size and distance. It's probably smaller than you would guess. Another way t
think about it is that a 94—degree field of view with a 35-millimeter camera requires a 20—millimeter le
which is a very wide—angle lens. (See"Troubleshooting Transformations" for more details on how to
calculate the desired field of view.)

The preceding paragraph mentions inches and milliniétdosthese really have anything to do with
OpenGL? The answer is, in a word, no. The projection and other transformations are inherently unitle:
If you want to think of the near and far clipping planes as located at 1.0 and 20.0 meters, inches,
kilometers, or leagues, it's up to you. The only rule is that you have to use a consistent unit of
measurement. Then the resulting image is drawn to scale.

Orthographic Projection

With an orthographic projection, the viewing volume is a rectangular parallelepiped, or more informally
a box (see Figure 3-15. Unlike perspective projection, the size of the viewing volume doesn’t change
from one end to the other, so distance from the camera doesn’t affect how large an object appears. Tl
type of projection is used for applications such as creating architectural blueprints and computer-aide
design, where it's crucial to maintain the actual sizes of objects and angles between them as they're
projected.

Figure 3-15 Orthographic Viewing Volume

The commandlOrtho() creates an orthographic parallel viewing volume. As wiBrustum() you

OpenGL Programming Guide — Chapter 3, Viewing — 27

specify the corners of the near clipping plane and the distance to the far clipping plane.

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for an orthographic parallel viewing volume and multiplies the current matrix by
it. (left, bottom, —nepand (right, top, —neaare points on the near clipping plane that are mapped
to the lower—left and upper-right corners of the viewport window, respectaftlynattom, —far

and (right, top, —farare points on the far clipping plane that are mapped to the same respective
corners of the viewport. Both near and far can be positive or negative.

With no other transformations, the direction of projection is parallel te-#ves, and the viewpoint faces
toward the negative-axis. Note that this means that the values passedfar fimdnearare used as
negativezvalues if these planes are in front of the viewpoint, and positive if they're behind the
viewpoint.

For the special case of projecting a two—dimensional image onto a two—dimensional screen, use the |
Library routinegluOrtho2D() This routine is identical to the three—dimensional vergl@mtho(),

except that all the coordinates for objects in the scene are assumed to lie between —1.0 and 1.0. If yot
drawing two—dimensional objects using the two—dimensional vertex commandg ediditénates are

zero; thus, none of the objects are clipped because ofthadines.

void gluOrtho2D(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top);

Creates a matrix for projecting two—dimensional coordinates onto the screen and multiplies the
current projection matrix by it. The clipping region is a rectangle with the lower-left corrleftat (
bottom) and the upper-right corner aglt, top).

Viewing Volume Clipping

After the vertices of the objects in the scene have been transformed by the modelview and projection
matrices, any primitives that lie outside the viewing volume are clipped. The six clipping planes used ¢
those that define the sides and ends of the viewing volume. You can specify additional clipping planes
and locate them wherever you choose. (See "Additional Clipping Planes" for information about this
relatively advanced topic.) Keep in mind that OpenGL reconstructs the edges of polygons that get
clipped.

Viewport Transformation

Recalling the camera analogy, you know that the viewport transformation corresponds to the stage wt
the size of the developed photograph is chosen. Do you want a wallet—size or a poster—size photogra
Since this is computer graphics, the viewport is the rectangular region of the window where the image
drawn. Figure 3—16shows a viewport that occupies most of the screen. The viewport is measured in
window coordinates, which reflect the position of pixels on the screen relative to the lower-left corner
the window. Keep in mind that all vertices have been transformed by the modelview and projection
matrices by this point, and vertices outside the viewing volume have been clipped.

OpenGL Programming Guide — Chapter 3, Viewing — 28

Figure 3-16 Viewport Rectangle

Defining the Viewport

The window system, not OpenGL, is responsible for opening a window on the screen. However, by
default the viewport is set to the entire pixel rectangle of the window that's opened. You use the
glViewport()command to choose a smaller drawing region; for example, you can subdivide the windov
to create a split—screen effect for multiple views in the same window.

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);
Defines a pixel rectangle in the window into which the final image is mapped. The (X, y) paramete
specifies the lower-left corner of the viewport, aitdth and height are the size of the viewport
rectangle. By default, the initial viewport values are (0, 0, winWidth, winHeight), where winWidth
and winHeight are the size of the window.

The aspect ratio of a viewport should generally equal the aspect ratio of the viewing volume. If the twc
ratios are different, the projected image will be distorted when mapped to the viewport, as shown in
Figure 3—-17. Note that subsequent changes to the size of the window don’t explicitly affect the viewpo
Your application should detect window resize events and modify the viewport appropriately.

OpenGL Programming Guide — Chapter 3, Viewing — 29

Figure 3—-17 Mapping the Viewing Volume to the Viewport

In Figure 3-17, the left figure shows a projection that maps a square image onto a square viewport us
these routines:

gluPerspective(fovy, 1.0, near, far);
glViewport(0, 0, 400, 400);

However, in the right figure, the window has been resized to a honequilateral rectangular viewport, bu
the projection is unchanged. The image appears compressed algngxise

gluPerspective(fovy, 1.0, near, far);
glViewport (0, 0, 400, 200);

To avoid the distortion, modify the aspect ratio of the projection to match the viewport:

gluPerspective(fovy, 2.0, near, far);
glViewport(0, 0, 400, 200);

Try This

Modify an existing program so that an object is drawn twice, in different viewports. You might draw the
object with different projection and/or viewing transformations for each viewport. To create two
side—by-side viewports, you might issue these commands, along with the appropriate modeling, view
and projection transformations:

glViewport (0, 0, sizex/2, sizey);

glViewport (sizex/2, 0, sizex/2, sizey);

OpenGL Programming Guide — Chapter 3, Viewing — 30

The Transformed Depth Coordinate

The depthZ) coordinate is encoded during the viewport transformation (and later stored in the depth
buffer). You can scalevalues to lie within a desired range with tiiBepthRange(ommand. (Chapter

10 discusses the depth buffer and the corresponding uses for the depth coordinatex)dddijke

window coordinatesz window coordinates are treated by OpenGL as though they always range from 0.
to 1.0.

void glDepthRange(GLclampd near, GLclampd far);
Defines an encoding for z coordinates that’s performed during the viewport transformation. The
near and far values represent adjustments to the minimum and maximum values that can be store
the depth buffer. By default, they’re 0.0 and 1.0, respectively, which work for most applications.
These parameters are clamped to lie within [0,1].

In perspective projection, the transformed depth coordinate (likeahdy coordinates) is subject to
perspective division by th& coordinate. As the transformed depth coordinate moves farther away from
the near clipping plane, its location becomes increasingly less precise. (See Figure 3-18)

Figure 3—-18 Perspective Projection and Transformed Depth Coordinates

Therefore, perspective division affects the accuracy of operations which rely upon the transformed de
coordinate, especially depth—buffering, which is used for hidden surface removal.

Troubleshooting Transformations

It's pretty easy to get a camera pointed in the right direction, but in computer graphics, you have to
specify position and direction with coordinates and angles. As we can attest, it's all too easy to achiev
the well-known black-screen effect. Although any number of things can go wrong, often you get this
effectd] which results in absolutely nothing being drawn in the window you open on the[$éreen
incorrectly aiming the "camera" and taking a picture with the model behind you. A similar problem aris
if you don’t choose a field of view that's wide enough to view your objects but narrow enough so they
appear reasonably large.

If you find yourself exerting great programming effort only to create a black window, try these diagnos
steps.

OpenGL Programming Guide — Chapter 3, Viewing — 31

1. Check the obvious possibilities. Make sure your system is plugged in. Make sure you're drawing
your objects with a color that’s different from the color with which you're clearing the screen. Make
sure that whatever states you're using (such as lighting, texturing, alpha blending, logical operatio
or antialiasing) are correctly turned on or off, as desired.

2. Remember that with the projection commands, the near and far coordinates measure distance frc
the viewpoint and that (by default) you're looking down the negatisés. Thus, if the near value is
1.0 and the far 3.0, objects must hawmordinates between —1.0 and —3.0 in order to be visible. To
ensure that you haven't clipped everything out of your scene, temporarily set the near and far
clipping planes to some absurdly inclusive values, such as 0.001 and 1000000.0. This alters
appearance for operations such as depth—buffering and fog, but it might uncover inadvertently
clipped objects.

3. Determine where the viewpoint is, in which direction you're looking, and where your objects are. I
might help to create a real three—dimensional §pasing your hands, for instarideo figure these
things out.

4. Make sure you know where you're rotating about. You might be rotating about some arbitrary
location unless you translated back to the origin first. It's OK to rotate about any point unless you'l
expecting to rotate about the origin.

5. Check your aim. UsgluLookAt()to aim the viewing volume at your objects. Or draw your objects
at or near the origin, and ugiranslate*()as a viewing transformation to move the camera far
enough in the direction only so that the objects fall within the viewing volume. Once you've
managed to make your objects visible, try to change the viewing volume incrementally to achieve
the exact result you want, as described next.

Even after you've aimed the camera in the correct direction and you can see your objects, they might
appear too small or too large. If you're usilgPerspective()you might need to alter the angle defining
the field of view by changing the value of the first parameter for this command. You can use
trigonometry to calculate the desired field of view given the size of the object and its distance from the
viewpoint: The tangent of half the desired angle is half the size of the object divided by the distance tc
the object (see Figure 3-19. Thus, you can use an arctangent routine to compute half the desired anc
Example 3—-assumes such a routiregan2() which calculates the arctangent given the length of the
opposite and adjacent sides of a right triangle. This result then needs to be converted from radians to
degrees.

OpenGL Programming Guide — Chapter 3, Viewing — 32

Figure 3—-19 Using Trigonometry to Calculate the Field of View

Example 3-3 Calculating Field of View

#define Pl 3.1415926535

double calculateAngle(double size, double distance)

{
double radtheta, degtheta;

radtheta = 2.0 * atan2 (size/2.0, distance);
degtheta = (180.0 * radtheta) / PI;
return (degtheta);

}

Of course, typically you don’t know the exact size of an object, and the distance can only be determin:
between the viewpoint and a single point in your scene. To obtain a fairly good approximate value, fin
the bounding box for your scene by determining the maximum and minkngrandz coordinates of

all the objects in your scene. Then calculate the radius of a bounding sphere for that box, and use the
center of the sphere to determine the distance and the radius to determine the size.

For example, suppose all the coordinates in your object satisfy the equatiars3;-5<y< 7, and -5
<z< 5. Then the center of the bounding box is (1, 6, 0), and the radius of a bounding sphere is the
distance from the center of the box to any cdrheay (3, 7, 3) or

If the viewpoint is at (8, 9, 10), the distance between it and the center is

OpenGL Programming Guide — Chapter 3, Viewing — 33

The tangent of the half angle is 5.477 divided by 12.570, which equals 0.4357, so the half angle is 23.
degrees.

Remember that the field—of-view angle affects the optimal position for the viewpoint, if you're trying tc
achieve a realistic image. For example, if your calculations indicate that you need a 179-degree field
view, the viewpoint must be a fraction of an inch from the screen to achieve realism. If your calculated
field of view is too large, you might need to move the viewpoint farther away from the object.

Manipulating the Matrix Stacks

The modelview and projection matrices you've been creating, loading, and multiplying have only been
the visible tips of their respective icebergs. Each of these matrices is actually the topmost member of
stack of matrices (see Figure 3-20.

Figure 3—-20 Modelview and Projection Matrix Stacks

A stack of matrices is useful for constructing hierarchical models, in which complicated objects are
constructed from simpler ones. For example, suppose you're drawing an automobile that has four whe
each of which is attached to the car with five bolts. You have a single routine to draw a wheel and
another to draw a bolt, since all the wheels and all the bolts look the same. These routines draw a wh
or a bolt in some convenient position and orientation, say centered at the origin with its axis coinciden
with thez axis. When you draw the car, including the wheels and bolts, you want to call the
wheel-drawing routine four times with different transformations in effect each time to position the
wheels correctly. As you draw each wheel, you want to draw the bolts five times, each time translated
appropriately relative to the wheel.

Suppose for a minute that all you have to do is draw the car body and the wheels. The English descrij
of what you want to do might be something like this:

Draw the car body. Remember where you are, and translate to the right front wheel. Draw the wh
and throw away the last translation so your current position is back at the origin of the car body.
Remember where you are, and translate to the left front wheel....

OpenGL Programming Guide — Chapter 3, Viewing — 34

Similarly, for each wheel, you want to draw the wheel, remember where you are, and successively
translate to each of the positions that bolts are drawn, throwing away the transformations after each b
is drawn.

Since the transformations are stored as matrices, a matrix stack provides an ideal mechanism for doir
this sort of successive remembering, translating, and throwing away. All the matrix operations that ha
been described so faglLoadMatrix() glMultMatrix(), glLoadldentity()and the commands that create
specific transformation matrices) deal with the current matrix, or the top matrix on the stack. You can
control which matrix is on top with the commands that perform stack operagiBashMatrix() which
copies the current matrix and adds the copy to the top of the stackPapdatrix(), which discards the

top matrix on the stack, as shown in Figure 3—-21 (Remember that the current matrix is always the ma
on the top.) In effecglPushMatrix()means "remember where you are" gliRbpMatrix() means "go

back to where you were."

Figure 3—-21 Pushing and Popping the Matrix Stack

void glPushMatrix(void);
Pushes all matrices in the current stack down one level. The current stack is determined by
glMatrixMode(). The topmost matrix is copied, so its contents are duplicated in both the top and
second-from—the—top matrix. If too many matrices are pushed, an error is generated.

void glPopMatrix(void);
Pops the top matrix off the stack, destroying the contents of the popped matrix. What was the
second—-from—the—top matrix becomes the top matrix. The current stack is determined by
glMatrixMode(). If the stack contains a single matrix, calling glPopMatrix() generates an error.

Example 3—-draws an automobile, assuming the existence of routines that draw the car body, a wheel
and a bolt.

Example 3—-4 Pushing and Popping the Matrix

draw_wheel_and_bolts()

{

long i;

OpenGL Programming Guide — Chapter 3, Viewing — 35

draw_wheel();
for(i=0;i<5;i++){
glPushMatrix();
glRotatef(72.0%,0.0,0.0,1.0);
glTranslatef(3.0,0.0,0.0);
draw_bolt();
glPopMatrix();
}
}

draw_body_and_wheel_and_bolts()
{
draw_car_body();
glPushMatrix();
glTranslatef(40,0,30); /*move to first wheel position*/
draw_wheel_and_bolts();
glPopMatrix();
glPushMatrix();
glTranslatef(40,0,—-30); /*move to 2nd wheel position*/
draw_wheel_and_bolts();
glPopMatrix();
[*draw last two wheels similarly*/

}

This code assumes the wheel and bolt axes are coincident withetkis, that the bolts are evenly spaced
every 72 degrees, 3 units (maybe inches) from the center of the wheel, and that the front wheels are ¢
units in front of and 30 units to the right and left of the car’s origin.

A stack is more efficient than an individual matrix, especially if the stack is implemented in hardware.
When you push a matrix, you don’t need to copy the current data back to the main process, and the
hardware may be able to copy more than one element of the matrix at a time. Sometimes you might w
to keep an identity matrix at the bottom of the stack so that you don’t needgti oaltlildentity()
repeatedly.

The Modelview Matrix Stack

As you've seen earlier in "Viewing and Modeling Transformations,” the modelview matrix contains the
cumulative product of multiplying viewing and modeling transformation matrices. Each viewing or
modeling transformation creates a new matrix that multiplies the current modelview matrix; the result,
which becomes the new current matrix, represents the composite transformation. The modelview mat
stack contains at least thirty—twed4mnatrices; initially, the topmost matrix is the identity matrix. Some
implementations of OpenGL may support more than thirty—two matrices on the stack. To find the
maximum allowable number of matrices, you can use the query command
glGetintegeryGL_MAX_MODELVIEW_STACK_DEPTH GLint * param3.

OpenGL Programming Guide — Chapter 3, Viewing — 36

The Projection Matrix Stack

The projection matrix contains a matrix for the projection transformation, which describes the viewing
volume. Generally, you don’'t want to compose projection matrices, so yowglssaeldentity()before
performing a projection transformation. Also for this reason, the projection matrix stack need be only t
levels deep; some OpenGL implementations may allow more tharnxdumdtrices. To find the stack
depth, calplGetinteger¢{GL_MAX_PROJECTION_STACK_DEPTHGLint *paramg.

One use for a second matrix in the stack would be an application that needs to display a help window
with text in it, in addition to its normal window showing a three—dimensional scene. Since text is most
easily positioned with an orthographic projection, you could change temporarily to an orthographic
projection, display the help, and then return to your previous projection:

glMatrixMode(GL_PROJECTION);

glPushMatrix(); /*save the current projection*/
glLoadldentity();
glOrtho(...); [*set up for displaying help*/

display_the_help();
glPopMatrix();

Note that you'd probably have to also change the modelview matrix appropriately.
Advanced

If you know enough mathematics, you can create custom projection matrices that perform arbitrary
projective transformations. For example, the OpenGL and its Utility Library have no built—in mechanis
for two—point perspective. If you were trying to emulate the drawings in drafting texts, you might need
such a projection matrix.

Additional Clipping Planes

In addition to the six clipping planes of the viewing volume (left, right, bottom, top, near, and far), you
can define up to six additional clipping planes to further restrict the viewing volume, as shown in Figur
3-22This is useful for removing extraneous objects in a d6daeexample, if you want to display a
cutaway view of an object.

Each plane is specified by the coefficients of its equationBf+Cz+D = 0. The clipping planes are
automatically transformed appropriately by modeling and viewing transformations. The clipping volum
becomes the intersection of the viewing volume antalfi-spaceslefined by the additional clipping
planes. Remember that polygons that get clipped automatically have their edges reconstructed
appropriately by OpenGL.

OpenGL Programming Guide — Chapter 3, Viewing — 37

Figure 3—-22 Additional Clipping Planes and the Viewing Volume

void gIClipPlane(GLenum plane, const GLdouble *equation);
Defines a clipping plane. The equation argument points to the four coefficients of the plane
equation, Ax+By+Cz+D = 0. All points with eye coordinatesg @& Ze, W) that satisfy (AB C

D)M-1 (% Ye ZeWe) T >= 0 lie in the half-space defined by the plane, where M is the current
modelview matrix at the time glClipPlane() is called. All points not in this half-space are clipped
away. The plane argument is GL_CLIP_PLANEIi, where i is an integer specifying which of the
available clipping planes to define. i is a number between 0 and one less than the maximum numt
of additional clipping planes.

You need to enable each additional clipping plane you define:

glEnable(GL_CLIP_PLANE /);

You can disable a plane with
glDisable(GL_CLIP_PLANE /);
All implementations of OpenGL must support at least six additional clipping planes, although some

implementations may allow more. You can gieetintegerv(with GL_MAX_CLIP_PLANES to find
how many clipping planes are supported.

Note: Clipping performed as a result giClipPlane()is done in eye coordinates, not in clip coordinates.
This difference is noticeable if the projection matrix is singular (that is, a real projection matrix that
flattens three—dimensional coordinates to two—dimensional ones). Clipping performed in eye coordina
continues to take place in three dimensions even when the projection matrix is singular.

A Clipping Plane Code Example

Example 3-Benders a wireframe sphere with two clipping planes that slice away three—quarters of the
original sphere, as shown in Figure 3-23

OpenGL Programming Guide — Chapter 3, Viewing — 38

Figure 3-23 Clipped Wireframe Sphere

Example 3-5 Wireframe Sphere with Two Clipping Planes: clip.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);

}

void display(void)

{
GLdouble egn[4] = {0.0, 1.0, 0.0, 0.0};
GLdouble egn2[4] = {1.0, 0.0, 0.0, 0.0};

glClear(GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);
glPushMatrix();

glTranslatef (0.0, 0.0, —-5.0);

/* clip lower half ——y <0 */
glClipPlane (GL_CLIP_PLANEO, eqn);
glEnable (GL_CLIP_PLANEO);

/* clip left half -——x <0 */
glClipPlane (GL_CLIP_PLANE1, eqgn2);
glEnable (GL_CLIP_PLANEZ1);

glRotatef (90.0, 1.0, 0.0, 0.0);
glutWireSphere(1.0, 20, 16);
glPopMatrix();

glFlush ();

OpenGL Programming Guide — Chapter 3, Viewing — 39

void reshape (int w, int h)

{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode (GL_PROJECTION);
glLoadldentity ();
gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
gIMatrixMode (GL_MODELVIEW);

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutlnitWindowsSize (500, 500);
glutinitWindowPaosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();
return O;

Try This
Try changing the coefficients that describe the clipping planes in Example 3-5

Try calling a modeling transformation, suchg#Rotate*() to affectglClipPlane() Make the
clipping plane move independently of the objects in the scene.

Examples of Composing Several Transformations

This section demonstrates how to combine several transformations to achieve a particular result. The
examples discussed are a solar system, in which objects need to rotate on their axes as well as in ork
around each other, and a robot arm, which has several joints that effectively transform coordinate
systems as they move relative to each other.

Building a Solar System

The program described in this section draws a simple solar system with a planet and a sun, both usin
same sphere—drawing routine. To write this program, you need gtRagate*()for the revolution of the
planet around the sun and for the rotation of the planet around its own axis. You algt reeslate*()

to move the planet out to its orbit, away from the origin of the solar system. Remember that you can

OpenGL Programming Guide — Chapter 3, Viewing — 40

specify the desired size of the two spheres by supplying the appropriate arguments for the
glutWireSphere(joutine.

To draw the solar system, you first want to set up a projection and a viewing transformation. For this
example gluPerspective(andgluLookAt()are used.

Drawing the sun is straightforward, since it should be located at the origin of the grand, fixed coordina
system, which is where the sphere routine places it. Thus, drawing the sun doesn’t require translation
you can usglRotate*()to make the sun rotate about an arbitrary axis. To draw a planet rotating around
the sun, as shown in Figure 3-24 requires several modeling transformations. The planet needs to rot:
about its own axis once a day. And once a year, the planet completes one revolution around the sun.

Figure 3—-24 Planet and Sun

To determine the order of modeling transformations, visualize what happens to the local coordinate
system. An initiabIRotate*() rotates the local coordinate system that initially coincides with the grand
coordinate system. Nexd|Translate*()moves the local coordinate system to a position on the planet’s
orbit; the distance moved should equal the radius of the orbit. Thus, thegiftiahte*()actually
determines where along the orbit the planet is (or what time of year it is).

A secondglRotate*() rotates the local coordinate system around the local axes, thus determining the tir
of day for the planet. Once you've issued all these transformation commands, the planet can be draw

In summary, these are the OpenGL commands to draw the sun and planet; the full program is shown
Example 3-6

glPushMatrix();

glutWireSphere(1.0, 20, 16); /* draw sun */
glRotatef ((GLfloat) year, 0.0, 1.0, 0.0);

glTranslatef (2.0, 0.0, 0.0);

glRotatef ((GLfloat) day, 0.0, 1.0, 0.0);
glutWireSphere(0.2, 10, 8); /* draw smaller planet */
glPopMatrix();

Example 3-6 Planetary System: planet.c

#include <GL/gl.h>
#include <GL/glu.h>

OpenGL Programming Guide — Chapter 3, Viewing — 41

#include <GL/glut.h>

static int year = 0, day = 0;

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);

}

void display(void)

{
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);

glPushMatrix();

glutWireSphere(1.0, 20, 16); /* draw sun */
glRotatef ((GLfloat) year, 0.0, 1.0, 0.0);

glTranslatef (2.0, 0.0, 0.0);

glRotatef ((GLfloat) day, 0.0, 1.0, 0.0);
glutWireSphere(0.2, 10, 8); /* draw smaller planet */
glPopMatrix();

glutSwapBuffers();

void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadldentity ();
gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case ‘d”
day = (day + 10) % 360;
glutPostRedisplay();
break;

OpenGL Programming Guide — Chapter 3, Viewing — 42

case ‘D"
day = (day - 10) % 360;
glutPostRedisplay();
break;

case ‘y"
year = (year + 5) % 360;
glutPostRedisplay();
break;

case 'Y’
year = (year — 5) % 360;
glutPostRedisplay();
break;

default:
break;

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
glutlnitWindowsSize (500, 500);
glutinitWindowPaosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutMainLoop();
return O;

Try This

Try adding a moon to the planet. Or try several moons and additional planets. Hint: Use
glPushMatrix()andglPopMatrix() to save and restore the position and orientation of the coordinate
system at appropriate moments. If you're going to draw several moons around a planet, you neec
save the coordinate system prior to positioning each moon and restore the coordinate system afte
each moon is drawn.

Try tilting the planet’s axis.

Building an Articulated Robot Arm

This section discusses a program that creates an articulated robot arm with two or more segments. Tt

OpenGL Programming Guide — Chapter 3, Viewing — 43

arm should be connected with pivot points at the shoulder, elbow, or other joints. Figure 3—-25shows &
single joint of such an arm.

Figure 3—-25 Robot Arm

You can use a scaled cube as a segment of the robot arm, but first you must call the appropriate mod
transformations to orient each segment. Since the origin of the local coordinate system is initially at th
center of the cube, you need to move the local coordinate system to one edge of the cube. Otherwise
cube rotates about its center rather than the pivot point.

After you callglTranslate*()to establish the pivot point agtRotate*()to pivot the cube, translate back
to the center of the cube. Then the cube is scaled (flattened and widened) before it is drawn. The
glPushMatrix()andglPopMatrix() restrict the effect aflScale*(). Here's what your code might look like
for this first segment of the arm (the entire program is shown in Example 3-7

glTranslatef (-1.0, 0.0, 0.0);

glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);

glPushMatrix();

glScalef (2.0, 0.4, 1.0);

glutWireCube (1.0);

glPopMatrix();

To build a second segment, you need to move the local coordinate system to the next pivot point. Sin
the coordinate system has previously been rotatedtiods is already oriented along the length of the
rotated arm. Therefore, translating alongxhaxis moves the local coordinate system to the next pivot
point. Once it's at that pivot point, you can use the same code to draw the second segment as you us:
for the first one. This can be continued for an indefinite number of segments (shoulder, elbow, wrist,
fingers).

glTranslatef (1.0, 0.0, 0.0);

glRotatef ((GLfloat) elbow, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);
glPushMatrix();

glScalef (2.0, 0.4, 1.0);

glutWireCube (1.0);

glPopMatrix();

Example 3-7 Robot Arm: robot.c

#include <GL/gl.h>

OpenGL Programming Guide — Chapter 3, Viewing — 44

#include <GL/glu.h>
#include <GL/glut.h>

static int shoulder = 0, elbow = 0;

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);

}

void display(void)

{
glClear (GL_COLOR_BUFFER_BIT);
glPushMatrix();
glTranslatef (-1.0, 0.0, 0.0);
glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);
glPushMatrix();
glScalef (2.0, 0.4, 1.0);
glutWireCube (1.0);
glPopMatrix();

glTranslatef (1.0, 0.0, 0.0);

glRotatef ((GLfloat) elbow, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);
glPushMatrix();

glScalef (2.0, 0.4, 1.0);

glutWireCube (1.0);

glPopMatrix();

glPopMatrix();
glutSwapBuffers();

void reshape (int w, int h)

{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadldentity ();
gluPerspective(65.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

OpenGL Programming Guide — Chapter 3, Viewing — 45

glTranslatef (0.0, 0.0, -5.0);
}

void keyboard (unsigned char key, int x, int y)
{
switch (key) {

case 's’. [* s key rotates at shoulder */
shoulder = (shoulder + 5) % 360;
glutPostRedisplay();
break;

case ‘S’
shoulder = (shoulder - 5) % 360;
glutPostRedisplay();
break;

case ‘e". I* e key rotates at elbow */
elbow = (elbow + 5) % 360;
glutPostRedisplay();
break;

case ‘E”:
elbow = (elbow - 5) % 360;
glutPostRedisplay();
break;

default:
break;

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
glutlnitWindowsSize (500, 500);
glutinitWindowPaosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutMainLoop();
return O;

Try This

OpenGL Programming Guide — Chapter 3, Viewing — 46

Modify Example 3-%o add additional segments onto the robot arm.

Modify Example 3—-7o add additional segments at the same position. For example, give the robot
arm several "fingers" at the wrist, as shown in Figure 3-26 HintglWeshMatrix()and

glPopMatrix() to save and restore the position and orientation of the coordinate system at the wris
If you're going to draw fingers at the wrist, you need to save the current matrix prior to positioning
each finger and restore the current matrix after each finger is drawn.

Figure 3-26 Robot Arm with Fingers

Reversing or Mimicking Transformations

The geometric processing pipeline is very good at using viewing and projection matrices and a viewpc
for clipping to transform the world (or object) coordinates of a vertex into window (or screen)
coordinates. However, there are situations in which you want to reverse that process. A common
situation is when an application user utilizes the mouse to choose a location in three dimensions. The
mouse returns only a two—dimensional value, which is the screen location of the cursor. Therefore, thi
application will have to reverse the transformation process to determine from where in three—dimensic
space this screen location originated.

The Utility Library routinegluUnProject()performs this reversal of the transformations. Given the
three—dimensional window coordinates for a location and all the transformations that affected them,
gluUnProject()returns the world coordinates from where it originated.

int gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz, const GLdouble modelMatrix[16],

const GLdouble projMatrix[16], const GLint viewport[4], GLdouble *objx, GLdouble *objy, GLdouble

*objz);
Map the specified window coordinates (winx, winy, winz) into object coordinates, using
transformations defined by a modelview matrix (modelMatrix), projection matrix (projMatrix), and
viewport (viewport). The resulting object coordinates are returned in objx, objy, and objz. The
function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure (such as an
noninvertible matrix). This operation does not attempt to clip the coordinates to the viewport or
eliminate depth values that fall outside of giDepthRange().

There are inherent difficulties in trying to reverse the transformation process. A two—dimensional scre:

OpenGL Programming Guide — Chapter 3, Viewing — 47

location could have originated from anywhere on an entire line in three—dimensional space. To
disambiguate the resufiluUnProject()requires that a window depth coordinatenf) be provided and
thatwinzbe specified in terms gfiDepthRange()For the default values gfDepthRange()winzat 0.0
will request the world coordinates of the transformed point at the near clipping planeyinbki 1.0
will request the point at the far clipping plane.

Example 3—8emonstrategluUnProject()by reading the mouse position and determining the
three—dimensional points at the near and far clipping planes from which it was transformed. The
computed world coordinates are printed to standard output, but the rendered window itself is just blacl

Example 3-8 Reversing the Geometric Processing Pipeline: unproject.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT);
glFlush();

}

void reshape(int w, int h)

{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective (45.0, (GLfloat) w/(GLfloat) h, 1.0, 100.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

void mouse(int button, int state, int x, inty)
{
GLint viewport[4];
GLdouble mvmatrix[16], projmatrix[16];
GLint realy; /* OpenGL y coordinate position */
GLdouble wx, wy, wz; /* returned world X, y, z coords */

switch (button) {
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN) {
glGetintegerv (GL_VIEWPORT, viewport);

OpenGL Programming Guide — Chapter 3, Viewing — 48

glGetDoublev (GL_MODELVIEW_MATRIX, mvmatrix);
glGetDoublev (GL_PROJECTION_MATRIX, projmatrix);
/* note viewport[3] is height of window in pixels */
realy = viewport[3] - (GLint) y — 1;
printf ("Coordinates at cursor are (%4d, %4d)\n",
X, realy);
gluUnProject ((GLdouble) x, (GLdouble) realy, 0.0,
mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
printf ("World coords at z=0.0 are (%f, %f, %f)\n",
WX, WY, WZ);
gluUnProject ((GLdouble) x, (GLdouble) realy, 1.0,
mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
printf ("World coords at z=1.0 are (%f, %f, %f)\n",
WX, WY, WZ);
}
break;
case GLUT_RIGHT_BUTTON:
if (state == GLUT_DOWN)
exit(0);
break;
default:
break;

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutlnitWindowsSize (500, 500);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMouseFunc(mouse);
glutMainLoop();
return O;

}

gluProject()is another Utility Library routine, which is relatedgluUnProject().gluProject()nimics the
actions of the transformation pipeline. Given three—dimensional world coordinates and all the
transformations that affect theglyProject()returns the transformed window coordinates.

int gluProject(GLdouble objx, GLdouble objy, GLdouble objz, const GLdouble modelMatrix[16], const

OpenGL Programming Guide — Chapter 3, Viewing — 49

GLdouble projMatrix[16], const GLint viewport[4], GLdouble *winx, GLdouble *winy, GLdouble
*winz);
Map the specified object coordinates (objx, objy, objz) into window coordinates, using
transformations defined by a modelview matrix (modelMatrix), projection matrix (projMatrix), and
viewport (viewport). The resulting window coordinates are returned in winx, winy, and winz. The
function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure.

OpenGL Programming Guide — Chapter 4, Color — 50

Chapter 4
Color

Chapter Objectives

After reading this chapter, you'll be able to do the following:
Decide between using RGBA or color-index mode for your application
Specify desired colors for drawing objects

Use smooth shading to draw a single polygon with more than one color

The goal of almost all OpenGL applications is to draw color pictures in a window on the screen. The
window is a rectangular array of pixels, each of which contains and displays its own color. Thus, in a
sense, the point of all the calculations performed by an OpenGL implementattulations that take

into account OpenGL commands, state information, and values of paramistergletermine the final
color of every pixel that's to be drawn in the window. This chapter explains the commands for specifyi
colors and how OpenGL interprets them in the following major sections:

"Color Perception" discusses how the eye perceives color.

"Computer Color" describes the relationship between pixels on a conmporétor and their colors;
it also defines the two display modes, RGBA and color index.

"RGBA versus Color-Index ModeXplains how the two display modes use graphics hardware and
how to decide which mode to use.

"Specifying a Color and a Shading Model" describes the OpenGL commands you use to specify tl
desired color or shading model.

Color Perception

Physically, light is composed of photdhsiny particles of light, each traveling along its own path, and
each vibrating at its own frequency (or wavelength, or eriéagy one of frequency, wavelength, or
energy determines the others). A photon is completely characterized by its position, direction, and
frequency/wavelength/energy. Photons with wavelengths ranging from about 390 nanometers (nm)
(violet) and 720 nm (red) cover the colors of the visible spectrum, forming the colors of a rainbow
(violet, indigo, blue, green, yellow, orange, red). However, your eyes perceive lots of colors that aren’t
the rainboW white, black, brown, and pink, for example. How does this happen?

What your eye actually sees is a mixture of photons of different frequencies. Real light sources are
characterized by the distribution of photon frequencies they emit. Ideal white light consists of an equal
amount of light of all frequencies. Laser light is usually very pure, and all photons have almost identici
frequencies (and direction and phase, as well). Light from a sodium-vapor lamp has more light in the
yellow frequency. Light from most stars in space has a distribution that depends heavily on their
temperatures (black—body radiation). The frequency distribution of light from most sources in your

OpenGL Programming Guide — Chapter 4, Color - 1

immediate environment is more complicated.

The human eye perceives color when certain cells in the retina (cafieccells or justcone¥ become
excited after being struck by photons. The three different kinds of cone cells respond best to three
different wavelengths of light: one type of cone cell responds best to red light, one type to green, and"
other to blue. (A person who is color-blind is usually missing one or more types of cone cells.) When
given mixture of photons enters the eye, the cone cells in the retina register different degrees of
excitation depending on their types, and if a different mixture of photons comes in that happens to exc
the three types of cone cells to the same degrees, its color is indistinguishable from that of the first
mixture.

Since each color is recorded by the eye as the levels of excitation of the cone cells by the incoming
photons, the eye can perceive colors that aren’t in the spectrum produced by a prism or rainbow. For
example, if you send a mixture of red and blue photons so that both the red and blue cones in the retii
are excited, your eye sees it as magenta, which isn’t in the spectrum. Other combinations give browns
turquoises, and mauves, none of which appear in the color spectrum.

A computer—graphics monitor emulates visible colors by lighting pixels with a combination of red, gree
and blue light in proportions that excite the red—, green—, and blue-sensitive cones in the retina in suc
way that it matches the excitation levels generated by the photon mix it's trying to emulate. If humans
had more types of cone cells, some that were yellow-sensitive for example, color monitors would
probably have a yellow gun as well, and we'd use RGBY (red, green, blue, yellow) quadruples to spec
colors. And if everyone were color-blind in the same way, this chapter would be simpler.

To display a particular color, the monitor sends the right amounts of red, green, and blue light to
appropriately stimulate the different types of cone cells in your eye. A color monitor can send different
proportions of red, green, and blue to each of the pixels, and the eye sees a million or so pinpoints of
light, each with its own color.

This section considers only how the eye perceives combinations of photons that enter it. The situation
light bouncing off materials and entering the eye is even more compliite light bouncing off a red

ball will appear red, or yellow light shining through blue glass appears almost black, for example. (See
"Real-World and OpenGL Lighting" in Chapter 5for a discussion of these effects.)

Computer Color

On a color computer screen, the hardware causes each pixel on the screen to emit different amounts
red, green, and blue light. These are called the R, G, and B values. They’re often packed together
(sometimes with a fourth value, called alpha, or A), and the packed value is called the RGB (or RGBA
value. (See "Blending" in Chapter 6 for an explanation of the alpha values.) The color information at
each pixel can be stored eitheRGEBA modegin which the R, G, B, and possibly A values are kept for
each pixel, or ircolor-index modein which a single number (called the color index) is stored for each
pixel. Each color index indicates an entry in a table that defines a particular set of R, G, and B values.
Such a table is calledalor map

In color-index mode, you might want to alter the values in the color map. Since color maps are contrg
by the window system, there are no OpenGL commands to do this. All the examples in this book

OpenGL Programming Guide — Chapter 4, Color - 2

initialize the color—display mode at the time the window is opened by using routines from the GLUT
library. (See Appendix D for details.)

There is a great deal of variation among the different graphics hardware platforms in both the size of t
pixel array and the number of colors that can be displayed at each pixel. On any graphics system, eac
pixel has the same amount of memory for storing its color, and all the memory for all the pixels is calle
the color buffer The size of a buffer is usually measured in bits, so an 8-bit buffer could store 8 bits of
data (256 possible different colors) for each pixel. The size of the possible buffers varies from machin
machine. (See Chapter 10 for more information.)

The R, G, and B values can range from 0.0 (none) to 1.0 (full intensity). For example, R = 0.0, G = 0.C
and B = 1.0 represents the brightest possible blue. If R, G, and B are all 0.0, the pixel is black; if all ar
1.0, the pixel is drawn in the brightest white that can be displayed on the &leetinggreen and blue
creates shades of cyan. Blue and red combine for magenta. Red and green create yellow. To help you
create the colors you want from the R, G, and B components, look at the color cube shown in Plate 1Z
The axes of this cube represent intensities of red, blue, and green. A black—and-white version of the «
is shown in Figure 4-1

Figure 4-1 The Color Cube in Black and White
The commands to specify a color for an object (in this case, a point) can be as simple as this:

glColor3f (1.0, 0.0, 0.0); /* the current RGB color is red: */
/* full red, no green, no blue. */
glBegin (GL_POINTS);
glVertex3fv (point_array);
glEnd ();

In certain modes (for example, if lighting or texturing calculations are performed), the assigned color
might go through other operations before arriving in the framebuffer as a value representing a color fo
pixel. In fact, the color of a pixel is determined by a lengthy sequence of operations.

OpenGL Programming Guide — Chapter 4, Color - 3

Early in a program’s execution, the color—display mode is set to either RGBA mode or color-index mc
Once the color-display mode is initialized, it can’'t be changed. As the program executes, a color (eith
color index or an RGBA value) is determined on a per—vertex basis for each geometric primitive. This
color is either a color you've explicitly specified for a vertex or, if lighting is enabled, is determined fror
the interaction of the transformation matrices with the surface normals and other material properties. |
other words, a red ball with a blue light shining on it looks different from the same ball with no light on
it. (See Chapter 5 for details.) After the relevant lighting calculations are performed, the chosen shadit
model is applied. As explained in "Specifying a Color and a Shading Model," you can choose flat or
smooth shading, each of which has different effects on the eventual color of a pixel.

Next, the primitives areasterized or converted to a two—dimensional image. Rasterizing involves
determining which squares of an integer grid in window coordinates are occupied by the primitive and
then assigning color and other values to each such square. A grid square along with its associated va
of color,z (depth), and texture coordinates is calldchgment Pixels are elements of the framebuffer; a
fragment comes from a primitive and is combined with its corresponding pixel to yield a new pixel. On
a fragment is constructed, texturing, fog, and antialiasing are aggfidtiey’re enabled to the

fragments. After that, any specified alpha blendditiering , and bitwise logical operations are carried
out using the fragment and the pixel already stored in the framebuffer. Finally, the fragment’s color va
(either color index or RGBA) is written into the pixel and displayed in the window using the window’s
color—display mode.

RGBA versus Color-Index Mode

In either color-index or RGBA mode, a certain amount of color data is stored at each pixel. This amot
is determined by the number of bitplanes in the framebufféitpdane contains 1 bit of data for each

pixel. If there are 8color bitplanes, there are 8 color bits per pixel, and Her@5B different values or
colors that can be stored at the pixel.

Bitplanes are often divided evenly into storage for R, G, and B components (that is, a 24-bitplane sys
devotes 8 bits each to red, green, and blue), but this isn’'t always true. To find out the number of bitpla
available on your system for red, green, blue, alpha, or color-index valugi& ettetegerv(with
GL_RED_BITS, GL_GREEN_BITS, GL_BLUE_BITS, GL_ALPHA_BITS, and GL_INDEX_BITS.

Note: Color intensities on most computer screens aren’t perceived as linear by the human eye. Consi
colors consisting of just a red component, with green and blue set to zero. As the intensity varies from
0.0 (off) to 1.0 (full on), the number of electrons striking the pixels increases, but the question is, does
0.5 look like halfway between 0.0 and 1.0? To test this, write a program that draws alternate pixels in
checkerboard pattern to intensities 0.0 and 1.0, and compare it with a region drawn solidly in color 0.5
From a reasonable distance from the screen, the two regions should appear to have the same intensi
they look noticeably different, you need to use whatever correction mechanism is provided on your
particular system. For example, many systems have a table to adjust intensities so that 0.5 appears tc
halfway between 0.0 and 1.0. The mapping generally used is an exponential one, with the exponent
referred to as gamma (hence the tgamma correction). Using the same gamma for the red, green, and
blue components gives pretty good results, but three different gamma values might give slightly better
results. (For more details on this topic, see Foley, van Dam,@&raputer Graphics: Principles and

OpenGL Programming Guide — Chapter 4, Color - 4

Practice Reading, MA: Addison—Wesley Developers Press, 1990.)

RGBA Display Mode

In RGBA mode, the hardware sets aside a certain number of bitplanes for each of the R, G, B, and A
components (not necessarily the same number for each component) as shown in Figure 4-2 The R, (
and B values are typically stored as integers rather than floating—point numbers, and they’re scaled ta
number of available bits for storage and retrieval. For example, if a system has 8 bits available for the
component, integers between 0 and 255 can be stored; thus, 0, 1, 2, ..., 255 in the bitplanes would
correspond to R values of 0/255 = 0.0, 1/255, 2/255, ..., 255/255 = 1.0. Regardless of the number of
bitplanes, 0.0 specifies the minimum intensity, and 1.0 specifies the maximum intensity.

Figure 4-2 RGB Values from the Bitplanes

Note: The alpha value (the A in RGBA) has no direct effect on the color displayed on the screen. It ca
be used for many things, including blending and transparency, and it can have an effect on the values
R, G, and B that are written. (See "Blending" in Chapter 6 for more information about alpha values.)

The number of distinct colors that can be displayed at a single pixel depends on the number of bitplan
and the capacity of the hardware to interpret those bitplanes. The number of distinct colors can’t exce

2N wheren is the number of bitplanes. Thus, a machine with 24 bitplanes for RGB can display up to
16.77 million distinct colors.

Dithering
Advanced

Some graphics hardware uses dithering to increase the number of apparent colors. Dithering is the
technique of using combinations of some colors to create the effect of other colors. To illustrate how
dithering works, suppose your system has only 1 bit each for R, G, and B and thus can display only ei
colors: black, white, red, blue, green, yellow, cyan, and magenta. To display a pink region, the hardwe
can fill the region in a checkerboard manner, alternating red and white pixels. If your eye is far enougt

OpenGL Programming Guide — Chapter 4, Color -5

away from the screen that it can't distinguish individual pixels, the region appedrstpmkverage of
red and white. Redder pinks can be achieved by filling a higher proportion of the pixels with red, white
pinks would use more white pixels, and so on.

With this technique, there are no pink pixels. The only way to achieve the effect of "pinkness" is to co\
a region consisting of multiple pixélsyou can’t dither a single pixel. If you specify an RGB value for

an unavailable color and fill a polygon, the hardware fills the pixels in the interior of the polygon with a
mixture of nearby colors whose average appears to your eye to be the color you want. (Remember,
though, that if you're reading pixel information out of the framebuffer, you get the actual red and white
pixel values, since there aren’t any pink ones. See Chapter 8 for more information about reading pixel
values.)

Figure 4-3illustrates some simple dithering of black and white pixels to make shades of gray. From le
to right, the 44 patterns at the top represent dithering patterns for 50 percent, 19 percent, and 69 perc
gray. Under each pattern, you can see repeated reduced copies of each pattern, but these black and"
squares are still bigger than most pixels. If you look at them from across the room, you can see that tt
blur together and appear as three levels of gray.

Figure 4-3 Dithering Black and White to Create Gray

With about 8 bits each of R, G, and B, you can get a fairly high—quality image without dithering. Just
because your machine has 24 color bitplanes, however, doesn’t mean that dithering won’t be desirabl
For example, if you are running in double-buffer mode, the bitplanes might be divided into two sets of
twelve, so there are really only 4 bits each per R, G, and B component. Without dithering,
4-bit—per—component color can give less than satisfactory results in many situations.

You enable or disable dithering by passing GL_DITHERBIEnable()or glDisable() Note that
dithering, unlike many other features, is enabled by default.

OpenGL Programming Guide — Chapter 4, Color - 6

Color-Index Display Mode

With color-index mode, OpenGL uses a color maf{up tabl@, which is similar to using a palette to
mix paints to prepare for a paint—by—number scene. A painter’'s palette provides spaces to mix paints
together; similarly, a computer’s color map provides indices where the primary red, green, and blue
values can be mixed, as shown in Figure 4-4

Figure 4-4 A Color Map

A painter filling in a paint—by—number scene chooses a color from the color palette and fills the
corresponding numbered regions with that color. A computer stores the color index in the bitplanes fol
each pixel. Then those bitplane values reference the color map, and the screen is painted with the
corresponding red, green, and blue values from the color map, as shown in Figure 4-5

Figure 4-5 Using a Color Map to Paint a Picture

OpenGL Programming Guide — Chapter 4, Color -7

In color-index mode, the number of simultaneously available colors is limited by the size of the color
map and the number of bitplanes available. The size of the color map is determined by the amount of
hardware dedicated to it. The size of the color map is always a power of 2, and typical sizes range fro

256 (28) to 4096 (;12), where the exponent is the number of bitplanes being used. If theféindic2s
in the color map anth available bitplanes, the number of usable entries is the smallBramic2?".
With RGBA mode, each pixel's color is independent of other pixels. However, in color-index mode, et

pixel with the same index stored in its bitplanes shares the same color-map location. If the contents o
entry in the color map change, then all pixels of that color index change their color.

Choosing between RGBA and Color-Index Mode

You should base your decision to use RGBA or color-index mode on what hardware is available and
what your application needs. For most systems, more colors can be simultaneously represented with
RGBA mode than with color-index mode. Also, for several effects, such as shading, lighting, texture
mapping, and fog, RGBA provides more flexibility than color-index mode.

You might prefer to use color-index mode in the following cases:

If you're porting an existing application that makes significant use of color-index mode, it might bt
easier to not change to RGBA mode.

If you have a small number of bitplanes available, RGBA mode may produce noticeably coarse
shades of colors. For example, if you have only 8 bitplanes, in RGBA mode, you may have only 3
bits for red, 3 bits for green, and 2 bits for blue. You'd only haveo’Bs(I?ades of red and green, and
only 4 shades of blue. The gradients between color shades are likely to be very obvious.

In this situation, if you have limited shading requirements, you can use the color lookup table to Ic
more shades of colors. For example, if you need only shades of blue, you can use color-index m

and store up to 2565{)Zshades of blue in the color-lookup table, which is much better than the 4
shades you would have in RGBA mode. Of course, this example would use up your entire
color-lookup table, so you would have no shades of red, green, or other combined colors.

Color-index mode can be useful for various tricks, such as color-map animation and drawing in

layers. (See Chapter 14 for more information.)

In general, use RGBA mode wherever possible. It works with texture mapping and works better with
lighting, shading, fog, antialiasing, and blending.

Changing between Display Modes

In the best of all possible worlds, you might want to avoid making a choice between RGBA and
color-index display mode. For example, you may want to use color-index mode for a color-map
animation effect and then, when needed, immediately change the scene to RGBA mode for texture

mapping.

Or similarly, you may desire to switch between single and double buffering. For example, you may ha'

OpenGL Programming Guide — Chapter 4, Color - 8

very few bitplanes; let's say 8 bitplanes. In single—buffer mode, you’ll have 256 (28) colors, but if you
using double-buffer mode to eliminate flickering from your animated program, you may only have 16
(24) colors. Perhaps you want to draw a moving object without flicker and are willing to sacrifice color:
for using double-buffer mode (maybe the object is moving so fast that the viewer won't notice the
details). But when the object comes to rest, you will want to draw it in single—buffer mode so that you
use more colors.

Unfortunately, most window systems won't allow an easy switch. For example, with the X Window
System, the color—display mode is an attribute of the X Visual. An X Visual must be specified before tl
window is created. Once it is specified, it cannot be changed for the life of the window. After you creat
a window with a double-buffered, RGBA display mode, you're stuck with it.

A tricky solution to this problem is to create more than one window, each with a different display mode
Then you must control the visibility of the windows (for example, mapping or unmapping an X Window
or managing or unmanaging a Motif or Athena widget) and draw the object into the appropriate, visible
window.

Specifying a Color and a Shading Model

OpenGL maintains a current color (in RGBA mode) and a current color index (in color-index mode).
Unless you're using a more complicated coloring model such as lighting or texture mapping, each obji
is drawn using the current color (or color index). Look at the following pseudocode sequence:

set_color(RED);
draw_item(A);
draw_item(B);
set_color(GREEN);
set_color(BLUE);
draw_item(C);

Items A and B are drawn in red, and item C is drawn in blue. The fourth line, which sets the current cc
to green, has no effect (except to waste a bit of time). With no lighting or texturing, when the current
color is set, all items drawn afterward are drawn in that color until the current color is changed to
something else.

Specifying a Color in RGBA Mode
In RGBA mode, use thgiColor*() command to select a current color.

void glColor3{b s i f d ub us ui} (TYPEr, TYPEg, TYPED);

void glColord{b sifd ub us ui} (TYPEr, TYPEgQ, TYPED, TYPE®a);
void glColor3{b si f d ub us uijv (const TYPE*V);

void glColor4{b s i f d ub us ui}v (const TYPE*V);

Sets the current red, green, blue, and alpha values. This command can have up to three suffixes,
which differentiate variations of the parameters accepted. The first suffix is either 3 or 4, to indicat
whether you supply an alpha value in addition to the red, green, and blue values. If you don’t supy
an alpha value, it's automatically set to 1.0. The second suffix indicates the data type for

parameters: byte, short, integer, float, double, unsigned byte, unsigned short, or unsigned integer

OpenGL Programming Guide — Chapter 4, Color - 9

The third suffix is an optional v, which indicates that the argument is a pointer to an array of value
of the given data type.

For the versions aflColor*() that accept floating—point data types, the values should typically range
between 0.0 and 1.0, the minimum and maximum values that can be stored in the framebuffer.
Unsigned-integer color components, when specified, are linearly mapped to floating—point values suc
that the largest representable value maps to 1.0 (full intensity), and zero maps to 0.0 (zero intensity).
Signed-integer color components, when specified, are linearly mapped to floating—point values such 1
the most positive representable value maps to 1.0, and the most negative representable value maps t
(see Table 4}.1

Neither floating—point nor signed-integer values are clamped to the range [0,1] before updating the
current color or current lighting material parameters. After lighting calculations, resulting color values
outside the range [0,1] are clamped to the range [0,1] before they are interpolated or written into a col
buffer. Even if lighting is disabled, the color components are clamped before rasterization.

Suffix Data Type Minimum Value Min Value Maximum Value Max Value
Maps to Maps to

1-byte integer -128 -1.0 127 1.0
2-byte integer -32,768 -1.0 32,767 1.0

i 4-byte integer -2,147,483,648 -1.0 2,147,483,647 1.0

ub unsigned 1-byte 0 0.0 255 1.0
integer

us unsigned 2-byte 0 0.0 65,535 1.0
integer

ui unsigned 4-byte 0 0.0 4,294,967,295 1.0
integer

Table 4-1 Converting Color Values to Floating—Point Numbers

Specifying a Color in Color-Index Mode

In color-index mode, use thkndex*() command to select a single—valued color index as the current

color index.

void glindex{sifd ub}(TYPE c);

void glindex{sifd ub}v(const TYPE *c);
Sets the current color index to c. The first suffix for this command indicates the data type for
parameters: short, integer, float, double, or unsigned byte. The second, optional suffix is v, which
indicates that the argument is an array of values of the given data type (the array contains only or
value).

In "Clearing the Window" in Chapter 2, you saw the specificatiogi©fearColor() For color-index
mode, there is a correspondigifclearindex()

void glClearindex(GLfloat cindex);
Sets the current clearing color in color-index mode. In a color-index mode window, a call to
glClear(GL_COLOR_BUFFER_BIT) will use cindex to clear the buffer. The default clearing index
is 0.0.

OpenGL Programming Guide — Chapter 4, Color — 10

Note: OpenGL does not have any routines to load values into the color-lookup table. Window system
typically already have such operations. GLUT has the rogtut&etColor()to call the window—-system
specific commands.

Advanced

The current index is stored as a floating—point value. Integer values are converted directly to
floating—point values, with no special mapping. Index values outside the representable range of the
color-index buffer aren’t clamped. However, before an index is dithered (if enabled) and written to the
framebuffer, it's converted to fixed—point format. Any bits in the integer portion of the resulting
fixed—point value that don’t correspond to bits in the framebuffer are masked out.

Specifying a Shading Model

A line or a filled polygon primitive can be drawn with a single color (flat shading) or with many differen
colors (smooth shading, also cal@duraud shading). You specify the desired shading technique with
glShadeModel()

void glShadeModel (GLenum mode);
Sets the shading model. The mode parameter can be either GL_SMOOTH (the default) or GL_FL

With flat shading, the color of one particular vertex of an independent primitive is duplicated across all
the primitive’s vertices to render that primitive. With smooth shading, the color at each vertex is treate
individually. For a line primitive, the colors along the line segment are interpolated between the vertex
colors. For a polygon primitive, the colors for the interior of the polygon are interpolated between the
vertex colors. Example 4dtaws a smooth—shaded triangle, as shown in"Plate 11" in Appendix I.

Example 4-1 Drawing a Smooth—Shaded Triangle: smooth.c

#include <GL/gl.h>
#include <GL/glut.h>

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_SMOOTH);

}

void triangle(void)

{
glBegin (GL_TRIANGLES);
glColor3f (1.0, 0.0, 0.0);
glVertex2f (5.0, 5.0);
glColor3f (0.0, 1.0, 0.0);
glVertex2f (25.0, 5.0);
glColor3f (0.0, 0.0, 1.0);
glVertex2f (5.0, 25.0);

OpenGL Programming Guide — Chapter 4, Color — 11

glEnd();
}

void display(void)

{
glClear (GL_COLOR_BUFFER_BIT);
triangle ();
glFlush ();

}

void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode (GL_PROJECTION);
glLoadldentity ();
if (w <= h)
gluOrtho2D (0.0, 30.0, 0.0, 30.0*(GLfloat) h/(GLfloat) w);
else
gluOrtho2D (0.0, 30.0*(GLfloat) w/(GLfloat) h, 0.0, 30.0);
glMatrixMode(GL_MODELVIEW);

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutinitWindowsSize (500, 500);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();
return O;

}

With smooth shading, neighboring pixels have slightly different color values. In RGBA mode, adjacent
pixels with slightly different values look similar, so the color changes across a polygon appear gradual
In color-index mode, adjacent pixels may reference different locations in the color—index table, which
may not have similar colors at all. Adjacent color-index entries may contain wildly different colors, so
smooth—shaded polygon in color-index mode can look psychedelic.

To avoid this problem, you have to create a color ramp of smoothly changing colors among a contiguc
set of indices in the color map. Remember that loading colors into a color map is performed through y

OpenGL Programming Guide — Chapter 4, Color — 12

window system rather than OpenGL. If you use GLUT, you caglusgetColor()to load a single index

in the color map with specified red, green, and blue values. The first argumglut&etColor()is the

index, and the others are the red, green, and blue values. To load thirty—two contiguous color indices
(from color index 16 to 47) with slightly differing shades of yellow, you might call

for (i=0;i<32;i++){
glutSetColor (16+i, 1.0%(i/32.0), 1.0%(i/32.0), 0.0);
}

Now, if you render smooth—-shaded polygons that use only the colors from index 16 to 47, those polyg
have gradually differing shades of yellow.

With flat shading, the color of a single vertex defines the color of an entire primitive. For a line segmer
the color of the line is the current color when the second (ending) vertex is specified. For a polygon, tt
color used is the one that’s in effect when a particular vertex is specified, as shown in Table 4-2 The

table counts vertices and polygons starting from 1. OpenGL follows these rules consistently, but the b
way to avoid uncertainty about how a flat—shaded primitive will be drawn is to specify only one color fc

the primitive.

Type of Polygon Vertex Used to Select the Color for the ith Polygon
single polygon 1

triangle strip i+2

triangle fan i+2

independent triangle 3i

quad strip 2i+2

independent quad 4

Table 4-2How OpenGL Selects a Color for the ith Flat—-Shaded Polygon

OpenGL Programming Guide — Chapter 5, Lighting — 13

Chapter 5
Lighting
Chapter Objectives
After reading this chapter, you'll be able to do the following:

Understand how real-world lighting conditions are approximated by OpenGL

Render illuminated objects by defining the desired light sources and lighting model

Define the material properties of the objects being illuminated

Manipulate the matrix stack to control the position of light sources
As you saw in Chapter 4, OpenGL computes the color of each pixel in a final, displayed scene that's |
in the framebuffer. Part of this computation depends on what lighting is used in the scene and on how
objects in the scene reflect or absorb that light. As an example of this, recall that the ocean has a diffe
color on a bright, sunny day than it does on a gray, cloudy day. The presence of sunlight or clouds
determines whether you see the ocean as bright turquoise or murky gray—green. In fact, most objects

don’t even look three—dimensional until they're lit. Figure 5-1shows two versions of the exact same
scene (a single sphere), one with lighting and one without.

Figure 5-1 A Lit and an Unlit Sphere

As you can see, an unlit sphere looks no different from a two—dimensional disk. This demonstrates hc
critical the interaction between objects and light is in creating a three—dimensional scene.

With OpenGL, you can manipulate the lighting and objects in a scene to create many different kinds o
effects. This chapter begins with a primer on hidden-surface removal. Then it explains how to control
lighting in a scene, discusses the OpenGL conceptual model of lighting, and describes in detail how tc
set the numerous illumination parameters to achieve certain effects. Toward the end of the chapter, tF
mathematical computations that determine how lighting affects color are presented.

This chapter contains the following major sections:

OpenGL Programming Guide — Chapter 5, Lighting -1

"A Hidden—Surface Removal Survival Kitéscribes the basics of removing hidden surfaces from
view.

"Real-World and OpenGL Lighting"explains in general terms how light behaves in the world and
how OpenGL models this behavior.

"A Simple Example: Rendering a Lit Sphere" introduces the OpenGL lighting facility by presenting
a short program that renders a lit sphere.

"Creating Light Sources" explains how to define and position light sources.
"Selecting a Lighting Model" discusses the elements of a lighting model and how to specify them.

"Defining Material Properties” explains how to describe the properties of objects so that they
interact with light in a desired way.

"The Mathematics of Lighting" presents the mathematical calculations used by OpenGL to
determine the effect of lights in a scene.

“Lighting in Color-Index Mode"discusses the differences between using RGBA mode and
color-index mode for lighting.

A Hidden-Surface Removal Survival Kit

With this section, you begin to draw shaded, three—dimensional objects, in earnest. With shaded
polygons, it becomes very important to draw the objects that are closer to our viewing position and to
eliminate objects obscured by others nearer to the eye.

When you draw a scene composed of three—dimensional objects, some of them might obscure all or |
of others. Changing your viewpoint can change the obscuring relationship. For example, if you view tF
scene from the opposite direction, any object that was previously in front of another is now behind it. 1
draw a realistic scene, these obscuring relationships must be maintained. Suppose your code works li
this:

while (1) {

get_viewing_point_from_mouse_position();

glClear(GL_COLOR_BUFFER_BIT);

draw_3d_object_A();

draw_3d_object B();
}
For some mouse positions, object A might obscure object B. For others, the reverse may hold. If nothi
special is done, the preceding code always draws object B second (and thus on top of object A) no mi
what viewing position is selected. In a worst case scenario, if objects A and B intersect one another st
that part of object A obscures object B and part of B obscures A, changing the drawing order does not
provide a solution.

The elimination of parts of solid objects that are obscured by others isluddieth—surface removal

OpenGL Programming Guide — Chapter 5, Lighting — 2

(Hidden-line removal, which does the same job for objects represented as wireframe skeletons, is a k
trickier and isn't discussed here. See "Hidden—-Line Removal" in Chagiterdetails.) The easiest way

to achieve hidden—surface removal is to use the depth buffer (sometimes called a z—buffer). (Also see
Chapter 10.)

A depth buffer works by associating a depth, or distance, from the view plane (usually the near clippin
plane), with each pixel on the window. Initially, the depth values for all pixels are set to the largest
possible distance (usually the far clipping plane) usinglGkar() command with
GL_DEPTH_BUFFER_BIT. Then the objects in the scene are drawn in any order.

Graphical calculations in hardware or software convert each surface that's drawn to a set of pixels on
window where the surface will appear if it isn’t obscured by something else. In addition, the distance
from the view plane is computed. With depth buffering enabled, before each pixel is drawn a comparis
is done with the depth value already stored at the pixel. If the new pixel is closer than (in front of) wha
there, the new pixel's color and depth values replace those that are currently written into the pixel. If tt
new pixel's depth is greater than what'’s currently there, the new pixel is obscured, and the color and
depth information for the incoming pixel is discarded.

To use depth buffering, you need to enable depth buffering. This has to be done only once. Before
drawing, each time you draw the scene, you need to clear the depth buffer and then draw the objects
the scene in any order.

To convert the preceding code example so that it performs hidden-surface removal, modify it to the
following:

glutinitDisplayMode (GLUT_DEPTH |);
glEnable(GL_DEPTH_TEST);

while (1) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
get_viewing_point_from_mouse_position();
draw_3d_object_A();
draw_3d_object_B();
}

The argument tglClear() clears both the depth and color buffers.

Depth-buffer testing can affect the performance of your application. Since information is discarded rat
than used for drawing, hidden—surface removal can increase your performance slightly. However, the
implementation of your depth buffer probably has the greatest effect on performance. A "software" de|
buffer (implemented with processor memory) may be much slower than one implemented with a
specialized hardware depth buffer.

Real-World and OpenGL Lighting

When you look at a physical surface, your eye’s perception of the color depends on the distribution of
photon energies that arrive and trigger your cone cells. (See "Color Perception" in Chapter 4.) Those

OpenGL Programming Guide — Chapter 5, Lighting - 3

photons come from a light source or combination of sources, some of which are absorbed and some ¢
which are reflected by the surface. In addition, different surfaces may have very different

propertie§] some are shiny and preferentially reflect light in certain directions, while others scatter
incoming light equally in all directions. Most surfaces are somewhere in between.

OpenGL approximates light and lighting as if light can be broken into red, green, and blue component
Thus, the color of light sources is characterized by the amount of red, green, and blue light they emit,
the material of surfaces is characterized by the percentage of the incoming red, green, and blue
components that is reflected in various directions. The OpenGL lighting equations are just an
approximation but one that works fairly well and can be computed relatively quickly. If you desire a
more accurate (or just different) lighting model, you have to do your own calculations in software. Suc
software can be enormously complex, as a few hours of reading any optics textbook should convince
you.

In the OpenGL lighting model, the light in a scene comes from several light sources that can be
individually turned on and off. Some light comes from a particular direction or position, and some light
is generally scattered about the scene. For example, when you turn on a light bulb in a room, most of
light comes from the bulb, but some light comes after bouncing off one, two, three, or more walls. This
bounced light (calledmbient) is assumed to be so scattered that there is no way to tell its original
direction, but it disappears if a particular light source is turned off.

Finally, there might be a general ambient light in the scene that comes from no particular source, as if
had been scattered so many times that its original source is impossible to determine.

In the OpenGL model, the light sources have an effect only when there are surfaces that absorb and
reflect light. Each surface is assumed to be composed of a material with various properties. A materia
might emit its own light (like headlights on an automobile), it might scatter some incoming light in all
directions, and it might reflect some portion of the incoming light in a preferential direction like a mirroi
or other shiny surface.

The OpenGL lighting model considers the lighting to be divided into four independent components:
emissive, ambient, diffuse, and specular. All four components are computed independently and then
added together.

Ambient, Diffuse, and Specular Light

Ambientillumination is light that's been scattered so much by the environment that its direction is
impossible to determiiéit seems to come from all directions. Backlighting in a room has a large
ambient component, since most of the light that reaches your eye has first bounced off many surfaces
spotlight outdoors has a tiny ambient component; most of the light travels in the same direction, and
since you're outdoors, very little of the light reaches your eye after bouncing off other objects. When
ambient light strikes a surface, it's scattered equally in all directions.

Thediffuse component is the light that comes from one direction, so it's brighter if it comes squarely
down on a surface than if it barely glances off the surface. Once it hits a surface, however, it's scattert
equally in all directions, so it appears equally bright, no matter where the eye is located. Any light
coming from a particular position or direction probably has a diffuse component.

OpenGL Programming Guide — Chapter 5, Lighting — 4

Finally, specularlight comes from a particular direction, and it tends to bounce off the surface in a
preferred direction. A well-collimated laser beam bouncing off a high—quality mirror produces almost
100 percent specular reflection. Shiny metal or plastic has a high specular component, and chalk or
carpet has almost none. You can think of specularity as shininess.

Although a light source delivers a single distribution of frequencies, the ambient, diffuse, and specular
components might be different. For example, if you have a white light in a room with red walls, the
scattered light tends to be red, although the light directly striking objects is white. OpenGL allows you
set the red, green, and blue values for each component of light independently.

Material Colors

The OpenGL lighting model makes the approximation that a material’s color depends on the percenta
of the incoming red, green, and blue light it reflects. For example, a perfectly red ball reflects all the
incoming red light and absorbs all the green and blue light that strikes it. If you view such a ball in whi
light (composed of equal amounts of red, green, and blue light), all the red is reflected, and you see a
ball. If the ball is viewed in pure red light, it also appears to be red. If, however, the red ball is viewed i
pure green light, it appears black (all the green is absorbed, and there’s no incoming red, so no light is
reflected).

Like lights, materials have different ambient, diffuse, and specular colors, which determine the ambier
diffuse, and specular reflectances of the material. A material’s ambient reflectance is combined with tf
ambient component of each incoming light source, the diffuse reflectance with the light's diffuse
component, and similarly for the specular reflectance and component. Ambient and diffuse reflectance
define the color of the material and are typically similar if not identical. Specular reflectance is usually
white or gray, so that specular highlights end up being the color of the light source’s specular intensity
you think of a white light shining on a shiny red plastic sphere, most of the sphere appears red, but tht
shiny highlight is white.

In addition to ambient, diffuse, and specular colors, materials haamiasivecolor, which simulates

light originating from an object. In the OpenGL lighting model, the emissive color of a surface adds
intensity to the object, but is unaffected by any light sources. Also, the emissive color does not introdu
any additional light into the overall scene.

RGB Values for Lights and Materials

The color components specified for lights mean something different than for materials. For a light, the
numbers correspond to a percentage of full intensity for each color. If the R, G, and B values for a ligh
color are all 1.0, the light is the brightest possible white. If the values are 0.5, the color is still white, bt
only at half intensity, so it appears gray. If R=G=1 and B=0 (full red and green with no blue), the light

appears yellow.

For materials, the numbers correspond to the reflected proportions of those colors. So if R=1, G=0.5,
B=0 for a material, that material reflects all the incoming red light, half the incoming green, and none ¢
the incoming blue light. In other words, if an OpenGL light has components (LR, LG, LB), and a

material has corresponding components (MR, MG, MB), then, ignoring all other reflectivity effects, the

OpenGL Programming Guide — Chapter 5, Lighting -5

light that arrives at the eye is given by (LR*MR, LG*MG, LB*MB).

Similarly, if you have two lights that send (R1, G1, B1) and (R2, G2, B2) to the eye, OpenGL adds the
components, giving (R1+R2, G1+G2, B1+B2). If any of the sums are greater than 1 (corresponding to
color brighter than the equipment can display), the component is clamped to 1.

A Simple Example: Rendering a Lit Sphere
These are the steps required to add lighting to your scene.

1. Define normal vectors for each vertex of all the objects. These normals determine the orientation
the object relative to the light sources.

2. Create, select, and position one or more light sources.

3. Create and selectighting model which defines the level of global ambient light and the effective
location of the viewpoint (for the purposes of lighting calculations).

4. Define material properties for the objects in the scene.

Example 5—-accomplishes these tasks. It displays a sphere illuminated by a single light source, as shc
earlier in Figure 5-1

Example 5-1 Drawing a Lit Sphere: light.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)

{
GLfloat mat_specular[] ={ 1.0, 1.0, 1.0, 1.0 };
GLfloat mat_shininess[] ={50.0 };
GLfloat light_position[] ={1.0, 1.0, 1.0, 0.0 };
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_SMOQOTH);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHTO, GL_POSITION, light_position);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHTO);
glEnable(GL_DEPTH_TEST);

void display(void)
{

OpenGL Programming Guide — Chapter 5, Lighting — 6

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glutSolidSphere (1.0, 20, 16);
glFlush ();

}

void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadldentity();
if (w <= h)
glOrtho (-1.5, 1.5, —1.5*(GLfloat)h/(GLfloat)w,
1.5*(GLfloat)h/(GLfloat)w, —10.0, 10.0);
else
glOrtho (-1.5*(GLfloat)w/(GLfloat)h,
1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, —10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

}

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutlnitWindowsSize (500, 500);
glutinitWindowPaosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();
return O;

}

The lighting-related calls are in thé&() command; they’re discussed briefly in the following paragraphs
and in more detail later in the chapter. One thing to note about Examjiéet®atlit uses RGBA color
mode, not color-index mode. The OpenGL lighting calculation is different for the two modes, and in fg
the lighting capabilities are more limited in color-index mode. Thus, RGBA is the preferred mode whe
doing lighting, and all the examples in this chapter use it. (See "Lighting in Color-Index Mode"for mor:
information about lighting in color-index mode.)

Define Normal Vectors for Each Vertex of Every Object

An object’s normals determine its orientation relative to the light sources. For each vertex, OpenGL us

OpenGL Programming Guide — Chapter 5, Lighting -7

the assigned normal to determine how much light that particular vertex receives from each light sourc:
In this example, the normals for the sphere are defined as partghitBelidSphere(joutine. (See
"Normal Vectors" in Chapter 2 for more details on how to define normals.)

Create, Position, and Enable One or More Light Sources

Example 5-1ises only one, white light source; its location is specified bglthightfv() call. This

example uses the default color for light zero (GL_LIGHTO), which is white; if you want a differently
colored light, us@lLight*() to indicate this. You can include at least eight different light sources in your
scene of various colors; the default color of these other lights is black. (The particular implementation
OpenGL you're using might allow more than eight.) You can also locate the lights wherever you
desiré] you can position them near the scene, as a desk lamp would be, or an infinite distance away,
the sun. In addition, you can control whether a light produces a narrow, focused beam or a wider beat
Remember that each light source adds significantly to the calculations needed to render the scene, sc
performance is affected by the number of lights in the scene. (See "Creating Light Sources" for more
information about how to create lights with the desired characteristics.)

After you've defined the characteristics of the lights you want, you have to turn them on with the
glEnable()command. You also need to cglEnable()with GL_LIGHTING as a parameter to prepare
OpenGL to perform lighting calculations. (See "Enabling Lighting" for more information.)

Select a Lighting Model

As you might expect, thglLightModel*() command describes the parameters of a lighting model. In
Example 551the only element of the lighting model that's defined explicitly is the global ambient light.
The lighting model also defines whether the viewer of the scene should be considered to be an infinite
distance away or local to the scene, and whether lighting calculations should be performed differently
the front and back surfaces of objects in the scene. Examplsés-he default settings for these two
aspects of the modeélan infinite viewer and one-sided lighting. Using a local viewer adds significantly
to the complexity of the calculations that must be performed, because OpenGL must calculate the ang
between the viewpoint and each object. With an infinite viewer, however, the angle is ignored, and the
results are slightly less realistic. Further, since in this example, the back surface of the sphere is neve
seen (it's the inside of the sphere), one-sided lighting is sufficient.§8eeting a Lighting Model" for

a more detailed description of the elements of an OpenGL lighting model.)

Define Material Properties for the Objects in the Scene

An object’s material properties determine how it reflects light and therefore what material it seems to t
made of. Because the interaction between an object’'s material surface and incident light is complex,
specifying material properties so that an object has a certain desired appearance is an art. You can sj
a material’s ambient, diffuse, and specular colors and how shiny it is. In this example, only these last 1
material propertiés the specular material color and shinineésse explicitly specified (with the
glMaterialfv() calls). (See "Defining Material Properties” for a description and examples of all the
material-property parameters.)

OpenGL Programming Guide — Chapter 5, Lighting — 8

Some Important Notes

As you write your own lighting program, remember that you can use the default values for some lightit
parameters; others need to be changed. Also, don't forget to enable whatever lights you define and to
enable lighting calculations. Finally, remember that you might be able to use display lists to maximize
efficiency as you change lighting conditions. (See "Display-List Design Philosophy" in Chapter 7.)

Creating Light Sources

Light sources have a number of properties, such as color, position, and direction. The following sectio
explain how to control these properties and what the resulting light looks like. The command used to
specify all properties of lights glLight*(); it takes three arguments: to identify the light whose property
is being specified, the property, and the desired value for that property.

void glLight{if}(GLenum light, GLenum pname, TYPEparam);
void glLight{iffv(GLenum light, GLenum pname, TYPE *param);

Creates the light specified by light, which can be GL_LIGHTO, GL_LIGHT1, ..., or GL_LIGHT?7.
The characteristic of the light being set is defined by pname, which specifies a named parameter |
Table 5-1 param indicates the values to which the pname characteristic is set; it's a pointer to a
group of values if the vector version is used, or the value itself if the nonvector version is used. Th
nonvector version can be used to set only single—valued light characteristics.

Parameter Name Default Value Meaning

GL_AMBIENT (0.0,0.0,0.0,1.0) ambient RGBA intensity of
light

GL_DIFFUSE (2.0, 1.0, 1.0, 1.0) diffuse RGBA intensity of
light

GL_SPECULAR (2.0,1.0,1.0,1.0) specular RGBA intensity of
light

GL_POSITION (0.0,0.0,1.0,0.0) x(y, z, Wposition of light

GL_SPOT_DIRECTION (0.0, 0.0, -1.0) X,(y, 2 direction of spotlight

GL_SPOT_EXPONENT 0.0 spotlight exponent

GL_SPOT_CUTOFF 180.0 spotlight cutoff angle

GL_CONSTANT_ATTENUATION 1.0 constant attenuation factor

GL_LINEAR_ATTENUATION 0.0 linear attenuation factor

GL_QUADRATIC_ATTENUATION 0.0 quadratic attenuation factor

Table 5-1 Default Values for pname Parameter of glLight*()

Note: The default values listed for GL_DIFFUSE and GL_SPECULAR in Tableply only to
GL_LIGHTO. For other lights, the default value is (0.0, 0.0, 0.0, 1.0) for both GL_DIFFUSE and
GL_SPECULAR.

Example 5-2hows how to usglLight*():

Example 5-2 Defining Colors and Position for a Light Source

GLfloat light_ambient[] ={ 0.0, 0.0, 0.0, 1.0 };
GLfloat light_diffuse[] ={ 1.0, 1.0, 1.0, 1.0 };
GLfloat light_specular[] ={1.0, 1.0, 1.0, 1.0 };

OpenGL Programming Guide — Chapter 5, Lighting — 9

GLfloat light_position[] ={ 1.0, 1.0, 1.0, 0.0 };

glLightfv(GL_LIGHTO, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHTO, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHTO, GL_SPECULAR, light_specular);
glLightfv(GL_LIGHTO, GL_POSITION, light_position);

As you can see, arrays are defined for the parameter valueg| ayidfv() is called repeatedly to set the
various parameters. In this example, the first three cadjd ightfv() are superfluous, since they’re being
used to specify the default values for the GL_AMBIENT, GL_DIFFUSE, and GL_SPECULAR
parameters.

Note: Remember to turn on each light widlEnable() (See "Enabling Lighting" for more information
about how to do this.)

All the parameters foglLight*() and their possible values are explained in the following sections. These
parameters interact with those that define the overall lighting model for a particular scene and an obje
material properties. (See "Selecting a Lighting Model" and "Defining Material Properties" for more
information about these two topics. "The Mathematics of Lighting" explains how all these parameters
interact mathematically.)

Color

OpenGL allows you to associate three different color-related pardméteré&MBIENT,

GL_DIFFUSE, and GL_SPECULARwith any particular light. The GL_AMBIENT parameter refers to
the RGBA intensity of the ambient light that a particular light source adds to the scene. As you can se
Table 5-1, by default there is no ambient light since GL_AMBIENT is (0.0, 0.0, 0.0, 1.0). This value wi
used in Example 5-If this program had specified blue ambient light as

GLfloat light_ambient[] = { 0.0, 0.0, 1.0, 1.0};
glLightfv(GL_LIGHTO, GL_AMBIENT, light_ambient);

the result would have been as shown in the left side of "Plate 13" in Appendix I.

The GL_DIFFUSE parameter probably most closely correlates with what you naturally think of as "the
color of a light." It defines the RGBA color of the diffuse light that a particular light source adds to a
scene. By default, GL_DIFFUSE is (1.0, 1.0, 1.0, 1.0) for GL_LIGHTO, which produces a bright, white
light as shown in the left side of "Plate 13" in Appendix I. The default value for any other light
(GL_LIGHTY, ..., GL_LIGHT7) is (0.0, 0.0, 0.0, 0.0).

The GL_SPECULAR parameter affects the color of the specular highlight on an object. Typically, a
real-world object such as a glass bottle has a specular highlight that's the color of the light shining on
(which is often white). Therefore, if you want to create a realistic effect, set the GL_SPECULAR
parameter to the same value as the GL_DIFFUSE parameter. By default, GL_SPECULAR is (1.0, 1.0
1.0, 1.0) for GL_LIGHTO and (0.0, 0.0, 0.0, 0.0) for any other light.

Note: The alpha component of these colors is not used until blending is enabled. (See Chapter 6.) Ur
then, the alpha value can be safely ignored.

OpenGL Programming Guide — Chapter 5, Lighting — 10

Position and Attenuation

As previously mentioned, you can choose whether to have a light source that's treated as though it's
located infinitely far away from the scene or one that’s nearer to the scene. The first type is referred tc
adirectionallight source; the effect of an infinite location is that the rays of light can be considered
parallel by the time they reach an object. An example of a real-world directional light source is the sut
The second type is calledpasitionallight source, since its exact position within the scene determines
the effect it has on a scene and, specifically, the direction from which the light rays come. A desk lamj
an example of a positional light source. You can see the difference between directional and positional
lights in "Plate 12" in Appendix |. The light used in ExampleiS-aldirectional one:

GLfloat light_position[] ={ 1.0, 1.0, 1.0, 0.0 };
glLightfv(GL_LIGHTO, GL_POSITION, light_position);

As shown, you supply a vector of four valugsy(z, Wy for the GL_POSITION parameter. If the last
value,w, is zero, the corresponding light source is a directional one, anx} the)(values describe its
direction. This direction is transformed by the modelview matrix. By default, GL_POSITION is (0, 0, 1,
0), which defines a directional light that points along the negatiaris. (Note that nothing prevents you
from creating a directional light with the direction of (0, 0, 0), but such a light won't help you much.)

If the w value is nonzero, the light is positional, and they(2 values specify the location of the light in
homogeneous object coordinates. (See Appendix F.) This location is transformed by the modelview
matrix and stored in eye coordinates. (See "Controlling a Light’'s Position and Direction" for more
information about how to control the transformation of the light's location.) Also, by default, a positione
light radiates in all directions, but you can restrict it to producing a cone of illumination by defining the
light as a spotlight. (See "Spotlights" for an explanation of how to define a light as a spotlight.)

Note: Remember that the colors across the face of a smooth—shaded polygon are determined by the
colors calculated for the vertices. Because of this, you probably want to avoid using large polygons wi
local lights. If you locate the light near the middle of the polygon, the vertices might be too far away to
receive much light, and the whole polygon will look darker than you intended. To avoid this problem,
break up the large polygon into smaller ones.

For real-world lights, the intensity of light decreases as distance from the light increases. Since a
directional light is infinitely far away, it doesn’t make sense to attenuate its intensity over distance, so
attenuation is disabled for a directional light. However, you might want to attenuate the light from a
positional light. OpenGL attenuates a light source by multiplying the contribution of that source by an
attenuation factor:

where

d = distance between the light's position and the vertex

OpenGL Programming Guide — Chapter 5, Lighting — 11

kc = GL_CONSTANT_ATTENUATION

Kk = GL_LINEAR_ATTENUATION

kg = GL_QUADRATIC_ATTENUATION

By default,kc is 1.0 and botlky andkq are zero, but you can give these parameters different values:

glLightf(GL_LIGHTO, GL_CONSTANT_ATTENUATION, 2.0);
glLightf(GL_LIGHTO, GL_LINEAR_ATTENUATION, 1.0);
glLightf(GL_LIGHTO, GL_QUADRATIC_ATTENUATION, 0.5);

Note that the ambient, diffuse, and specular contributions are all attenuated. Only the emission and gl
ambient values aren’t attenuated. Also note that since attenuation requires an additional division (and
possibly more math) for each calculated color, using attenuated lights may slow down application
performance.

Spotlights

As previously mentioned, you can have a positional light source act as a sidttighis, by restricting

the shape of the light it emits to a cone. To create a spotlight, you need to determine the spread of the
cone of light you desire. (Remember that since spotlights are positional lights, you also have to locate
them where you want them. Again, note that nothing prevents you from creating a directional spotlight
but it won't give you the result you want.) To specify the angle between the axis of the cone and a ray
along the edge of the cone, use the GL_SPOT_CUTOFF parameter. The angle of the cone at the ape
then twice this value, as shown in Figure 5-2

Figure 5-2 GL_SPOT_CUTOFF Parameter

Note that no light is emitted beyond the edges of the cone. By default, the spotlight feature is disabled
because the GL_SPOT_CUTOFF parameter is 180.0. This value means that light is emitted in all
directions (the angle at the cone’s apex is 360 degrees, so it isn’'t a cone at all). The value for
GL_SPOT_CUTOFF is restricted to being within the range [0.0,90.0] (unless it has the special value

OpenGL Programming Guide — Chapter 5, Lighting — 12

180.0). The following line sets the cutoff parameter to 45 degrees:
glLightf(GL_LIGHTO, GL_SPOT_CUTOFF, 45.0);
You also need to specify a spotlight’s direction, which determines the axis of the cone of light:

GLfloat spot_direction[] ={-1.0, -1.0, 0.0 };
glLightfv(GL_LIGHTO, GL_SPOT_DIRECTION, spot_direction);

The direction is specified in object coordinates. By default, the direction is (0.0, 0.0, —1.0), so if you dc
explicitly set the value of GL_SPOT_DIRECTION, the light points down the negataxés. Also, keep

in mind that a spotlight’s direction is transformed by the modelview matrix just as though it were a
normal vector, and the result is stored in eye coordinates. (See "Controlling a Light's Position and
Direction" for more information about such transformations.)

In addition to the spotlight’s cutoff angle and direction, there are two ways you can control the intensit
distribution of the light within the cone. First, you can set the attenuation factor described earlier, whic
is multiplied by the light’s intensity. You can also set the GL_SPOT_EXPONENT parameter, which by
default is zero, to control how concentrated the light is. The light's intensity is highest in the center of t
cone. It's attenuated toward the edges of the cone by the cosine of the angle between the direction of
light and the direction from the light to the vertex being lit, raised to the power of the spot exponent.
Thus, higher spot exponents result in a more focused light source. (See "The Mathematics of Lighting
for more details on the equations used to calculate light intensity.)

Multiple Lights

As mentioned, you can have at least eight lights in your scene (possibly more, depending on your
OpenGL implementation). Since OpenGL needs to perform calculations to determine how much light
each vertex receives from each light source, increasing the number of lights adversely affects
performance. The constants used to refer to the eight lights are GL_LIGHTO, GL_LIGHT1Z,
GL_LIGHT?2, GL_LIGHTS3, and so on. In the preceding discussions, parameters related to GL_LIGHT!
were set. If you want an additional light, you need to specify its parameters; also, remember that the
default values are different for these other lights than they are for GL_LIGHTO, as explained in Table
5-1 Example 5-3defines a white attenuated spotlight.

Example 5-3 Second Light Source

GLfloat lightl_ambient[] ={0.2,0.2,0.2,1.0 };
GLfloat lightl_diffuse[] ={ 1.0, 1.0,1.0,1.0};
GLfloat lightl_specular[]={1.0, 1.0, 1.0,1.0};
GLfloat light1_position[]] ={-2.0, 2.0, 1.0, 1.0 };
GLfloat spot_direction[] ={-1.0, -1.0, 0.0 };

glLightfv(GL_LIGHT1, GL_AMBIENT, lightl_ambient);
glLightfv(GL_LIGHT1, GL_DIFFUSE, light1_diffuse);
glLightfv(GL_LIGHT1, GL_SPECULAR, lightl_specular);
glLightfv(GL_LIGHT1, GL_POSITION, light1l_position);
glLightf(GL_LIGHT1, GL_CONSTANT_ATTENUATION, 1.5);

OpenGL Programming Guide — Chapter 5, Lighting — 13

glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, 0.5);
glLightf(GL_LIGHT1, GL_QUADRATIC_ATTENUATION, 0.2);

glLightf(GL_LIGHT1, GL_SPOT_CUTOFF, 45.0);
glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, spot_direction);
glLightf(GL_LIGHT1, GL_SPOT_EXPONENT, 2.0);

glEnable(GL_LIGHT1);

If these lines were added to Example 5-1, the sphere would be lit with two lights, one directional and ¢
spotlight.

Try This
Modify Example 5-1n the following manner:
Change the first light to be a positional colored light rather than a directional white one.
Add an additional colored spotlight. Hint: Use some of the code shown in the preceding section.

Measure how these two changes affect performance.

Controlling a Light’s Position and Direction

OpenGL treats the position and direction of a light source just as it treats the position of a geometric
primitive. In other words, a light source is subject to the same matrix transformations as a primitive.
More specifically, wheglLight*() is called to specify the position or the direction of a light source, the
position or direction is transformed by the current modelview matrix and stored in eye coordinates. Th
means you can manipulate a light source’s position or direction by changing the contents of the
modelview matrix. (The projection matrix has no effect on a light’s position or direction.) This section
explains how to achieve the following three different effects by changing the point in the program at
which the light position is set, relative to modeling or viewing transformations:

A light position that remains fixed
A light that moves around a stationary object

A light that moves along with the viewpoint

Keeping the Light Stationary

In the simplest example, as in Example 5-1, the light position remains fixed. To achieve this effect, yo
need to set the light position after whatever viewing and/or modeling transformation you use. In Exam
5-4the relevant code from theit() andreshape()routines might look like this.

Example 5-4 Stationary Light Source

glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);

OpenGL Programming Guide — Chapter 5, Lighting — 14

glLoadldentity();
if (w <= h)

glOrtho (-1.5, 1.5, -1.5*h/w, 1.5*h/w, -10.0, 10.0);
else

glOrtho (-1.5*w/h, 1.5*w/h, -1.5, 1.5, -10.0, 10.0);
glMatrixMode (GL_MODELVIEW);
glLoadldentity();

* later in init() */
GLfloat light_position[] ={ 1.0, 1.0, 1.0, 1.0 };
glLightfv(GL_LIGHTO, GL_POSITION, position);

As you can see, the viewport and projection matrices are established first. Then, the identity matrix is
loaded as the modelview matrix, after which the light position is set. Since the identity matrix is used, !
originally specified light position (1.0, 1.0, 1.0) isn’'t changed by being multiplied by the modelview
matrix. Then, since neither the light position nor the modelview matrix is modified after this point, the
direction of the light remains (1.0, 1.0, 1.0).

Independently Moving the Light

Now suppose you want to rotate or translate the light position so that the light moves relative to a
stationary object. One way to do this is to set the light position after the modeling transformation, whic
is itself changed specifically to modify the light position. You can begin with the same series of calls in
init() early in the program. Then you need to perform the desired modeling transformation (on the
modelview stack) and reset the light position, probabbjisplay() Example 5-5shows whéisplay()

might be.

Example 5-5 Independently Moving Light Source

static GLdouble spin;

void display(void)

{
GLfloat light_position[] ={ 0.0, 0.0, 1.5, 1.0 };
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix();
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glPushMatrix();
glRotated(spin, 1.0, 0.0, 0.0);
glLightfv(GL_LIGHTO, GL_POSITION, light_position);
glPopMatrix();
glutSolidTorus (0.275, 0.85, 8, 15);
glPopMatrix();
glFlush();

OpenGL Programming Guide — Chapter 5, Lighting — 15

}

spinis a global variable and is probably controlled by an input dedigglay() causes the scene to be
redrawn with the light rotatezhbin degrees around a stationary torus. Note the two pairs of
glPushMatrix()andglPopMatrix() calls, which are used to isolate the viewing and modeling
transformations, all of which occur on the modelview stack. Since in Example 5-5the viewpoint remai
constant, the current matrix is pushed down the stack and then the desired viewing transformation is
loaded withgluLookAt() The matrix stack is pushed again before the modeling transformation
glRotated()is specified. Then the light position is set in the new, rotated coordinate system so that the
light itself appears to be rotated from its previous position. (Remember that the light position is stored
eye coordinates, which are obtained after transformation by the modelview matrix.) After the rotated
matrix is popped off the stack, the torus is drawn.

Example 5-& a program that rotates a light source around an object. When the left mouse button is
pressed, the light position rotates an additional 30 degrees. A small, unlit, wireframe cube is drawn to
represent the position of the light in the scene.

Example 5-6 Moving a Light with Modeling Transformations: movelight.c

#include <GL/gl.h>
#include <GL/glu.h>
#include "glut.h"

static int spin = 0;

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_SMOOTH);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);
glEnable(GL_DEPTH_TEST);

[* Here is where the light position is reset after the modeling
* transformation (glRotated) is called. This places the
* light at a new position in world coordinates. The cube
* represents the position of the light.
*/
void display(void)
{
GLfloat position[] ={ 0.0, 0.0, 1.5, 1.0 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix ();

OpenGL Programming Guide — Chapter 5, Lighting — 16

glTranslatef (0.0, 0.0, -5.0);

glPushMatrix ();
glRotated ((GLdouble) spin, 1.0, 0.0, 0.0);
glLightfv (GL_LIGHTO, GL_POSITION, position);

glTranslated (0.0, 0.0, 1.5);
gliDisable (GL_LIGHTING);
glColor3f (0.0, 1.0, 1.0);
glutWireCube (0.1);
glEnable (GL_LIGHTING);
glPopMatrix ();

glutSolidTorus (0.275, 0.85, 8, 15);
glPopMatrix ();
glFlush ();

void reshape (int w, int h)

{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode (GL_PROJECTION);
glLoadldentity();
gluPerspective(40.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();

void mouse(int button, int state, int x, inty)
{
switch (button) {
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN) {
spin = (spin + 30) % 360;
glutPostRedisplay();
}
break;
default:
break;

}
}

int main(int argc, char** argv)

{

OpenGL Programming Guide — Chapter 5, Lighting — 17

glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutinitWindowsSize (500, 500);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);

init ();

glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMouseFunc(mouse);
glutMainLoop();

return O;

Moving the Light Source Together with Your Viewpoint

To create a light that moves along with the viewpoint, you need to set the light position before the
viewing transformation. Then the viewing transformation affects both the light and the viewpoint in the
same way. Remember that the light position is stored in eye coordinates, and this is one of the few tin
when eye coordinates are critical. In Example 5-7, the light position is defimatf)inwhich stores the

light position at (0, 0, 0) in eye coordinates. In other words, the light is shining from the lens of the
camera.

Example 5-7 Light Source That Moves with the Viewpoint

GLfloat light_position() ={ 0.0, 0.0, 0.0, 1.0 };

glViewport(0, 0, (GLint) w, (GLint) h);
gIMatrixMode(GL_PROJECTION);

glLoadldentity();

gluPerspective(40.0, (GLfloat) w/(GLfloat) h, 1.0, 100.0);
glMatrixMode(GL_MODELVIEW);

glLoadldentity();

glLightfv(GL_LIGHTO, GL_POSITION, light_position);

If the viewpoint is now moved, the light will move along with it, maintaining (0, O, 0) distance, relative
to the eye. In the continuation of Example,5w#7ich follows next, the global variablesx(ey, e2 and

(upx, upy; up? control the position of the viewpoint and up vector. Tteplay()routine that’s called

from the event loop to redraw the scene might be this:

static GLdouble ex, ey, ez, upx, upy, upz;

void display(void)
{
glClear(GL_COLOR_BUFFER_MASK | GL_DEPTH_BUFFER_MASK);
glPushMatrix();
gluLookAt (ex, ey, ez, 0.0, 0.0, 0.0, upx, upy, upz);

OpenGL Programming Guide — Chapter 5, Lighting — 18

glutSolidTorus (0.275, 0.85, 8, 15);
glPopMatrix();
glFlush();
}

When the lit torus is redrawn, both the light position and the viewpoint are moved to the same locatior
As the values passedgtuLookAt()change and the eye moves, the object will never appear dark,
because it is always being illuminated from the eye position. Even though you haven't respecified the
light position, the light moves because the eye coordinate system has changed.

This method of moving the light can be very useful for simulating the illumination from a miner’s hat.
Another example would be carrying a candle or lantern. The light position specified by the call to
glLightf{GL_LIGHTi, GL_POSITION, position) would be the x, y, and z distance from the eye position
to the illumination source. Then as the eye position moves, the light will remain the same relative
distance away.

Try This
Modify Example 5— the following manner:

Make the light translate past the object instead of rotating around it. HinglUseslated(yather
than the firsglRotated()indisplay() and choose an appropriate value to use instesirof

Change the attenuation so that the light decreases in intensity as it's moved away from the object
Hint: Add calls toglLight*() to set the desired attenuation parameters.

Selecting a Lighting Model
The OpenGL notion of a lighting model has three components:
The global ambient light intensity

Whether the viewpoint position is local to the scene or whether it should be considered to be an
infinite distance away

Whether lighting calculations should be performed differently for both the front and back faces of
objects

This section explains how to specify a lighting model. It also discusses how to enablelightihgs,
how to tell OpenGL that you want lighting calculations performed.

The command used to specify all properties of the lighting modélightModel*(). glLightModel*()

has two arguments: the lighting model property and the desired value for that property.

void glLightModeKif}(GLenum pname, TYPEparam);

void glLightModeKif}v(GLenum pname, TYPE *param);
Sets properties of the lighting model. The characteristic of the lighting model being set is defined |
pname, which specifies a named parameter (see Tablegar@m indicates the values to which the
pname characteristic is set; it's a pointer to a group of values if the vector version is used, or the

OpenGL Programming Guide — Chapter 5, Lighting — 19

value itself if the nonvector version is used. The nonvector version can be used to set only
single—valued lighting model characteristics, not for GL_LIGHT_MODEL_AMBIENT.

Parameter Name Default Value Meaning

GL_LIGHT_MODEL_AMBIENT (0.2,0.2,0.2,1.0) ambient RGBA
intensity of the entire
scene

GL_LIGHT_MODEL_LOCAL_VIEWER 0.0 or GL_FALSE how specular reflection
angles are computed

GL_LIGHT_MODEL_TWO_SIDE 0.0 or GL_FALSE choose between
one-sided or two-sided
lighting

Table 5-2 Default Values for pname Parameter of glLightModel*()

Global Ambient Light

As discussed earlier, each light source can contribute ambient light to a scene. In addition, there can |
other ambient light that’s not from any particular source. To specify the RGBA intensity of such global
ambient light, use the GL_LIGHT_MODEL_AMBIENT parameter as follows:

GLfloat Imodel_ambient[] ={0.2,0.2,0.2, 1.0 };
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, Imodel_ambient);

In this example, the values used lfopdel_ambientire the default values for
GL_LIGHT_MODEL_AMBIENT. Since these numbers yield a small amount of white ambient light,
even if you don't add a specific light source to your scene, you can still see the objects in the scene.
"Plate 14" in Appendix | shows the effect of different amounts of global ambient light.

Local or Infinite Viewpoint

The location of the viewpoint affects the calculations for highlights produced by specular reflectance.
More specifically, the intensity of the highlight at a particular vertex depends on the normal at that
vertex, the direction from the vertex to the light source, and the direction from the vertex to the
viewpoint. Keep in mind that the viewpoint isn’t actually being moved by calls to lighting commands
(you need to change the projection transformation, as described in "Projection Transformations" in
Chapter 3); instead, different assumptions are made for the lighting calculations as if the viewpoint we
moved.

With an infinite viewpoint, the direction between it and any vertex in the scene remains constant. A loc
viewpoint tends to yield more realistic results, but since the direction has to be calculated for each ver
overall performance is decreased with a local viewpoint. By default, an infinite viewpoint is assumed.
Here’s how to change to a local viewpoint:

glLightModeli(GL_LIGHT _MODEL_LOCAL_VIEWER, GL_TRUE);

This call places the viewpoint at (0, 0, 0) in eye coordinates. To switch back to an infinite viewpoint, p:
in GL_FALSE as the argument.

Two-sided Lighting

OpenGL Programming Guide — Chapter 5, Lighting — 20

Lighting calculations are performed for all polygons, whether they're front—facing or back—facing. Sinc
you usually set up lighting conditions with the front—facing polygons in mind, however, the back—facing
ones typically aren’t correctly illuminated. In Example &hkre the object is a sphere, only the front
faces are ever seen, since they're the ones on the outside of the sphere. So, in this case, it doesn't m
what the back—facing polygons look like. If the sphere is going to be cut away so that its inside surfact
will be visible, however, you might want to have the inside surface be fully lit according to the lighting
conditions you've defined; you might also want to supply a different material description for the back
faces. When you turn on two-sided lighting with

glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

OpenGL reverses the surface normals for back—facing polygons; typically, this means that the surface
normals of visible back- and front—facing polygons face the viewer, rather than pointing away. As a
result, all polygons are illuminated correctly. However, these additional operations usually make
two-sided lighting perform more slowly than the default one-sided lighting.

To turn two-sided lighting off, pass in GL_FALSE as the argument in the preceding cadlDéfgag
Material Properties" for information about how to supply material properties for both faces.) You can
also control which faces OpenGL considers to be front—facing with the congiramitFace() (See
"Reversing and Culling Polygon Faces" in Chapter 2 for more information.)

Enabling Lighting

With OpenGL, you need to explicitly enable (or disable) lighting. If lighting isn’t enabled, the current
color is simply mapped onto the current vertex, and no calculations concerning normals, light sources
the lighting model, and material properties are performed. Here’s how to enable lighting:

glEnable(GL_LIGHTING);
To disable lighting, calylDisable()with GL_LIGHTING as the argument.

You also need to explicitly enable each light source that you define, after you've specified the parame
for that source. Example 5udes only one light, GL_LIGHTO:

glEnable(GL_LIGHTO);

Defining Material Properties

You've seen how to create light sources with certain characteristics and how to define the desired
lighting model. This section describes how to define the material properties of the objects in the scene
the ambient, diffuse, and specular colors, the shininess, and the color of any emitted light. (See "The
Mathematics of Lighting" for the equations used in the lighting and material-property calculations.) Mc
of the material properties are conceptually similar to ones you've already used to create light sources.
The mechanism for setting them is similar, except that the command used igdadestial*().

void glMaterial{if}{(GLenum face, GLenum pname, TYPEparam);
void glMaterial{iffjv(GLenum face, GLenum pname, TYPE *param);

Specifies a current material property for use in lighting calculations. face can be GL_FRONT,
GL_BACK, or GL_FRONT_AND_BACK to indicate which face of the object the material should be

OpenGL Programming Guide — Chapter 5, Lighting — 21

applied to. The particular material property being set is identified by pname and the desired value
for that property are given by param, which is either a pointer to a group of values (if the vector
version is used) or the actual value (if the nonvector version is used). The nonvector version work
only for setting GL_SHININESS. The possible values for pname are shown in Tablet&-t3at
GL_AMBIENT_AND_DIFFUSE allows you to set both the ambient and diffuse material colors
simultaneously to the same RGBA value.

Parameter Name Default Value Meaning

GL_AMBIENT (0.2,0.2,0.2,1.0) ambient color of material

GL_DIFFUSE (0.8,0.8,0.8,1.0) diffuse color of material

GL_AMBIENT_AND_DIFFUSE ambient and diffuse color of
material

GL_SPECULAR (0.0, 0.0, 0.0, 1.0) specular color of material

GL_SHININESS 0.0 specular exponent

GL_EMISSION (0.0, 0.0, 0.0, 1.0) emissive color of material

GL_COLOR_INDEXES (0,1,1) ambient, diffuse, and specular
color indices

Table 5-3 Default Values for pname Parameter of glMaterial*()

As discussed in "Selecting a Lighting Model," you can choose to have lighting calculations performed
differently for the front— and back—facing polygons of objects. If the back faces might indeed be seen,
can supply different material properties for the front and the back surfaces by udagefieeameter of
glMaterial*(). See "Plate 14" in Appendix | for an example of an object drawn with different inside and
outside material properties.

To give you an idea of the possible effects you can achieve by manipulating material properties, see
"Plate 16" in Appendix I. This figure shows the same object drawn with several different sets of materi
properties. The same light source and lighting model are used for the entire figure. The sections that
follow discuss the specific properties used to draw each of these spheres.

Note that most of the material properties set wlaterial*() are (R, G, B, A) colors. Regardless of

what alpha values are supplied for other parameters, the alpha value at any particular vertex is the
diffuse-material alpha value (that is, the alpha value given to GL_DIFFUSE witvidierial*()

command, as described in the next section). (See "Blending" in Chapter 6 for a complete discussion ¢
alpha values.) Also, none of the RGBA material properties apply in color-index mode. (See"Lighting i
Color-Index Mode"for more information about what parameters are relevant in color-index mode.)

Diffuse and Ambient Reflection

The GL_DIFFUSE and GL_AMBIENT parameters set vgtiaterial*() affect the color of the diffuse

and ambient light reflected by an object. Diffuse reflectance plays the most important role in determini
what you perceive the color of an object to be. It's affected by the color of the incident diffuse light anc
the angle of the incident light relative to the normal direction. (It's most intense where the incident ligh
falls perpendicular to the surface.) The position of the viewpoint doesn't affect diffuse reflectance at al

Ambient reflectance affects the overall color of the object. Because diffuse reflectance is brightest wht
an object is directly illuminated, ambient reflectance is most noticeable where an object receives no

OpenGL Programming Guide — Chapter 5, Lighting — 22

direct illumination. An object’s total ambient reflectance is affected by the global ambient light and
ambient light from individual light sources. Like diffuse reflectance, ambient reflectance isn’t affected t
the position of the viewpoint.

For real-world objects, diffuse and ambient reflectance are normally the same color. For this reason,
OpenGL provides you with a convenient way of assigning the same value to both simultaneously with
glMaterial*():

GLfloat mat_amb_diff[] ={ 0.1, 0.5,0.8, 1.0 };
gIMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE,
mat_amb_diff);

In this example, the RGBA color (0.1, 0.5, 0.8, 1l.@)deep blue colar represents the current ambient
and diffuse reflectance for both the front— and back—-facing polygons.

In "Plate 16" in Appendix I, the first row of spheres has no ambient reflectance (0.0, 0.0, 0.0, 0.0), anc
the second row has a significant amount of it (0.7, 0.7, 0.7, 1.0).

Specular Reflection

Specular reflection from an object produces highlights. Unlike ambient and diffuse reflection, the amoi
of specular reflection seen by a viewer does depend on the location of the viélpsihtightest along

the direct angle of reflection. To see this, imagine looking at a metallic ball outdoors in the sunlight. As
you move your head, the highlight created by the sunlight moves with you to some extent. However, il
you move your head too much, you lose the highlight entirely.

OpenGL allows you to set the effect that the material has on reflected light (with GL_SPECULAR) anc
control the size and brightness of the highlight (with GL_SHININESS). You can assign a number in th
range of [0.0, 128.0] to GL_SHININESShe higher the value, the smaller and brighter (more focused)
the highlight. (See "The Mathematics of Lighting" for the details of how specular highlights are
calculated.)

In "Plate 16" in Appendix I, the spheres in the first column have no specular reflection. In the second
column, GL_SPECULAR and GL_SHININESS are assigned values as follows:

GLfloat mat_specular[] ={ 1.0, 1.0, 1.0, 1.0 };

GLfloat low_shininess[] ={5.0 };

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, low_shininess);

In the third column, the GL_SHININESS parameter is increased to 100.0.

Emission

By specifying an RGBA color for GL_EMISSION, you can make an object appear to be giving off light
of that color. Since most real-world objects (except lights) don’t emit light, you’'ll probably use this
feature mostly to simulate lamps and other light sources in a scene. In "Plate 16" in Appendix |, the
spheres in the fourth column have a reddish, grey value for GL_EMISSION:

OpenGL Programming Guide — Chapter 5, Lighting — 23

GLfloat mat_emission[] = {0.3, 0.2, 0.2, 0.0};
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);

Notice that the spheres appear to be slightly glowing; however, they’re not actually acting as light
sources. You would need to create a light source and position it at the same location as the sphere to
create that effect.

Changing Material Properties

Example 5-lises the same material properties for all vertices of the only object in the scene (the sphe
In other situations, you might want to assign different material properties for different vertices on the
same object. More likely, you have more than one object in the scene, and each object has different
material properties. For example, the code that produced "Plate 16" in Appendix | has to draw twelve
different objects (all spheres), each with different material properties. Example 5-8shows a portion of
code indisplay()

Example 5-8 Different Material Properties: material.c

GLfloat no_mat[] ={ 0.0, 0.0,0.0, 1.0 };

GLfloat mat_ambient[]] ={ 0.7, 0.7,0.7, 1.0 };
GLfloat mat_ambient_color[] ={0.8,0.8,0.2, 1.0 };
GLfloat mat_diffuse[] ={0.1,0.5,0.8, 1.0 };
GLfloat mat_specular[] ={ 1.0, 1.0, 1.0, 1.0 };
GLfloat no_shininess[] ={ 0.0 };

GLfloat low_shininess[] ={5.0 };

GLfloat high_shininess[] = { 100.0 };

GLfloat mat_emission[] = {0.3, 0.2, 0.2, 0.0};

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

[* draw sphere in first row, first column

* diffuse reflection only; no ambient or specular

*/
glPushMatrix();
glTranslatef (-3.75, 3.0, 0.0);
gIMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
gIMaterialfv(GL_FRONT, GL_SPECULAR, no_mat);
glMaterialfv(GL_FRONT, GL_SHININESS, no_shininess);
gIMaterialfv(GL_FRONT, GL_EMISSION, no_mat);
glutSolidSphere(1.0, 16, 16);
glPopMatrix();

[* draw sphere in first row, second column
* diffuse and specular reflection; low shininess; no ambient

OpenGL Programming Guide — Chapter 5, Lighting — 24

*
glPushMatrix();
glTranslatef (-1.25, 3.0, 0.0);
glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
gIMaterialfv(GL_FRONT, GL_SHININESS, low_shininess);
glMaterialfv(GL_FRONT, GL_EMISSION, no_mat);
glutSolidSphere(1.0, 16, 16);
glPopMatrix();

[* draw sphere in first row, third column
* diffuse and specular reflection; high shininess; no ambient
*/
glPushMatrix();
glTranslatef (1.25, 3.0, 0.0);
gIMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, high_shininess);
gIMaterialfv(GL_FRONT, GL_EMISSION, no_mat);
glutSolidSphere(1.0, 16, 16);
glPopMatrix();

[* draw sphere in first row, fourth column
* diffuse reflection; emission; no ambient or specular refl.
*
glPushMatrix();
glTranslatef (3.75, 3.0, 0.0);
glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, no_mat);
gIMaterialfv(GL_FRONT, GL_SHININESS, no_shininess);
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);
glutSolidSphere(1.0, 16, 16);
glPopMatrix();

As you can segjlMaterialfv() is called repeatedly to set the desired material property for each sphere.
Note that it only needs to be called to change a property that needs to be respecified. The second, thi
and fourth spheres use the same ambient and diffuse properties as the first sphere, so these propertie
not need to be respecified. Sirgibaterial*() has a performance cost associated with its use, Example
5-8could be rewritten to minimize material-property changes.

Another technigue for minimizing performance costs associated with changing material properties is t

OpenGL Programming Guide — Chapter 5, Lighting — 25

useglColorMaterial().

void glColorMaterial(GLenum face, GLenum mode);

Causes the material property (or properties) specified by mode of the specified material face (or
faces) specified by face to track the value of the current color at all times. A change to the current
color (using glColor*()) immediately updates the specified material properties. The face parametel
can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK (the default). The mode parameter ¢
be GL_AMBIENT, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE (the default), GL_SPECULAR,
or GL_EMISSION. At any given time, only one mode is active. glColorMaterial() has no effect on
color-index lighting.

Note thagglColorMaterial() specifies two independent values: the first specifies which face or faces are
updated, and the second specifies which material property or properties of those faces are updated.
OpenGL doesiot maintain separat@odevariables for each face.

After callingglColorMaterial(), you need to catilEnable()with GL_COLOR_MATERIAL as the
parameter. Then, you can change the current color gkiajor*() (or other material properties, using
glMaterial*()) as needed as you draw:

glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT, GL_DIFFUSE);

/* now glColor* changes diffuse reflection */
glColor3f(0.2, 0.5, 0.8);

[* draw some objects here */
glColorMaterial(GL_FRONT, GL_SPECULAR);
/* glColor* no longer changes diffuse reflection */
/* now glColor* changes specular reflection */
glColor3f(0.9, 0.0, 0.2);

[* draw other objects here */
glDisable(GL_COLOR_MATERIAL);

You should usglColorMaterial() whenever you need to change a single material parameter for most
vertices in your scene. If you need to change more than one material parameter, as was the case for'
16" in Appendix I, usgMaterial*(). When you don’t need the capabilitiesgb€olorMaterial()

anymore, be sure to disable it so that you don’t get undesired material properties and don't incur the
performance cost associated with it. The performance value ingi§iotprMaterial() varies, depending

on your OpenGL implementation. Some implementations may be able to optimize the vertex routines
that they can quickly update material properties based on the current color.

Example 5-8hows an interactive program that ugéSolorMaterial()to change material parameters.
Pressing each of the three mouse buttons changes the color of the diffuse reflection.

Example 5-9 Using glColorMaterial(): colormat.c

#include <GL/gl.h>
#include <GL/glu.h>
#include "glut.h"

OpenGL Programming Guide — Chapter 5, Lighting — 26

GLfloat diffuseMaterial[4] ={ 0.5, 0.5, 0.5, 1.0 };

void init(void)

{
GLfloat mat_specular[] ={ 1.0, 1.0, 1.0, 1.0 };
GLfloat light_position[] ={1.0, 1.0, 1.0, 0.0 };

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOQOTH);
glEnable(GL_DEPTH_TEST);

glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuseMaterial);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialf(GL_FRONT, GL_SHININESS, 25.0);
glLightfv(GL_LIGHTO, GL_POSITION, light_position);
glEnable(GL_LIGHTING);

glEnable(GL_LIGHTO);

glColorMaterial(GL_FRONT, GL_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glutSolidSphere(1.0, 20, 16);
glFlush ();

}

void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadldentity();
if (w <=h)
glOrtho (-1.5, 1.5, —1.5*(GLfloat)h/(GLfloat)w,
1.5*(GLfloat)h/(GLfloat)w, —10.0, 10.0);
else
glOrtho (-1.5*(GLfloat)w/(GLfloat)h,
1.5*%(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

}

OpenGL Programming Guide — Chapter 5, Lighting — 27

void mouse(int button, int state, int x, inty)
{
switch (button) {
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN) { /* change red */
diffuseMaterial[0] += 0.1;
if (diffuseMaterial[0] > 1.0)
diffuseMaterial[0] = 0.0;
glColor4fv(diffuseMaterial);
glutPostRedisplay();
}
break;
case GLUT_MIDDLE_BUTTON:
if (state == GLUT_DOWN) { /* change green */
diffuseMaterial[1] += 0.1;
if (diffuseMaterial[1] > 1.0)
diffuseMaterial[1] = 0.0;
glColor4fv(diffuseMaterial);
glutPostRedisplay();
}
break;
case GLUT_RIGHT_BUTTON:
if (state == GLUT_DOWN){ /* change blue */
diffuseMaterial[2] += 0.1;
if (diffuseMaterial[2] > 1.0)
diffuseMaterial[2] = 0.0;
glColor4fv(diffuseMaterial);
glutPostRedisplay();
}
break;
default:
break;

int main(int argc, char** argv)
{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutlnitWindowsSize (500, 500);
glutinitWindowPaosition (100, 100);
glutCreateWindow (argv[0]);
init ();

OpenGL Programming Guide — Chapter 5, Lighting — 28

glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMouseFunc(mouse);
glutMainLoop();

return O;

Try This
Modify Example 5-& the following manner:

Change the global ambient light in the scene. Hint: Alter the value of the
GL_LIGHT_MODEL_AMBIENT parameter.

Change the diffuse, ambient, and specular reflection parameters, the shininess exponent, and the
emission color. Hint: Use thggMaterial*() command, but avoid making excessive calls.

Use two-sided materials and add a user—defined clipping plane so that you can see the inside an
outside of a row or column of spheres. (See "Additional Clipping Planes” in Chapter 3, if you neec
to recall user—defined clipping planes.) Hint: Turn on two-sided lighting with
GL_LIGHT_MODEL_TWO_SIDE, set the desired material properties, and add a clipping plane.

Remove all thglMaterialfv() calls, and use the more efficigii€olorMaterial() calls to achieve the
same lighting.

The Mathematics of Lighting

Advanced

This section presents the equations used by OpenGL to perform lighting calculations to determine col
when in RGBA mode. (See "The Mathematics of Color-Index Mode Lighting"for corresponding
calculations for color-index mode.) You don’t need to read this section if you're willing to experiment t
obtain the lighting conditions you want. Even after reading this section, you'll probably have to
experiment, but you'll have a better idea of how the values of parameters affect a vertex’s color.
Remember that if lighting is not enabled, the color of a vertex is simply the current color; if it is enable
the lighting computations described here are carried out in eye coordinates.

In the following equations, mathematical operations are performed separately on the R, G, and B
components. Thus, for example, when three terms are shown as added together, the R values, the G
values, and the B values for each term are separately added to form the final RGB1e0RprHR,

G1+Go+G3, B1+B2+B3). When three terms are multiplied, the calculation igFRPR3, G1G2G3,
B1B2B3). (Remember that the final A or alpha component at a vertex is equal to the material’s diffuse
alpha value at that vertex.)

The color produced by lighting a vertex is computed as follows:

vertex color = the material emission at that vertex + the global ambient light scaled by the
material’'s ambient property at that vertex + the ambient, diffuse, and specular

OpenGL Programming Guide — Chapter 5, Lighting — 29

contributions from all the light sources, properly attenuated

After lighting calculations are performed, the color values are clamped (in RGBA mode) to the range
[0,1].

Note that OpenGL lighting calculations don’t take into account the possibility of one object blocking
light from another; as a result shadows aren’t automatically created. (See "Shadows" in Chapter 14 fo
technique to create shadows.) Also keep in mind that with OpenGL, illuminated objects don’t radiate
light onto other objects.

Material Emission
The material emission term is the simplest. It's the RGB value assigned to the GL_EMISSION
parameter.

Scaled Global Ambient Light

The second term is computed by multiplying the global ambient light (as defined by the
GL_LIGHT_MODEL_AMBIENT parameter) by the material’s ambient property (GL_AMBIENT value
as assigned withlMaterial*()):

ambienfight model* ambieninaterial

Each of the R, G, and B values for these two parameters are multiplied separately to compute the fine
RGB value for this term: (FR2, G1G2, B1B).

Contributions from Light Sources

Each light source may contribute to a vertex’s color, and these contributions are added together. The
equation for computing each light source’s contribution is as follows:

contribution = attenuation factor * spotlight effect *

(ambient term + diffuse term + specular term)

Attenuation Factor

Theattenuation factowas described in "Position and Attenuation™:

where
d = distance between the light's position and the vertex

ke = GL_CONSTANT_ATTENUATION

k = GL_LINEAR_ATTENUATION

OpenGL Programming Guide — Chapter 5, Lighting — 30

kg = GL_QUADRATIC_ATTENUATION

If the light is a directional one, the attenuation factor is 1.

Spotlight Effect

Thespotlight effecevaluates to one of three possible values, depending on whether the light is actually
spotlight and whether the vertex lies inside or outside the cone of illumination produced by the spotligl

1if the light isn’t a spotlight (GL_SPOT_CUTOFF is 180.0)

0 if the light is a spotlight, but the vertex lies outside the cone of illumination produced by the
spotlight.

(max {v - d, 0}))CL_SPOT_EXPONENTynere:
v=(vx, W, V) is the unit vector that points from the spotlight (GL_POSITION) to the vertex.

d = (dx, dy, dp) is the spotlight’s direction (GL_SPOT_DIRECTION), assuming the light is a
spotlight and the vertex lies inside the cone of illumination produced by the spotlight.

The dot product of the two vectorsndd varies as the cosine of the angle between them; hence,
objects directly in line get maximum illumination, and objects off the axis have their illumination
drop as the cosine of the angle.

To determine whether a particular vertex lies within the cone of illumination, OpenGL evaluates (max -
- d, 0}) wherev andd are as defined in the preceding discussion. If this value is less than the cosine of
the spotlight’s cutoff angle (GL_SPOT_CUTOFF), then the vertex lies outside the cone; otherwise, it's
inside the cone.

Ambient Term
The ambient term is simply the ambient color of the light scaled by the ambient material property:

ambienﬁght *ambienfaterial

Diffuse Term

The diffuse term needs to take into account whether light falls directly on the vertex, the diffuse color «
the light, and the diffuse material property:

(max {L - n, 0}) * diffuselight * diffusematerial
where:

L = (Lx, Ly, Lz) is the unit vector that points from the vertex to the light position (GL_POSITION).

n = (n, Ny, Nz) is the unit normal vector at the vertex.

Specular Term

OpenGL Programming Guide — Chapter 5, Lighting — 31

The specular term also depends on whether light falls directly on the vettexnlis less than or equal
to zero, there is no specular component at the vertex. (If it's less than zero, the light is on the wrong si
of the surface.) If there’s a specular component, it depends on the following:

The unit normal vector at the vertex(ny, nz).

The sum of the two unit vectors that point between (1) the vertex and the light position (or light
direction) and (2) the vertex and the viewpoint (assuming that
GL_LIGHT_MODEL_LOCAL_VIEWER is true; if it's not true, the vector (0, O, 1) is used as the
second vector in the sum). This vector sum is normalized (by dividing each component by the
magnitude of the vector) to yietE (sy, Sy, &)

The specular exponent (GL_SHININESS).
The specular color of the light (GL_SPECULRghv).-

The specular property of the material (GL_SPECU kfterial)

Using these definitions, here’s how OpenGL calculates the specular term:
(max {s - n, 0})ShiNINeSs: speculagight * speculamaterial

However, ifL - n =0, the specular term is 0.

Putting It All Together

Using the definitions of terms described in the preceding paragraphs, the following represents the enti
lighting calculation in RGBA mode:

vertex color = emissionmaterial +

ambientlight model * ambientmaterial +

[ambientlight *ambientmaterial +

(max {L - n, 0}) * diffuselight * diffusematerial +

(max {s - n, 0})shininess- gpecuylarlight * specularmaterial | i

Lighting in Color-Index Mode

In color-index mode, the parameters comprising RGBA values either have no effect or have a special
interpretation. Since it's much harder to achieve certain effects in color-index mode, you should use
RGBA whenever possible. In fact, the only light—source, lighting—model, or material parameters in an

OpenGL Programming Guide — Chapter 5, Lighting — 32

RGBA form that are used in color-index mode are the light-source parameters GL_DIFFUSE and
GL_SPECULAR and the material parameter GL_SHININESS. GL_DIFFUSE and GL_SPECUWLAR (

ands|, respectively) are used to compute color—index diffuse and specular light intethgiteslci) as

follows:

dej = 0.30 R@]) + 0.59 G¢)) + 0.11 B)
sci = 0.30 R) + 0.59 G§) + 0.11 BE)

where RK), G(x), and BK) refer to the red, green, and blue components, respectively, ofxcaloe
weighting values 0.30, 0.59, and 0.11 reflect the "perceptual" weights that red, green, and blue have f
your eyé] your eye is most sensitive to green and least sensitive to blue.

To specify material colors in color-index mode,gibaterial*() with the special parameter
GL_COLOR_INDEXES, as follows:

GLfloat mat_colormap[] = { 16.0, 47.0, 79.0 };
glMaterialfv(GL_FRONT, GL_COLOR_INDEXES, mat_colormap);

The three numbers supplied for GL_COLOR_INDEXES specify the color indices for the ambient,
diffuse, and specular material colors, respectively. In other words, OpenGL regards the color associat
with the first index (16.0 in this example) as the pure ambient color, with the second index (47.0) as th
pure diffuse color, and with the third index (79.0) as the pure specular color. (By default, the ambient
color index is 0.0, and the diffuse and specular color indices are both 1.0. Ngi€tiatMaterial()

has no effect on color—index lighting.)

As it draws a scene, OpenGL uses colors associated with indices in between these numbers to shade
objects in the scene. Therefore, you must build a color ramp between the indicated indices (in this
example, between indices 16 and 47, and then between 47 and 79). Often, the color ramp is built
smoothly, but you might want to use other formulations to achieve different effects. Here’'s an example
of a smooth color ramp that starts with a black ambient color and goes through a magenta diffuse colc
a white specular color:

for (i=0;i<32;i++){
glutSetColor (16 +1i, 1.0 * (i/32.0), 0.0, 1.0 * (i/32.0));
glutSetColor (48 +1i, 1.0, 1.0 * (i/32.0), 1.0);

}

The GLUT library commandlutSetColor()takes four arguments. It associates the color index indicated
by the first argument to the RGB triplet specified by the last three argumentsi WBhethe color index

16 is assigned the RGB value (0.0, 0.0, 0.0), or black. The color ramp builds smoothly up to the diffus
material color at index 47 (wher= 31), which is assigned the pure magenta RGB value (1.0, 0.0, 1.0).
The second loop builds the ramp between the magenta diffuse color and the white (1.0, 1.0, 1.0) spec
color (index 79). "Plate 15" in Appendix | shows the result of using this color ramp with a single lit
sphere.

The Mathematics of Color-Index Mode Lighting

OpenGL Programming Guide — Chapter 5, Lighting — 33

Advanced

As you might expect, since the allowable parameters are different for color-index mode than for RGB.
mode, the calculations are different as well. Since there’s no material emission and no ambient light, t
only terms of interest from the RGBA equations are the diffuse and specular contributions from the lig
sources and the shininess. Even these need to be modified, however, as explained next.

Begin with the diffuse and specular terms from the RGBA equations. In the diffuse term, instead of
diffuselight * diffusematerial substitutelcj as defined in the previous section for color-index mode.
Similarly, in the specular term, instead of spegiglat * speculamaterial Usesci as defined in the

previous section. (Calculate the attenuation, spotlight effect, and all other components of these terms

before.) Call these modified diffuse and specular teransds, respectively. Now le$ = min{ s, 1},

and then compute

¢=am * d(1-s)(Gn8m) *+ s'(Smam)

wheream, dm, andsm are the ambient, diffuse, and specular material indexes specified using
GL_COLOR_INDEXES. The final color index is

¢’ =min{c, sm}

After lighting calculations are performed, the color-index values are converted to fixed—point (with an
unspecified number of bits to the right of the binary point). Then the integer portion is masked (bitwise

ANDed) with 2-1, whera is the number of bits in a color in the color-index buffer.

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 34

Chapter 6
Blending, Antialiasing, Fog, and Polygon Offset

Chapter Objectives
After reading this chapter, you'll be able to do the following:
Blend colors to achieve such effects as making objects appear translucent
Smooth jagged edges of lines and polygons with antialiasing
Create scenes with realistic atmospheric effects
Draw geometry at or near the same depth, but avoid unaesthetic artifacts from intersecting geomu
The preceding chapters have given you the basic information you need to create a computer—graphic:
scene; you've learned how to do the following:
Draw geometric shapes
Transform those geometric shapes so that they can be viewed from whatever perspective you wit
Specify how the geometric shapes in your scene should be colored and shaded
Add lights and indicate how they should affect the shapes in your scene
Now you're ready to get a little fancier. This chapter discusses four techniques that can add extra detze

and polish to your scene. None of these techniques is hardddrut, it's probably harder to explain
them than to use them. Each of these techniques is described in its own major section:

"Blending" tells you how to specify a blending function that combines color values from a source
and a destination. The final effect is that parts of your scene appear translucent.

"Antialiasing" explains this relatively subtle technique that alters colors so that the edges of points
lines, and polygons appear smooth rather than angular and jagged.

"Fog" describes how to create the illusion of depth by computing the color values of an object bas
on its distance from the viewpoint. Thus, objects that are far away appear to fade into the
background, just as they do in real life.

If you've tried to draw a wireframe outline atop a shaded object and used the same vertices, you'\
probably noticed some ugly visual artifacts. "Polygon Offset" shows you how to tweak (offset)
depth values to make an outlined, shaded object look beautiful.

Blending

You've already seen alpha values (alpha is the A in RGBA), but they’'ve been ignored until now. Alphe
values are specified withiColor*(), when usingglClearColor()to specify a clearing color and when
specifying certain lighting parameters such as a material property or light-source intensity. As you
learned in Chapter 4, the pixels on a monitor screen emit red, green, and blue light, which is controllec

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 1

by the red, green, and blue color values. So how does an alpha value affect what gets drawn in a wint
on the screen?

When blending is enabled, the alpha value is often used to combine the color value of the fragment b
processed with that of the pixel already stored in the framebuffer. Blending occurs after your scene he
been rasterized and converted to fragments, but just before the final pixels are drawn in the framebuff
Alpha values can also be used in the alpha test to accept or reject a fragment based on its alpha valu
(See Chapter 10 for more information about this process.)

Without blending, each new fragment overwrites any existing color values in the framebuffer, as thouc
the fragment were opaque. With blending, you can control how (and how much of) the existing color
value should be combined with the new fragment’s value. Thus you can use alpha blending to create
translucent fragment that lets some of the previously stored color value "show through." Color blendin
lies at the heart of techniques such as transparency, digital compositing, and painting.

Note: Alpha values aren’t specified in color-index mode, so blending operations aren’t performed in
color-index mode.

The most natural way to think of blending operations is to think of the RGB components of a fragment
representing its color and the alpha component as representing opacity. Transparent or translucent
surfaces have lower opacity than opaque ones and, therefore, lower alpha values. For example, if you
viewing an object through green glass, the color you see is partly green from the glass and partly the
color of the object. The percentage varies depending on the transmission properties of the glass: If th
glass transmits 80 percent of the light that strikes it (that is, has an opacity of 20 percent), the color ya
see is a combination of 20 percent glass color and 80 percent of the color of the object behind it. You
easily imagine situations with multiple translucent surfaces. If you look at an automobile, for instance,
interior has one piece of glass between it and your viewpoint; some objects behind the automobile are
visible through two pieces of glass.

The Source and Destination Factors

During blending, color values of the incoming fragment ¢iterc§ are combined with the color values

of the corresponding currently stored pixel (@estinatior) in a two—stage process. First you specify how
to compute source and destination factors. These factors are RGBA quadruplets that are multiplied by
each component of the R, G, B, and A values in the source and destination, respectively. Then the
corresponding components in the two sets of RGBA quadruplets are added. To show this mathematic
let the source and destination blending factors pe5 Sp, Sa) and (¢, Dg, Dp, Da), respectively, and

the RGBA values of the source and destination be indicated with a subscript of s or d. Then the final,
blended RGBA values are given by

(RsS+RdDr, GsSy+GdDg, BsSh*+BdPb, AsSa+AdDa)
Each component of this quadruplet is eventually clamped to [0,1].

Now consider how the source and destination blending factors are generated. Y@lamnsH-unc(}o
supply two constants: one that specifies how the source factor should be computed and one that indic
how the destination factor should be computed. To have blending take effect, you also need to enable

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 2

glEnable(GL_BLEND);

UseglDisable()with GL_BLEND to disable blending. Also note that using the constants GL_ONE
(source) and GL_ZERO (destination) gives the same results as when blending is disabled; these valu

are the default.

void glBlendFunc(GLenum sfactor, GLenum dfactor);

Controls how color values in the fragment being processed (the source) are combined with those
already stored in the framebuffer (the destination). The argument sfactor indicates how to comput
source blending factor; dfactor indicates how to compute a destination blending factor. The possit
values for these arguments are explained in Table Bl blend factors are assumed to lie in the

range [0,1]; after the color values in the source and destination are combined, they’re clamped to

the range [0,1].

Note: In Table 6-1, the RGBA values of the source and destination are indicated with the subscripts s
and d, respectively. Subtraction of quadruplets means subtracting them componentwise. The Relevar
Factor column indicates whether the corresponding constant can be used to specify the source or

destination blend factor.

Constant Relevant Factor Computed Blend Factor
GL_ZERO source or (0,0,0,0)
destination
GL_ONE source or 1,1,1,1)
destination
GL_DST_COLOR source @& Gd Bg, Ad)
GL_SRC_COLOR destination RGg Bs Ag)
GL_ONE_MINUS DST_COLOR source (1,1, 1, 1)g(Rq, Bg, Ad)
GL_ONE_MINUS_SRC_COLOR destination (1,1, 1, 1}@5 Bg Ag)
GL_SRC_ALPHA source or (As As, Ag Ag)
destination
GL_ONE_MINUS_SRC_ALPHA source or (1,1, 1, 1)-(A As, A Ag)
destination
GL_DST_ALPHA source or (Ag Ad. Ad Ad)
destination
GL_ONE_MINUS_DST_ALPHA source or (1,1, 1, 1)-(A Ad, Ad Ad)
destination
GL_SRC_ALPHA_SATURATE source (f, f, f, 1); f=min(As, 1-Ad)

Table 6—1 Source and Destination Blending Factors

Sample Uses of Blending

Not all combinations of source and destination factors make sense. Most applications use a small nur
of combinations. The following paragraphs describe typical uses for particular combinations of source
and destination factors. Some of these examples use only the incoming alpha value, so they work eve
when alpha values aren’t stored in the framebuffer. Also note that often there’s more than one way to
achieve some of these effects.

One way to draw a picture composed half of one image and half of another, equally blended, is tc

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 3

set the source factor to GL_ONE and the destination factor to GL_ZERO, and draw the first imagt
Then set the source factor to GL_SRC_ALPHA and destination factor to
GL_ONE_MINUS_SRC_ALPHA, and draw the second image with alpha equal to 0.5. This pair of
factors probably represents the most commonly used blending operation. If the picture is suppose
to be blended with 0.75 of the first image and 0.25 of the second, draw the first image as before, i
draw the second with an alpha of 0.25.

To blend three different images equally, set the destination factor to GL_ONE and the source fact
to GL_SRC_ALPHA. Draw each of the images with an alpha equal to 0.3333333. With this
technique, each image is only one-third of its original brightness, which is noticeable where the
images don't overlap.

Suppose you're writing a paint program, and you want to have a brush that gradually adds color <
that each brush stroke blends in a little more color with whatever is currently in the image (say 10
percent color with 90 percent image on each pass). To do this, draw the image of the brush with
alpha of 10 percent and use GL_SRC_ALPHA (source) and GL_ONE_MINUS_SRC_ALPHA
(destination). Note that you can vary the alphas across the brush to make the brush add more of |
color in the middle and less on the edges, for an antialiased brush shape. (See "Antialiasing.")
Similarly, erasers can be implemented by setting the eraser color to the background color.

The blending functions that use the source or destination tbeks DST_COLOR or
GL_ONE_MINUS_DST_COLOR for the source factor and GL_SRC_COLOR or
GL_ONE_MINUS_SRC_COLOR for the destination fattaffectively allow you to modulate

each color component individually. This operation is equivalent to applying a simple fiter
example, multiplying the red component by 80 percent, the green component by 40 percent, and
blue component by 72 percent would simulate viewing the scene through a photographic filter tha
blocks 20 percent of red light, 60 percent of green, and 28 percent of blue.

Suppose you want to draw a picture composed of three translucent surfaces, some obscuring oth
and all over a solid background. Assume the farthest surface transmits 80 percent of the color bel
it, the next transmits 40 percent, and the closest transmits 90 percent. To compose this picture, d
the background first with the default source and destination factors, and then change the blending
factors to GL_SRC_ALPHA (source) and GL_ONE_MINUS_SRC_ALPHA (destination). Next,
draw the farthest surface with an alpha of 0.2, then the middle surface with an alpha of 0.6, and
finally the closest surface with an alpha of 0.1.

If your system has alpha planes, you can render objects one at a time (including their alpha value
read them back, and then perform interesting matting or compositing operations with the fully
rendered objects. (See "Compositing 3D Rendered Images" by Tom Duff, SIGGRAPH 1985
Proceedings, p. 41-44, for examples of this technique.) Note that objects used for picture
composition can come from any solrddey can be rendered using OpenGL commands, rendered
using techniques such as ray—tracing or radiosity that are implemented in another graphics library
obtained by scanning in existing images.

You can create the effect of a nonrectangular raster image by assigning different alpha values to

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 4

individual fragments in the image. In most cases, you would assign an alpha of 0 to each "invisibl
fragment and an alpha of 1.0 to each opaque fragment. For example, you can draw a polygon in 1
shape of a tree and apply a texture map of foliage; the viewer can see through parts of the
rectangular texture that aren’t part of the tree if you've assigned them alpha values of 0. This
method, sometimes calldillboarding, is much faster than creating the tree out of
three—dimensional polygons. An example of this technique is shown inFigure 6-1 The tree is a
single rectangular polygon that can be rotated about the center of the trunk, as shown by the
outlines, so that it's always facing the viewer. (See "Texture Functions" in Chapter 9 for more
information about blending textures.)

Figure 6-1 Creating a Nonrectangular Raster Image

Blending is also used fa@ntialiasing, which is a rendering technique to reduce the jagged
appearance of primitives drawn on a raster screen. (See "Antialiasing” for more information.)

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset - 5

A Blending Example

Example 6-tiraws two overlapping colored triangles, each with an alpha of 0.75. Blending is enabled
and the source and destination blending factors are set to GL_SRC_ALPHA and
GL_ONE_MINUS_SRC_ALPHA, respectively.

When the program starts up, a yellow triangle is drawn on the left and then a cyan triangle is drawn ot
the right so that in the center of the window, where the triangles overlap, cyan is blended with the
original yellow. You can change which triangle is drawn first by typing ‘t’ in the window.

Example 6-1 Blending Example: alpha.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

static int leftFirst = GL_TRUE;

[* Initialize alpha blending function. */
static void init(void)
{
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glShadeModel (GL_FLAT);
glClearColor (0.0, 0.0, 0.0, 0.0);

}

static void drawLeftTriangle(void)
{
[* draw yellow triangle on LHS of screen */
glBegin (GL_TRIANGLES);
glColor4f(1.0, 1.0, 0.0, 0.75);
glVertex3f(0.1, 0.9, 0.0);
glVertex3f(0.1, 0.1, 0.0);
glVertex3f(0.7, 0.5, 0.0);
glEnd();

}

static void drawRightTriangle(void)
{

[* draw cyan triangle on RHS of screen */
glBegin (GL_TRIANGLES);
glColor4f(0.0, 1.0, 1.0, 0.75);

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 6

glVertex3f(0.9, 0.9, 0.0);
glVertex3f(0.3, 0.5, 0.0);
glVertex3f(0.9, 0.1, 0.0);
glEnd();
}

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT):;

if (leftFirst) {
drawLeftTriangle();
drawRightTriangle();

}

else {
drawRightTriangle();
drawLeftTriangle();

}
glFlush();

}

void reshape(int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
if (w <=h)
gluOrtho2D (0.0, 1.0, 0.0, 1.0*(GLfloat)h/(GLfloat)w);
else
gluOrtho2D (0.0, 1.0*(GLfloat)w/(GLfloat)h, 0.0, 1.0);

void keyboard(unsigned char key, int X, int y)
{
switch (key) {
case ‘1"
case ‘T"
leftFirst = lleftFirst;
glutPostRedisplay();
break;
case 27: [* Escape key */
exit(0);
break;

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 7

default:
break;

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutlnitWindowsSize (200, 200);
glutCreateWindow (argv[0]);
init();
glutReshapeFunc (reshape);
glutkeyboardFunc (keyboard);
glutDisplayFunc (display);
glutMainLoop();
return O;

}

The order in which the triangles are drawn affects the color of the overlapping region. When the left
triangle is drawn first, cyan fragments (the source) are blended with yellow fragments, which are alrea
in the framebuffer (the destination). When the right triangle is drawn first, yellow is blended with cyan.
Because the alpha values are all 0.75, the actual blending factors become 0.75 for the source and 1.C
0.75 = 0.25 for the destination. In other words, the source fragments are somewhat translucent, but th
have more effect on the final color than the destination fragments.

Three—-Dimensional Blending with the Depth Buffer

As you saw in the previous example, the order in which polygons are drawn greatly affects the blende
result. When drawing three—dimensional translucent objects, you can get different appearances depel
on whether you draw the polygons from back to front or from front to back. You also need to consider
the effect of the depth buffer when determining the correct order. (See "A Hidden—-Surface Removal
Survival Kit" in Chapter 5 for an introduction to the depth buffer. Also see "Depth Test" in Chapter 10
for more information.) The depth buffer keeps track of the distance between the viewpoint and the
portion of the object occupying a given pixel in a window on the screen; when another candidate colot
arrives for that pixel, it's drawn only if its object is closer to the viewpoint, in which case its depth value
is stored in the depth buffer. With this method, obscured (or hidden) portions of surfaces aren't
necessarily drawn and therefore aren’t used for blending.

If you want to render both opaque and translucent objects in the same scene, then you want to use th
depth buffer to perform hidden—surface removal for any objects that lie behind the opaque objects. If ¢
opaque object hides either a translucent object or another opaque object, you want the depth buffer tc
eliminate the more distant object. If the translucent object is closer, however, you want to blend it with
the opaque object. You can generally figure out the correct order to draw the polygons if everything in
the scene is stationary, but the problem can quickly become too hard if either the viewpoint or the obje

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 8

is moving.

The solution is to enable depth buffering but make the depth buffer read—only while drawing the
translucent objects. First you draw all the opaque objects, with the depth buffer in normal operation.
Then you preserve these depth values by making the depth buffer read—only. When the translucent
objects are drawn, their depth values are still compared to the values established by the opaque objec
so they aren’t drawn if they’re behind the opaque ones. If they're closer to the viewpoint, however, the
don't eliminate the opaque objects, since the depth—buffer values can’t change. Instead, they're blend
with the opaque objects. To control whether the depth buffer is writablglespthMask() if you pass
GL_FALSE as the argument, the buffer becomes read-only, whereas GL_TRUE restores the normal,
writable operation.

Example 6—Bemonstrates how to use this method to draw opaque and translucent three—dimensional
objects. In the program, typing ‘a’ triggers an animation sequence in which a translucent cube moves
through an opaque sphere. Pressing the ‘r’ key resets the objects in the scene to their initial positions.
get the best results when transparent objects overlap, draw the objects from back to front.

Example 6-2 Three-Dimensional Blending: alpha3D.c

#include <stdlib.h>
#include <stdio.h>
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

#define MAXZ 8.0

#define MINZ -8.0

#define ZINC 0.4

static float solidZ = MAXZ;

static float transparentZ = MINZ;
static GLuint sphereList, cubelList;

static void init(void)

{
GLfloat mat_specular[] ={ 1.0, 1.0, 1.0, 0.15 };
GLfloat mat_shininess[] ={ 100.0 };
GLfloat position[] ={ 0.5, 0.5, 1.0, 0.0 };

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHTO, GL_POSITION, position);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHTO);
glEnable(GL_DEPTH_TEST);

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 9

sphereList = glGenLists(1);
glNewList(sphereList, GL_ COMPILE);

glutSolidSphere (0.4, 16, 16);
glEndList();

cubelList = glGenLists(1);

glNewlList(cubeList, GL_COMPILE);
glutSolidCube (0.6);

glEndList();

void display(void)

{
GLfloat mat_solid[] = { 0.75, 0.75, 0.0, 1.0 };
GLfloat mat_zero[] ={ 0.0, 0.0, 0.0, 1.0 };
GLfloat mat_transparent[] = { 0.0, 0.8, 0.8, 0.6 };
GLfloat mat_emission[] ={ 0.0, 0.3, 0.3, 0.6 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();
glTranslatef (-0.15, -0.15, solidZ);
glMaterialfv(GL_FRONT, GL_EMISSION, mat_zero);
gIMaterialfv(GL_FRONT, GL_DIFFUSE, mat_solid);
glCallList (sphereList);

glPopMatrix ();

glPushMatrix ();
glTranslatef (0.15, 0.15, transparentZ);
glRotatef (15.0, 1.0, 1.0, 0.0);
glRotatef (30.0, 0.0, 1.0, 0.0);
gIMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_transparent);
glEnable (GL_BLEND);
glDepthMask (GL_FALSE);
glBlendFunc (GL_SRC_ALPHA, GL_ONE);
glCallList (cubeList);
glDepthMask (GL_TRUE);
glDisable (GL_BLEND);
glPopMatrix ();

glutSwapBuffers();

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 10

void reshape(int w, int h)
{
glViewport(0, 0, (GLint) w, (GLint) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
if (w <= h)
glOrtho (-1.5, 1.5, —-1.5*(GLfloat)h/(GLfloat)w,
1.5*(GLfloat)h/(GLfloat)w, —10.0, 10.0);
else
glOrtho (-1.5*(GLfloat)w/(GLfloat)h,
1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
}

void animate(void)
{
if (solidZ <= MINZ || transparentZ >= MAXZ)
glutidleFunc(NULL);
else {
solidZ —= ZINC;
transparentZ += ZINC,
glutPostRedisplay();
}
}

void keyboard(unsigned char key, int X, int y)
{
switch (key) {
case ‘a’
case ‘A’
solidZ = MAXZ;
transparentZ = MINZ;
glutldleFunc(animate);
break;
case 'r:
case ‘R
solidZ = MAXZ;
transparentZ = MINZ;
glutPostRedisplay();
break;

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 11

case 27:
exit(0);

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutlnitWindowSize (500, 500);
glutCreateWindow(argv[0]);
init();
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutDisplayFunc(display);
glutMainLoop();
return O;

Antialiasing

You might have noticed in some of your OpenGL pictures that lines, especially nearly horizontal or
nearly vertical ones, appear jagged. These jaggies appear because the ideal line is approximated by
series of pixels that must lie on the pixel grid. The jaggedness is abdlsithg, and this section

describes antialiasing techniques to reduce it. Figure 6—-2shows two intersecting lines, both aliased ar
antialiased. The pictures have been magnified to show the effect.

Figure 6-2 Aliased and Antialiased Lines

Figure 6—3shows how a diagonal line 1 pixel wide covers more of some pixel squares than others. In
fact, when performing antialiasing, OpenGL calculates\veragevalue for each fragment based on the
fraction of the pixel square on the screen that it would cover. The figure shows these coverage values
the line. In RGBA mode, OpenGL multiplies the fragment’s alpha value by its coverage. You can then
use the resulting alpha value to blend the fragment with the corresponding pixel already in the

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 12

framebuffer. In color-index mode, OpenGL sets the least significant 4 bits of the color index based on
fragment’s coverage (0000 for no coverage and 1111 for complete coverage). It's up to you to load yc
color map and apply it appropriately to take advantage of this coverage information.

Figure 6—3 Determining Coverage Values

The details of calculating coverage values are complex, difficult to specify in general, and in fact may
vary slightly depending on your particular implementation of OpenGL. You can ugkihg)

command to exercise some control over the trade—-off between image quality and speed, but not all
implementations will take the hint.

void gIHint(GLenum target, GLenum hint);
Controls certain aspects of OpenGL behavior. The target parameter indicates which behavior is tc
be controlled; its possible values are shown in Table k€ hint parameter can be GL_FASTEST
to indicate that the most efficient option should be chosen, GL_NICEST to indicate the
highest—quality option, or GL_DONT_CARE to indicate no preference. The interpretation of hints
implementation—dependent; an implementation can ignore them entirely. (For more information
about the relevant topics, see "Antialiasing” for the details on sampling and "Fog" for details on
fog.)
The GL_PERSPECTIVE_CORRECTION_HINT target parameter refers to how color values and
texture coordinates are interpolated across a primitive: either linearly in screen space (a relatively
simple calculation) or in a perspective—correct manner (which requires more computation). Often,
systems perform linear color interpolation because the results, while not technically correct, are
visually acceptable; however, in most cases textures require perspective—correct interpolation to t
visually acceptable. Thus, an implementation can choose to use this parameter to control the met
used for interpolation. (See Chapter 3 for a discussion of perspective projection, Chapter 4 for a
discussion of color, and Chapter 9 for a discussion of texture mapping.)

Parameter Meaning

GL_POINT_SMOOTH_HINT, Specify the desired sampling quality of
GL_LINE_SMOOTH_HINT, points, lines, or polygons during
GL_POLYGON_SMOOTH_HINT antialiasing operations
GL_FOG_HINT Specifies whether fog calculations are

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 13

done per pixel (GL_NICEST) or per

vertex (GL_FASTEST)
GL_PERSPECTIVE_CORRECTION_HINT Specifies the desired quality of color and

texture—coordinate interpolation

Table 6-2 Values for Use with glHint()

Antialiasing Points or Lines

To antialias points or lines, you need to turn on antialiasingghithable() passing in
GL_POINT_SMOOTH or GL_LINE_SMOOTH, as appropriate. You might also want to provide a
quality hint withglHint(). (Remember that you can set the size of a point or the width of a line. You can
also stipple a line. See "Line Details" in Chapter 2.) Next follow the procedures described in one of the
following sections, depending on whether you're in RGBA or color-index mode.

Antialiasing in RGBA Mode

In RGBA mode, you need to enable blending. The blending factors you most likely want to use are
GL_SRC_ALPHA (source) and GL_ONE_MINUS_SRC_ALPHA (destination). Alternatively, you can
use GL_ONE for the destination factor to make lines a little brighter where they intersect. Now you're
ready to draw whatever points or lines you want antialiased. The antialiased effect is most noticeable
you use a fairly high alpha value. Remember that since you're performing blending, you might need tc
consider the rendering order as described in "Three—Dimensional Blending with the Depth Buffer."
However, in most cases, the ordering can be ignored without significant adverse effects. Example 6-:
initializes the necessary modes for antialiasing and then draws two intersecting diagonal lines. When*
run this program, press the ‘r’ key to rotate the lines so that you can see the effect of antialiasing on lii
of different slopes. Note that the depth buffer isn’t enabled in this example.

Example 6-3 Antialiased lines: aargb.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

static float rotAngle = 0.;

/* Initialize antialiasing for RGBA mode, including alpha
* blending, hint, and line width. Print out implementation
* specific info on line width granularity and width.
*/
void init(void)
{
GLfloat values[2];
glGetFloatv (GL_LINE_WIDTH_GRANULARITY, values);

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 14

printf ("GL_LINE_WIDTH_GRANULARITY value is %3.1f\n",
values[0]);

glGetFloatv (GL_LINE_WIDTH_RANGE, values);

printf ("GL_LINE_WIDTH_RANGE values are %3.1f %3.1f\n",
values[0], values[1]);

glEnable (GL_LINE_SMOOTH);

glEnable (GL_BLEND);

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glHint (GL_LINE_SMOOTH_HINT, GL_DONT_CARE);
glLineWidth (1.5);

glClearColor(0.0, 0.0, 0.0, 0.0);

/* Draw 2 diagonal lines to form an X */
void display(void)
{

glClear(GL_COLOR_BUFFER_BIT);

glColor3f (0.0, 1.0, 0.0);
glPushMatrix();
glRotatef(-rotAngle, 0.0, 0.0, 0.1);
glBegin (GL_LINES);
glVertex2f (0.5, 0.5);
glVertex2f (0.5, —0.5);
glEnd ();
glPopMatrix();

glColor3f (0.0, 0.0, 1.0);
glPushMatrix();
glRotatef(rotAngle, 0.0, 0.0, 0.1);
glBegin (GL_LINES);
glVertex2f (0.5, 0.5);
glVertex2f (-0.5, —-0.5);
glEnd ();
glPopMatrix();

glFlush();
}

void reshape(int w, int h)

{
glViewport(0, 0, (GLint) w, (GLint) h);

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 15

glMatrixMode(GL_PROJECTION);
glLoadldentity();
if (w <=h)
gluOrtho2D (-1.0, 1.0,
-1.0*(GLfloat)h/(GLfloat)w, 1.0*(GLfloat)h/(GLfloat)w);
else
gluOrtho2D (-1.0*(GLfloat)w/(GLfloat)h,
1.0*(GLfloat)w/(GLfloat)h, —1.0, 1.0);
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();

}

void keyboard(unsigned char key, int X, int y)
{
switch (key) {
case 'r':
case ‘R"
rotAngle +=20.;
if (rotAngle >= 360.) rotAngle = 0.;
glutPostRedisplay();
break;
case 27: [* Escape Key */
exit(0);
break;
default:
break;

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutlnitWindowsSize (200, 200);
glutCreateWindow (argv[0]);
init();
glutReshapeFunc (reshape);
glutkeyboardFunc (keyboard);
glutDisplayFunc (display);
glutMainLoop();
return O;

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 16

Antialiasing in Color-Index Mode

The tricky part about antialiasing in color—index mode is loading and using the color map. Since the la
bits of the color index indicate the coverage value, you need to load sixteen contiguous indices with a
color ramp from the background color to the object’s color. (The ramp has to start with an index value
that's a multiple of 16.) Then you clear the color buffer to the first of the sixteen colors in the ramp anc
draw your points or lines using colors in the ramp. Example 6—4 demonstrates how to construct the co
ramp to draw antialiased lines in color-index mode. In this example, two color ramps are created: one
contains shades of green and the other shades of blue.

Example 6—4 Antialiasing in Color-Index Mode: aaindex.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

#define RAMPSIZE 16
#define RAMP1START 32
#define RAMP2START 48

static float rotAngle = 0.;

/* Initialize antialiasing for color-index mode,

* including loading a green color ramp starting

* at RAMP1START, and a blue color ramp starting

* at RAMP2START. The ramps must be a multiple of 16.
*

void init(void)

{

int i

for (i= 0; i < RAMPSIZE; i++) {
GLfloat shade;
shade = (GLfloat) i/(GLfloat) RAMPSIZE;
glutSetColor(RAMP1START+(GLint)i, 0., shade, 0.);
glutSetColor(RAMP2START+(GLint)i, 0., 0., shade);
}
glEnable (GL_LINE_SMOOTH);
glHint (GL_LINE_SMOOTH_HINT, GL_DONT_CARE);
glLineWidth (1.5);

glClearindex ((GLfloat) RAMP1START);
}

/* Draw 2 diagonal lines to form an X */

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 17

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT);

glindexi(RAMP1START);
glPushMatrix();
glRotatef(-rotAngle, 0.0, 0.0, 0.1);
glBegin (GL_LINES);
glVertex2f (0.5, 0.5);
glVertex2f (0.5, —0.5);
glEnd ();
glPopMatrix();

glindexi(RAMP2START);
glPushMatrix();
glRotatef(rotAngle, 0.0, 0.0, 0.1);
glBegin (GL_LINES);
glVertex2f (0.5, 0.5);
glVertex2f (-0.5, —-0.5);
glEnd ();
glPopMatrix();

glFlush();
}

void reshape(int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
if (w <=h)
gluOrtho2D (-1.0, 1.0,
-1.0*(GLfloat)h/(GLfloat)w, 1.0*(GLfloat)h/(GLfloat)w);
else
gluOrtho2D (-1.0*(GLfloat)w/(GLfloat)h,
1.0*(GLfloat)w/(GLfloat)h, -1.0, 1.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

}
void keyboard(unsigned char key, int x, int y)

{
switch (key) {

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 18

case 'r':

case ‘R’
rotAngle += 20.;
if (rotAngle >= 360.) rotAngle = 0.;
glutPostRedisplay();
break;

case 27: I* Escape Key */
exit(0);
break;

default:
break;

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_INDEX);
glutlnitWindowsSize (200, 200);
glutCreateWindow (argv[0]);
init();
glutReshapeFunc (reshape);
glutkeyboardFunc (keyboard);
glutDisplayFunc (display);
glutMainLoop();
return O;

}

Since the color ramp goes from the background color to the object’s color, the antialiased lines look
correct only in the areas where they are drawn on top of the background. When the blue line is drawn
erases part of the green line at the point where the lines intersect. To fix this, you would need to redra
the area where the lines intersect using a ramp that goes from green (the color of the line in the
framebuffer) to blue (the color of the line being drawn). However, this requires additional calculations
and it is usually not worth the effort since the intersection area is small. Note that this is not a problem
RGBA mode, since the colors of object being drawn are blended with the color already in the
framebuffer.

You may also want to enable the depth test when drawing antialiased points and lines in color-index
mode. In this example, the depth test is disabled since both of the lines lie in the glame. However,

if you want to draw a three—dimensional scene, you should enable the depth buffer so that the resultir
pixel colors correspond to the "nearest" objects.

The trick described in "Three-Dimensional Blending with the Depth Buffer"can also be used to mix
antialiased points and lines with aliased, depth—buffered polygons. To do this, draw the polygons first,
then make the depth buffer read—only and draw the points and lines. The points and lines intersect nic

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 19

with each other but will be obscured by nearer polygons.
Try This

Take a previous program, such as the robot arm or solar system examples described in "Examples of
Composing Several Transformations" in Chapter 3, and draw wireframe objects with antialiasing. Try i
in either RGBA or color-index mode. Also try different line widths or point sizes to see their effects.

Antialiasing Polygons

Antialiasing the edges of filled polygons is similar to antialiasing points and lines. When different
polygons have overlapping edges, you need to blend the color values appropriately. You can either us
the method described in this section, or you can use the accumulation buffer to perform antialiasing fc
your entire scene. Using the accumulation buffer, which is described in Chapter 10, is easier from yoL
point of view, but it's much more computation—intensive and therefore slower. However, as you'll see,
the method described here is rather cumbersome.

Note: If you draw your polygons as points at the vertices or as ouflitiest is, by passing GL_POINT
or GL_LINE toglPolygonMode()! point or line antialiasing is applied, if enabled as described earlier.
The rest of this section addresses polygon antialiasing when you’re using GL_FILL as the polygon mc

In theory, you can antialias polygons in either RGBA or color-index mode. However, object intersectic
affect polygon antialiasing more than they affect point or line antialiasing, so rendering order and
blending accuracy become more critical. In fact, they’re so critical that if you're antialiasing more than
one polygon, you need to order the polygons from front to back and thgiBlesedFunc()with
GL_SRC_ALPHA_ SATURATE for the source factor and GL_ONE for the destination factor. Thus,
antialiasing polygons in color-index mode normally isn’t practical.

To antialias polygons in RGBA mode, you use the alpha value to represent coverage values of polygc
edges. You need to enable polygon antialiasing by passing GL_POLYGON_SMOQ@TEh&dble()

This causes pixels on the edges of the polygon to be assigned fractional alpha values based on their
coverage, as though they were lines being antialiased. Also, if you desire, you can supply a value for
GL_POLYGON_SMOOTH_HINT.

Now you need to blend overlapping edges appropriately. First, turn off the depth buffer so that you ha
control over how overlapping pixels are drawn. Then set the blending factors to
GL_SRC_ALPHA_SATURATE (source) and GL_ONE (destination). With this specialized blending
function, the final color is the sum of the destination color and the scaled source color; the scale factol
the smaller of either the incoming source alpha value or one minus the destination alpha value. This
means that for a pixel with a large alpha value, successive incoming pixels have little effect on the fin¢
color because one minus the destination alpha is almost zero. With this method, a pixel on the edge ¢
polygon might be blended eventually with the colors from another polygon that’'s drawn later. Finally,
you need to sort all the polygons in your scene so that they’re ordered from front to back before drawi
them.

Example 6-8hows how to antialias filled polygons; clicking the left mouse button toggles the
antialiasing on and off. Note that backward—facing polygons are culled and that the alpha values in thi
color buffer are cleared to zero before any drawing. Pressing the ‘t’ key toggles the antialiasing on anc

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 20

off.

Note: Your color buffer must store alpha values for this technique to work correctly. Make sure you
request GLUT_ALPHA and receive a legitimate window.

Example 6-5 Antialiasing Filled Polygons: aapoly.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

GLboolean polySmooth = GL_TRUE;
static void init(void)
{
glCullFace (GL_BACK);
glEnable (GL_CULL_FACE);
glBlendFunc (GL_SRC_ALPHA SATURATE, GL_ONE);
glClearColor (0.0, 0.0, 0.0, 0.0);

}

#define NFACE 6
#define NVERT 8
void drawCube(GLdouble x0, GLdouble x1, GLdouble y0,
GLdouble y1, GLdouble z0, GLdouble z1)
{
static GLfloat v[8][3];
static GLfloat c[8][4] = {
{0.0, 0.0, 0.0, 1.0}, {1.0, 0.0, 0.0, 1.0},
{0.0, 1.0, 0.0, 1.0}, {1.0, 1.0, 0.0, 1.0},
{0.0, 0.0, 1.0, 1.0}, {1.0, 0.0, 1.0, 1.0},
{0.0,1.0,1.0,1.0},{1.0,1.0,1.0, 1.0}
3

/* indices of front, top, left, bottom, right, back faces */
static GLubyte indices[NFACE][4] = {
{4,5,6,7}1{2,3,7,6},{0, 4, 7, 3},
{0,1,5,4},{1,5,6, 2},{0, 3, 2, 1}
3

v[0][0] = v[3][0] = v[4][0] = v[7][0] = xO;
V[1][0] = v[2][0] = v[5][0] = V[6][0] = x1;

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 21

v[O][1] = v[1][1] = v[4][1] = V[3][1] = yO;
v[2][1] = v[3][1] = v[6][1] = v[7][1] = y1;
v[0][2] = v[1][2] = v[2][2] = v[3][2] = z0;
v[4][2] = v[5][2] = v[6][2] = v[7][2] = z1;

#ifdef GL_VERSION_1_1
glEnableClientState (GL_VERTEX_ARRAY);
glEnableClientState (GL_COLOR_ARRAY);
glVertexPointer (3, GL_FLOAT, 0, v);
glColorPointer (4, GL_FLOAT, 0, c);
glDrawElements(GL_QUADS, NFACE*4, GL_UNSIGNED_BYTE, indices);
glDisableClientState (GL_VERTEX_ARRAY);
glDisableClientState (GL_COLOR_ARRAY);
#else
printf ("If this is GL Version 1.0, ");
printf ("vertex arrays are not supported.\n");
exit(1);
#endif
}
/* Note: polygons must be drawn from front to back
* for proper blending.
*/
void display(void)
{
if (polySmooth) {
glClear (GL_COLOR_BUFFER_BIT);
glEnable (GL_BLEND);
glEnable (GL_POLYGON_SMOOTH);
glDisable (GL_DEPTH_TEST);
}
else {
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDisable (GL_BLEND);
glDisable (GL_POLYGON_SMOOTH);
glEnable (GL_DEPTH_TEST);

}

glPushMatrix ();
glTranslatef (0.0, 0.0, —-8.0);
glRotatef (30.0, 1.0, 0.0, 0.0);
glRotatef (60.0, 0.0, 1.0, 0.0);
drawCube(-0.5, 0.5, -0.5, 0.5, -0.5, 0.5);
glPopMatrix ();

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 22

glFlush ();
}

void reshape(int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective(30.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
}
void keyboard(unsigned char key, int x, int y)
{
switch (key) {
case ‘1"
case ‘T
polySmooth = !polySmooth;
glutPostRedisplay();
break;
case 27:
exit(0); /* Escape key */
break;
default:
break;

int main(int argc, char** argv)
{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB
| GLUT_ALPHA | GLUT_DEPTH);
glutinitWindowsSize (200, 200);
glutCreateWindow(argv[0]);
init ();
glutReshapeFunc (reshape);
glutkeyboardFunc (keyboard);
glutDisplayFunc (display);
glutMainLoop();
return O;

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 23

Fog

Computer images sometimes seem unrealistically sharp and well defined. Antialiasing makes an obje
appear more realistic by smoothing its edges. Additionally, you can make an entire image appear mor
natural by adding fog, which makes objects fade into the distengés a general term that describes
similar forms of atmospheric effects; it can be used to simulate haze, mist, smoke, or pollution. (See
Plate 9.) Fog is essential in visual-simulation applications, where limited visibility needs to be
approximated. It's often incorporated into flight-simulator displays.

When fog is enabled, objects that are farther from the viewpoint begin to fade into the fog color. You c
control the density of the fog, which determines the rate at which objects fade as the distance increas:
as well as the fog’s color. Fog is available in both RGBA and color-index modes, although the
calculations are slightly different in the two modes. Since fog is applied after matrix transformations,
lighting, and texturing are performed, it affects transformed, lit, and textured objects. Note that with lar
simulation programs, fog can improve performance, since you can choose not to draw objects that wa
be too fogged to be visible.

All types of geometric primitives can be fogged, including points and lines. Using the fog effect on
points and lines is also calldépth—cuing(as shown in Plate 2) and is popular in molecular modeling
and other applications.

Using Fog

Using fog is easy. You enable it by passing GL_FOGIEmable() and you choose the color and the
equation that controls the density wgh-og*(). If you want, you can supply a value for GL_FOG_HINT
with glHint(), as described on Table 6EXample 6—-6draws five red spheres, each at a different distance
from the viewpoint. Pressing the ‘f’ key selects among the three different fog equations, which are
described in the next section.

Example 6-6 Five Fogged Spheres in RGBA Mode: fog.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <math.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

static GLint fogMode;
static void init(void)
{

GLfloat position[] ={ 0.5, 0.5, 3.0, 0.0 };

glEnable(GL_DEPTH_TEST);

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 24

glLightfv(GL_LIGHTO, GL_POSITION, position);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHTO);

{
GLfloat mat[3] = {0.1745, 0.01175, 0.01175};
gIMaterialfv (GL_FRONT, GL_AMBIENT, mat);
mat[0] = 0.61424; mat[1] = 0.04136; mat[2] = 0.04136;
gIMaterialfv (GL_FRONT, GL_DIFFUSE, mat);
mat[0] = 0.727811; mat[1] = 0.626959; mat[2] = 0.626959;
gIMaterialfv (GL_FRONT, GL_SPECULAR, mat);
gIMaterialf (GL_FRONT, GL_SHININESS, 0.6*128.0);

glEnable(GL_FOG);

{
GLfloat fogColor[4] = {0.5, 0.5, 0.5, 1.0};

fogMode = GL_EXP;
glFogi (GL_FOG_MODE, fogMode);
glFogfv (GL_FOG_COLOR, fogColor);
glFogf (GL_FOG_DENSITY, 0.35);
glHint (GL_FOG_HINT, GL_DONT_CARE);
glFogf (GL_FOG_START, 1.0);
glFogf (GL_FOG_END, 5.0);

}

glClearColor(0.5, 0.5, 0.5, 1.0); /* fog color */

}

static void renderSphere (GLfloat x, GLfloat y, GLfloat z)

{
glPushMatrix();

glTranslatef (x, y, 2);
glutSolidSphere(0.4, 16, 16);
glPopMatrix();

}

[* display() draws 5 spheres at different z positions.

*

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderSphere (-2., 0.5, -1.0);

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 25

renderSphere (-1., -0.5, -2.0);
renderSphere (0., -0.5, -3.0);
renderSphere (1., 0.5, —-4.0);
renderSphere (2., 0.5, -5.0);
glFlush();

void reshape(int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
if (w <=h)
glOrtho (-2.5, 2.5, —2.5*(GLfloat)h/(GLfloat)w,
2.5*(GLfloat)h/(GLfloat)w, —10.0, 10.0);
else
glOrtho (-2.5*(GLfloat)w/(GLfloat)h,
2.5*(GLfloat)w/(GLfloat)h, -2.5, 2.5, -10.0, 10.0);
gIMatrixMode(GL_MODELVIEW);
glLoadldentity ();

}

void keyboard(unsigned char key, int X, int y)
{
switch (key) {
case ‘f:
case ‘F:
if (fogMode == GL_EXP) {
fogMode = GL_EXP?2;
printf ("Fog mode is GL_EXP2\n");
}
else if (fogMode == GL_EXP?2) {
fogMode = GL_LINEAR;
printf ("Fog mode is GL_LINEAR\n");
}
else if (fogMode == GL_LINEAR) {
fogMode = GL_EXP;
printf ("Fog mode is GL_EXP\n");
}
glFogi (GL_FOG_MODE, fogMode);
glutPostRedisplay();
break;
case 27:

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 26

exit(0);

break;
default:

break;

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutlnitWindowSize (500, 500);
glutCreateWindow(argv[0]);
init();
glutReshapeFunc (reshape);
glutkeyboardFunc (keyboard);
glutDisplayFunc (display);
glutMainLoop();
return O;

Fog Equations

Fog blends a fog color with an incoming fragment'’s color using a fog blending factor. Thisffastor,
computed with one of these three equations and then clamped to the range [0,1].

In these three equatiorsis the eye—coordinate distance between the viewpoint and the fragment cente
The values fodensity, startandendare all specified witlylFog*(). Thef factor is used differently,
depending on whether you're in RGBA mode or color-index mode, as explained in the next subsectio

void glFog{if}(GLenum pname, TYPE param);
void glFog{ifjv(GLenum pname, TYPE *params);

Sets the parameters and function for calculating fog. If pname is GL_FOG_MODE, then param is
either GL_EXP (the default), GL_EXP2, or GL_LINEAR to select one of the three fog factors. If
pname is GL_FOG_DENSITY, GL_FOG_START, or GL_FOG_END, then param is (or points to,
with the vector version of the command) a value for density, start, or end in the equations. (The
default values are 1, 0, and 1, respectively.) In RGBA mode, pname can be GL_FOG_COLOR, in
which case params points to four values that specify the fog’s RGBA color values. The
corresponding value for pname in color-index mode is GL_FOG_INDEX, for pdrig is a

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 27

single value specifying the fog’s color index.

Figure 6-4plots the fog—density equations for various values of the parameters.

Figure 6—-4 Fog—Density Equations

Fog in RGBA Mode
In RGBA mode, the fog factdiis used as follows to calculate the final fogged color:
C=fCG+14)G

where G represents the incoming fragment’s RGBA values antth€fog—color values assigned with
GL_FOG_COLOR.

Fog in Color-Index Mode
In color-index mode, the final fogged color index is computed as follows:
I=1lj+@1F)If

where | is the incoming fragment’s color index argdd the fog's color index as specified with
GL_FOG_INDEX.

To use fog in color-index mode, you have to load appropriate values in a color ramp. The first color ir
the ramp is the color of the object without fog, and the last color in the ramp is the color of the
completely fogged object. You probably want to gi€glearindex()to initialize the background color

index so that it corresponds to the last color in the ramp; this way, totally fogged objects blend into the
background. Similarly, before objects are drawn, you shouldyitatlex*() and pass in the index of the

first color in the ramp (the unfogged color). Finally, to apply fog to different colored objects in the scen
you need to create several color ramps andgtialliex*() before each object is drawn to set the current
color index to the start of each color ramp. Exampléalisirates how to initialize appropriate

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 28

conditions and then apply fog in color-index mode.

Example 6-7 Fog in Color-Index Mode: fogindex.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <math.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

/* Initialize color map and fog. Set screen clear color
* to end of color ramp.

*/

#define NUMCOLORS 32

#define RAMPSTART 16

static void init(void)

{

int i

glEnable(GL_DEPTH_TEST);

for (i=0; i < NUMCOLORS; i++) {
GLfloat shade;
shade = (GLfloat) (NUMCOLORS-i)/(GLfloat) NUMCOLORS;
glutSetColor (RAMPSTART + i, shade, shade, shade);

}
glEnable(GL_FOG);

glFogi (GL_FOG_MODE, GL_LINEAR);

glFogi (GL_FOG_INDEX, NUMCOLORS);

glFogf (GL_FOG_START, 1.0);

glFogf (GL_FOG_END, 6.0);

glHint (GL_FOG_HINT, GL_NICEST);
glClearindex((GLfloat) (NUMCOLORS+RAMPSTART-1));

static void renderSphere (GLfloat x, GLfloat y, GLfloat z)

{
glPushMatrix();

glTranslatef (x, y, 2);
glutWireSphere(0.4, 16, 16);
glPopMatrix();

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 29

[* display() draws 5 spheres at different z positions.

*/

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glindexi (RAMPSTART);

renderSphere (-2., -0.5, -1.0);
renderSphere (-1., -0.5, -2.0);
renderSphere (0., -0.5, -3.0);
renderSphere (1., 0.5, —-4.0);
renderSphere (2., 0.5, -5.0);

glFlush();

void reshape(int w, int h)
{
glViewport(0, 0, w, h);
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
if (w <= h)
glOrtho (-2.5, 2.5, —2.5*(GLfloat)h/(GLfloat)w,
2.5*(GLfloat)h/(GLfloat)w, —10.0, 10.0);
else
glOrtho (—-2.5*(GLfloat)w/(GLfloat)h,
2.5*(GLfloat)w/(GLfloat)h, 2.5, 2.5, -=10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity ();

}

void keyboard(unsigned char key, int x, int y)

{

switch (key) {
case 27:
exit(0);

int main(int argc, char** argv)

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 30

glutinit(&argc, argv);

glutinitDisplayMode (GLUT_SINGLE | GLUT_INDEX | GLUT_DEPTH);
glutlnitWindowSize (500, 500);

glutCreateWindow(argv[0]);

init();

glutReshapeFunc (reshape);

glutkeyboardFunc (keyboard);

glutDisplayFunc (display);

glutMainLoop();

return O;

Polygon Offset

If you want to highlight the edges of a solid object, you might try to draw the object with polygon mode
GL_FILL and then draw it again, but in a different color with polygon mode GL_LINE. However,
because lines and filled polygons are not rasterized in exactly the same way, the depth values genera
for pixels on a line are usually not the same as the depth values for a polygon edge, even between thi
same two vertices. The highlighting lines may fade in and out of the coincident polygons, which is
sometimes called "stitching" and is visually unpleasant.

The visual unpleasantness can be eliminated by using polygon offset, which adds an appropriate offst
force coincident values apart to cleanly separate a polygon edge from its highlighting line. (The stenci
buffer, described in "Stencil Test" in Chapter 10, can also be used to eliminate stitching. However,
polygon offset is almost always faster than stenciling.) Polygon offset is also useful for applying decal:
to surfaces, rendering images with hidden-line removal. In addition to lines and filled polygons, this
technique can also be used with points.

There are three different ways to turn on polygon offset, one for each type of polygon rasterization ma
GL_FILL, GL_LINE, or GL_POINT. You enable the polygon offset by passing the appropriate
parameter t@lEnable() either GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE, or
GL_POLYGON_OFFSET_POINT. You must also gPolygonMode(jo set the current polygon
rasterization method.

void glPolygonOffset(GLfloat factor, GLfloat units);
When enabled, the depth value of each fragment is added to a calculated offset value. The offset
added before the depth test is performed and before the depth value is written into the depth buffe
The offset value o is calculated by:
0 = m * factor + r * units
where m is the maximum depth slope of the polygon and r is the smallest value guaranteed to
produce a resolvable difference in window coordinate depth values. The value r is an
implementation—specific constant.

To achieve a nice rendering of the highlighted solid object without visual artifacts, you can either add :
positive offset to the solid object (push it away from you) or a negative offset to the wireframe (pull it

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 31

towards you). The big question is: "How much offset is enough?" Unfortunately, the offset required
depends upon various factors, including the depth slope of each polygon and the width of the lines in-
wireframe.

OpenGL calculates the depth slope (see Figure 6—5 of a polygon for you, but it's important that you
understand what the depth slope is, so that you choose a reasonable Yatierfarhe depth slope is
the change iz (depth) values divided by the change in eithery coordinates, as you traverse a
polygon. The depth values are in window coordinates, clamped to the range [0, 1]. To estimate the
maximum depth slope of a polygam {n the offset equation), use this formula:

Figure 6-5 Polygons and Their Depth Slopes

For polygons that are parallel to the near and far clipping planes, the depth slope is zero. For the
polygons in your scene with a depth slope near zero, only a small, constant offset is needed. To creat
small, constant offset, you can pé&asstor=0.0 andunits=1.0 toglPolygonOffset()

For polygons that are at a great angle to the clipping planes, the depth slope can be significantly grea
than zero, and a larger offset may be needed. Small, non-zero valaefosuch as 0.75 or 1.0, are
probably enough to generate distinct depth values and eliminate the unpleasant visual artifacts.

Example 6-8hows a portion of code, where a display list (which presumably draws a solid object) is
first rendered with lighting, the default GL_FILL polygon mode, and polygon offsetfadtbr of 1.0
andunitsof 1.0. These values ensure that the offset is enough for all polygons in your scene, regardle:
of depth slope. (These values may actually be a little more offset than the minimum needed, but too
much offset is less noticeable than too little.) Then, to highlight the edges of the first object, the object
rendered as an unlit wireframe with the offset disabled.

Example 6-8 Polygon Offset to Eliminate Visual Artifacts: polyoff.c

glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);
glEnable(GL_POLYGON_OFFSET_FILL);

OpenGL Programming Guide — Chapter 6, Blending, Antialiasing, Fog, and Polygon Offset — 32

glPolygonOffset(1.0, 1.0);
glCallList (list);
glDisable(GL_POLYGON_OFFSET_FILL);

glDisable(GL_LIGHTING);

glDisable(GL_LIGHTO);

glColor3f (1.0, 1.0, 1.0);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glCallList (list);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);

In a few situations, the simplest valuesfotor andunits(1.0 and 1.0) aren’t the answers. For instance,
if the width of the lines that are highlighting the edges are greater than one, then increasing the value
factor may be necessary. Also, since depth values are unevenly transformed into window coordinates
when using perspective projection (see "The Transformed Depth Coordinate" in Chapter 3), less offse
needed for polygons that are closer to the near clipping plane, and more offset is needed for polygons
are further away. Once again, experimenting with the valfectdr may be warranted.

OpenGL Programming Guide — Chapter 7, Display Lists — 33

Chapter 7
Display Lists

Chapter Objectives
After reading this chapter, you'll be able to do the following:

Understand how display lists can be used along with commands in immediate mode to organize
data and improve performance

Maximize performance by knowing how and when to use display lists

A display listis a group of OpenGL commands that have been stored for later execution. When a displ
list is invoked, the commands in it are executed in the order in which they were issued. Most OpenGL
commands can be either stored in a display list or issuathirdiate modewhich causes them to be
executed immediately. You can freely mix immediate—mode programming and display lists within a
single program. The programming examples you've seen so far have used immediate mode. This cha
discusses what display lists are and how best to use them. It has the following major sections:

"Why Use Display Lists?" explains when to use display lists.

"An Example of Using a Display List" gives a brief example, showing the basic commands for usit
display lists.

"Display-List Design Philosophy"explains why certain design choices were made (such as makin
display lists uneditable) and what performance optimizations you might expect to see when using
display lists.

"Creating and Executing a Display List" discusses in detail the commands for creating, executing,
and deleting display lists.

"Executing Multiple Display Lists" shows how to execute several display lists in succession, using
small character set as an example.

"Managing State Variables with Display Lists" illustrates how to use display lists to save and restc
OpenGL commands that set state variables.

Why Use Display Lists?

Display lists may improve performance since you can use them to store OpenGL commands for later
execution. It is often a good idea to cache commands in a display list if you plan to redraw the same
geometry multiple times, or if you have a set of state changes that need to be applied multiple times.
Using display lists, you can define the geometry and/or state changes once and execute them multiple
times.

To see how you can use display lists to store geometry just once, consider drawing a tricycle. The twc
wheels on the back are the same size but are offset from each other. The front wheel is larger than th
back wheels and also in a different location. An efficient way to render the wheels on the tricycle woul

OpenGL Programming Guide — Chapter 7, Display Lists — 1

be to store the geometry for one wheel in a display list then execute the list three times. You would ne
to set the modelview matrix appropriately each time before executing the list to calculate the correct s
and location for the wheels.

When running OpenGL programs remotely to another machine on the network, it is especially importa
to cache commands in a display list. In this case, the server is a different machine than the host. (See
"What Is OpenGL?" in Chapter 1 for a discussion of the OpenGL client-server model.) Since display |
are part of the server state and therefore reside on the server machine, you can reduce the cost of

repeatedly transmitting that data over a network if you store repeatedly used commands in a display li

When running locally, you can often improve performance by storing frequently used commands in a
display list. Some graphics hardware may store display lists in dedicated memory or may store the da
an optimized form that is more compatible with the graphics hardware or software. (See "Display-List
Design Philosophy" for a detailed discussion of these optimizations.)

An Example of Using a Display List

A display list is a convenient and efficient way to name and organize a set of OpenGL commands. Fol
example, suppose you want to draw a torus and view it from different angles. The most efficient way t
do this would be to store the torus in a display list. Then whenever you want to change the view, you
would change the modelview matrix and execute the display list to draw the torus. Example 7-1
illustrates this.

Example 7-1 Creating a Display List: torus.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <stdio.h>
#include <math.h>
#include <GL/glut.h>
#include <stdlib.h>

GLuint theTorus;

[* Draw a torus */
static void torus(int numc, int numt)
{

inti, j, k;

double s, t, X, y, z, twopi;

twopi = 2 * (double)M_Pl;
for (i=0; i <numc; i++) {
glBegin(GL_QUAD_STRIP);
for (j = 0; j <= numt; j++) {
for (k=1; k>=0; k—) {

OpenGL Programming Guide — Chapter 7, Display Lists — 2

s = (i + k) % numc + 0.5;
t =j % numt;

X = (1+.1*cos(s*twopi/numc))*cos(t*twopi/numt);
y = (1+.1*cos(s*twopi/numc))*sin(t*twopi/numt);
z = .1 * sin(s * twopi / numc);
glVertex3f(x, y, z);
}
}
glEnd();
}
}

[* Create display list with Torus and initialize state*/
static void init(void)
{

theTorus = glGenlLists (1);

gINewList(theTorus, GL_COMPILE);

torus(8, 25);

glEndList();

glShadeModel(GL_FLAT);
glClearColor(0.0, 0.0, 0.0, 0.0);

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);
glCallList(theTorus);
glFlush();

}

void reshape(int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective(30, (GLfloat) w/(GLfloat) h, 1.0, 100.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
gluLookAt(o, 0, 10, 0, 0, 0, 0, 1, 0);

OpenGL Programming Guide — Chapter 7, Display Lists — 3

/* Rotate about x—axis when "x" typed; rotate about y—axis
when "y" typed; "i" returns torus to original view */
void keyboard(unsigned char key, int x, int y)
{
switch (key) {
case ‘X’
case ‘X"
glRotatef(30.,1.0,0.0,0.0);
glutPostRedisplay();
break;
case'y’:
case 'Y”
glRotatef(30.,0.0,1.0,0.0);
glutPostRedisplay();
break;
case ‘i
case ‘I":
glLoadldentity();
gluLookAt(0, 0, 10, 0, 0, 0, O, 1, 0);
glutPostRedisplay();
break;
case 27:
exit(0);
break;
}
}

int main(int argc, char **argv)

{
glutinitWindowsSize (200, 200);
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutCreateWindow(argv[0]);
init();
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutDisplayFunc(display);
glutMainLoop();
return O;

}

Let’s start by looking anit(). It creates a display list for the torus and initializes the viewing matrices
and other rendering state. Note that the routine for drawing a torus(j) is bracketed bglNewList()

OpenGL Programming Guide — Chapter 7, Display Lists — 4

andglEndList() which defines a display list. The argumkstiNamefor gINewList()is an integer index,
generated bglGenLists() that uniquely identifies this display list.

The user can rotate the torus about the x— or y—axis by pressing the ‘x’ or 'y’ key when the window ha
focus. Whenever this happens, the callback funétytoard()is called, which concatenates a

30-degree rotation matrix (about the x— or y—axis) with the current modelview matrix. Then
glutPostRedisplay(¥ called, which will causglutMainLoop()to calldisplay()and render the torus after
other events have been processed. When the ‘i’ key is pr&egbdard()restores the initial modelview
matrix and returns the torus to its original location.

Thedisplay() function is very simple: It clears the window and then cdzallList() to execute the
commands in the display list. If we hadn’t used display lisplay() would have to reissue the
commands to draw the torus each time it was called.

A display list contains only OpenGL commands. In Example ity theglBegin() glVertex() and

glEnd() calls are stored in the display list. The parameters for the calsatated and their values are
copied into the display list when it is created. All the trigonometry to create the torus is done only once
which should increase rendering performance. However, the values in the display list can’'t be change
later. And once a command has been stored in a list it is not possible to remove it. Neither can you ad
any new commands to the list after it has been defined. You can delete the entire display list and crea
new one, but you can't edit it.

Note: Display lists also work well with GLU commands, since those operations are ultimately broken
down into low-level OpenGL commands, which can easily be stored in display lists. Use of display lis
with GLU is particularly important for optimizing performance of GLU tessellators and NURBS.

Display-List Design Philosophy

To optimize performance, an OpenGL display list is a cache of commands rather than a dynamic
database. In other words, once a display list is created, it can’t be modified. If a display list were
modifiable, performance could be reduced by the overhead required to search through the display list
perform memory management. As portions of a modifiable display list were changed, memory allocati
and deallocation might lead to memory fragmentation. Any modifications that the OpenGL
implementation made to the display-list commands in order to make them more efficient to render wo
need to be redone. Also, the display list may be difficult to access, cached somewhere over a network
a system bus.

The way in which the commands in a display list are optimized may vary from implementation to
implementation. For example, a command as simpigRatate*()might show a significant

improvement if it's in a display list, since the calculations to produce the rotation matrix aren't trivial
(they can involve square roots and trigonometric functions). In the display list, however, only the final
rotation matrix needs to be stored, so a display-list rotation command can be executed as fast as the
hardware can execuggMultMatrix*() . A sophisticated OpenGL implementation might even concatenate
adjacent transformation commands into a single matrix multiplication.

Although you're not guaranteed that your OpenGL implementation optimizes display lists for any
particular uses, the execution of display lists isn’t slower than executing the commands contained witt

OpenGL Programming Guide — Chapter 7, Display Lists -5

them individually. There is some overhead, however, involved in jumping to a display list. If a particule
list is small, this overhead could exceed any execution advantage. The most likely possibilities for
optimization are listed next, with references to the chapters where the topics are discussed.

Matrix operations (Chapter 3). Most matrix operations require OpenGL to compute inverses. Both
the computed matrix and its inverse might be stored by a particular OpenGL implementation in a
display list.

Raster bitmaps and images (Chapter 8). The format in which you specify raster data isn't likely to
one that's ideal for the hardware. When a display list is compiled, OpenGL might transform the de
into the representation preferred by the hardware. This can have a significant effect on the speed
raster character drawing, since character strings usually consist of a series of small bitmaps.

Lights, material properties, and lighting models (Chapter 5). When you draw a scene with comple:
lighting conditions, you might change the materials for each item in the scene. Setting the materie
can be slow, since it might involve significant calculations. If you put the material definitions in
display lists, these calculations don’t have to be done each time you switch materials, since only t
results of the calculations need to be stored; as a result, rendering lit scenes might be faster. (Se¢
"Encapsulating Mode Changes" for more details on using display lists to change such values as
lighting conditions.)

Textures (Chapter 9). You might be able to maximize efficiency when defining textures by
compiling them into a display list, since the display list may allow the texture image to be cached |
dedicated texture memory. Then the texture image would not have to be recopied each time it wa
needed. Also, the hardware texture format might differ from the OpenGL format, and the conversi
can be done at display-list compile time rather than during display.

In OpenGL version 1.0, the display list is the primary method to manage textures. However, if the
OpenGL implementation that you are using is version 1.1 or greater, then you should store the
texture in a texture object instead. (Some version 1.0 implementations have a vendor—specific
extension to support texture objects. If your implementation supports texture objects, you are
encouraged to use them.)

Polygon stipple patterns (Chapter 2).

Some of the commands to specify the properties listed here are context—sensitive, so you need to tak
into account to ensure optimum performance. For example, when GL_COLOR_MATERIAL is enablec
some of the material properties will track the current color. (See Chapter Sg)Material*() calls that

set the same material properties are ignored.

It may improve performance to store state settings with geometry. For example, suppose you want to
apply a transformation to some geometric objects and then draw the result. Your code may look like tt

gINewList(1, GL_COMPILE);
draw_some_geometric_objects();
glEndList();

OpenGL Programming Guide — Chapter 7, Display Lists — 6

glLoadMatrix(M);
glCallList(1);

However, if the geometric objects are to be transformed in the same way each time, it is better to stor:
the matrix in the display list. For example, if you were to write your code as follows, some
implementations may be able to improve performance by transforming the objects when they are defit
instead of each time they are drawn:

gINewList(1, GL_COMPILE);
glLoadMatrix(M);
draw_some_geometric_objects();
glEndList();

glCallList(1);

A more likely situation occurs when rendering images. As you will see in Chapter 8, you can modify
pixel transfer state variables and control the way images and bitmaps are rasterized. If the commands
set these state variables precede the definition of the image or bitmap in the display list, the
implementation may be able to perform some of the operations ahead of time and cache the result.

Remember that display lists have some disadvantages. Very small lists may not perform well since th
is some overhead when executing a list. Another disadvantage is the immutability of the contents of a
display list. To optimize performance, an OpenGL display list can't be changed and its contents can't |
read. If the application needs to maintain data separately from the display list (for example, for contint
data processing), then a lot of additional memory may be required.

Creating and Executing a Display List

As you've already seegNewList()andglEndList() are used to begin and end the definition of a display
list, which is then invoked by supplying its identifying index wgtieallList(). In Example 7=z display

list is created in thimit() routine. This display list contains OpenGL commands to draw a red triangle.
Then in thadisplay()routine, the display list is executed ten times. In addition, a line is drawn in
immediate mode. Note that the display list allocates memory to store the commands and the values o
any necessary variables.

Example 7-2 Using a Display List: list.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

GLuint listName;
static void init (void)

{
listName = glGenlLists (1);

OpenGL Programming Guide — Chapter 7, Display Lists — 7

gINewList (listName, GL_COMPILE);
glColor3f (1.0, 0.0, 0.0); /* current color red */
glBegin (GL_TRIANGLES);
glVertex2f (0.0, 0.0);
glVertex2f (1.0, 0.0);
glVertex2f (0.0, 1.0);
glEnd ();
glTranslatef (1.5, 0.0, 0.0); /* move position */
glEndList ();
glShadeModel (GL_FLAT);

}

static void drawLine (void)

{
glBegin (GL_LINES);
glVertex2f (0.0, 0.5);
glVertex2f (15.0, 0.5);
glEnd ();

}

void display(void)

{
GLuint i;

glClear (GL_COLOR_BUFFER_BIT);
glColor3f (0.0, 1.0, 0.0); /* current color green */
for 1=0;i<10;i++) /* draw 10 triangles */
glCallList (listName);
drawLine (); /* is this line green? NO! */
[* where is the line drawn? */
glFlush ();

}

void reshape(int w, int h)
{
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
if (w <=h)
gluOrtho2D (0.0, 2.0, —0.5 * (GLfloat) h/(GLfloat) w,
1.5 * (GLfloat) h/(GLfloat) w);
else
gluOrtho2D (0.0, 2.0*(GLfloat) w/(GLfloat) h, -0.5, 1.5);

OpenGL Programming Guide — Chapter 7, Display Lists — 8

gIMatrixMode(GL_MODELVIEW);
glLoadldentity();

}

void keyboard(unsigned char key, int X, int y)
{
switch (key) {
case 27:
exit(0);

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutinitWindowSize (650, 50);
glutCreateWindow(argv[0]);
init ();
glutReshapeFunc (reshape);
glutkeyboardFunc (keyboard);
glutDisplayFunc (display);
glutMainLoop();
return O;

}

TheglTranslatef()routine in the display list alters the position of the next object to be drawn. Without it,
calling the display list twice would just draw the triangle on top of itself.dFae/Line()routine, which

is called in immediate mode, is also affected by thel€ranslatef()calls that precede it. So if you call
transformation commands within a display list, don't forget to take into account the effect those
commands will have later in your program.

Only one display list can be created at a time. In other words, you must eventuallygfdlemList()

with gIEndList()to end the creation of a display list before starting another one. As you might expect,
calling glEndList()without having started a display list generates the error
GL_INVALID_OPERATION. (See "Error Handling" in Chapter 14 for more information about
processing errors.)

Naming and Creating a Display List

Each display list is identified by an integer index. When creating a display list, you want to be careful
that you don’t accidentally choose an index that's already in use, thereby overwriting an existing displ:
list. To avoid accidental deletions, ugi&enLists()to generate one or more unused indices.

GLuint glGenLists(GLsizei range);

OpenGL Programming Guide — Chapter 7, Display Lists — 9

Allocates range number of contiguous, previously unallocated display-list indices. The integer
returned is the index that marks the beginning of a contiguous block of empty display-list indices.
The returned indices are all marked as empty and used, so subsequent calls to glGenLists() don't
return these indices until they’'re deleted. Zero is returned if the requested number of indices isn’t
available, or if range is zero.

In the following example, a single index is requested, and if it proves to be available, it's used to creat
new display list:

listindex = glGenLists(1);
if (listindex = 0) {
gINewList(listindex,GL_COMPILE);

gII.E"ndList();
}

Note: Zero is not a valid display-list index.

void gINewList (GLuint list, GLenum mode);
Specifies the start of a display list. OpenGL routines that are called subsequently (until gIEndList(]
is called to end the display list) are stored in a display list, except for a few restricted OpenGL
routines that can't be stored. (Those restricted routines are executed immediately, during the
creation of the display list.) list is a nonzero positive integer that uniquely identifies the display list.
The possible values for mode are GL_COMPILE and GL_COMPILE_AND_EXECUTE. Use
GL_COMPILE if you don’t want the OpenGL commands executed as they're placed in the display
list; to cause the commands to be executed immediately as well as placed in the display list for lat
use, specify GL_COMPILE_AND_EXECUTE.

void glEndList (void);
Marks the end of a display list.

When a display list is created it is stored with the current OpenGL context. Thus, when the context is
destroyed, the display list is also destroyed. Some windowing systems allow multiple contexts to shar
display lists. In this case, the display list is destroyed when the last context in the share group is
destroyed.

What's Stored in a Display List

When you're building a display list, only the values for expressions are stored in the list. If values in ar
array are subsequently changed, the display-list values don’t change. In the following code fragment,
display list contains a command to set the current RGBA color to black (0.0, 0.0, 0.0). The subsequen
change of the value of tlwelor_vectorarray to red (1.0, 0.0, 0.0) has no effect on the display list
because the display list contains the values that were in effect when it was created.

GLfloat color_vector[3] ={0.0, 0.0, 0.0};

gINewList(1, GL_COMPILE);
glColor3fv(color_vector);

glEndList();

OpenGL Programming Guide — Chapter 7, Display Lists — 10

color_vector[0] = 1.0;

Not all OpenGL commands can be stored and executed from within a display list. For example,
commands that set client state and commands that retrieve state values aren’t stored in a display list.
(Many of these commands are easily identifiable because they return values in parameters passed by
reference or return a value directly.) If these commands are called when making a display list, they're
executed immediately.

Here are the OpenGL commands that aren’t stored in a display list (also, ngidléveltist()generates
an error if it's called while you’re creating a display list). Some of these commands haven't been
described yet; you can look in the index to see where they’re discussed.

glColorPointer() glFlush() gINormalPointer()
glDeletelLists() glGenLists() glPixelStore()
glDisableClientState() glGet*() glReadPixels()
glEdgeFlagPointer() glindexPointer() glRenderMode()
glEnableClientState() glinterleavedArrays() glSelectBuffer()
glFeedbackBuffer() glisEnabled() glTexCoordPointer()
glFinish() glisList() glVertexPointer()

To understand more clearly why these commands can’t be stored in a display list, remember that whe
you're using OpenGL across a network, the client may be on one machine and the server on another.
After a display list is created, it resides with the server, so the server can'’t rely on the client for any
information related to the display list. If querying commands, sughGaet*() orglis*(), were allowed in

a display list, the calling program would be surprised at random times by data returned over the netwc
Without parsing the display list as it was sent, the calling program wouldn’t know where to put the dat:
Thus, any command that returns a value can’t be stored in a display list. In addition, commands that
change client state, such@PixelStore() glSelectBuffer()and the commands to define vertex arrays,
can't be stored in a display list.

The operation of some OpenGL commands depends upon client state. For example, the vertex array
specification routines (such gi/ertexPointer()glColorPointer(JandglinterleavedArrays{)set client

state pointers and cannot be stored in a displaglstrayElement() giIDrawArrays() and
glDrawElements(kend data to the server state to construct primitives from elements in the enabled
arrays, so these operations can be stored in a display list. (See "Vertex Arrays" in Chapter 2.) The ver
array data stored in this display list is obtained by dereferencing data from the pointers, not by storing
pointers themselves. Therefore, subsequent changes to the data in the vertex arrays will not affect the
definition of the primitive in the display list.

In addition, any commands that use the pixel storage modes use the modes that are in effect when th
are placed in the display list. (See "Controlling Pixel-Storage Modes" in Chapter 8) Other routines tha
rely upon client staté such aglFlush() andglFinish()XI can’t be stored in a display list because they
depend upon the client state that is in effect when they are executed.

Executing a Display List

After you've created a display list, you can execute it by cagjiGaliList(). Naturally, you can execute
the same display list many times, and you can mix calls to execute display lists with calls to perform

OpenGL Programming Guide — Chapter 7, Display Lists — 11

immediate-mode graphics, as you've already seen.

void glCallList (GLuint list);
This routine executes the display list specified by list. The commands in the display list are execul
in the order they were saved, just as if they were issued without using a display list. If list hasn’t
been defined, nothing happens.

You can callglCallList() from anywhere within a program, as long as an OpenGL context that can acce
the display list is active (that is, the context that was active when the display list was created or a cont
in the same share group). A display list can be created in one routine and executed in a different one,
since its index uniquely identifies it. Also, there is no facility to save the contents of a display list into a
data file, nor a facility to create a display list from a file. In this sense, a display list is designed for
temporary use.

Hierarchical Display Lists

You can create hierarchical display listwhich is a display list that executes another display list by
calling glCallList() between aINewList()andglEndList() pair. A hierarchical display list is useful for an
object made of components, especially if some of those components are used more than once. For
example, this is a display list that renders a bicycle by calling other display lists to render parts of the
bicycle:

gINewList(listindex,GL_COMPILE);
glCallList(handlebars);
glCallList(frame);
glTranslatef(1.0,0.0,0.0);
glCallList(wheel);
glTranslatef(3.0,0.0,0.0);
glCallList(wheel);

glEndList();

To avoid infinite recursion, there’s a limit on the nesting level of display lists; the limit is at least 64, bu
it might be higher, depending on the implementation. To determine the nesting limit for your
implementation of OpenGL, call

glGetintegerv(GL_MAX_LIST_NESTING, GLint *data);

OpenGL allows you to create a display list that calls another list that hasn’t been created yet. Nothing
happens when the first list calls the second, undefined one.

You can use a hierarchical display list to approximate an editable display list by wrapping a list arounc
several lower-level lists. For example, to put a polygon in a display list while allowing yourself to be al
to easily edit its vertices, you could use the code in Example 7-3

Example 7-3 Hierarchical Display List

gINewList(1,GL_COMPILE);
glVertex3f(vl);
glEndList();

OpenGL Programming Guide — Chapter 7, Display Lists — 12

gINewList(2,GL_COMPILE);
glVertex3f(v2);
glEndList();
gINewList(3,GL_COMPILE);
glVertex3f(v3);
glEndList();

gINewList(4,GL_COMPILE);
glBegin(GL_POLYGON);
glCallList(1);
glCallList(2);
glCallList(3);
glEnd();
glEndList();

To render the polygon, call display list number 4. To edit a vertex, you need only recreate the single
display list corresponding to that vertex. Since an index number uniquely identifies a display list,
creating one with the same index as an existing one automatically deletes the old one. Keep in mind t
this technique doesn’t necessarily provide optimal memory usage or peak performance, but it's
acceptable and useful in some cases.

Managing Display List Indices

So far, we’'ve recommended the us@lidenLists()to obtain unused display-list indices. If you insist
upon avoidingglGenLists() then be sure to uggisList() to determine whether a specific index is in use.

GLboolean glisList(GLuint list);
Returns GL_TRUE fif list is already used for a display list and GL_FALSE otherwise.

You can explicitly delete a specific display list or a contiguous range of listglbigheteLists() Using
glDeleteLists(makes those indices available again.

void glDeleteLists(GLuint list, GLsizei range);
Deletes range display lists, starting at the index specified by list. An attempt to delete a list that hz
never been created is ignored.

Executing Multiple Display Lists

OpenGL provides an efficient mechanism to execute several display lists in succession. This mechani
requires that you put the display-list indices in an array anglCallLists() An obvious use for such a
mechanism occurs when display-list indices correspond to meaningful values. For example, if you're
creating a font, each display-list index might correspond to the ASCII value of a character in that font.
have several such fonts, you would need to establish a different initial display-list index for each font.
You can specify this initial index by usimglListBase()before callingglCallLists()

void glListBase(GLuint base);
Specifies the offset that's added to the display-list indigg€atlLists() to obtain the final

OpenGL Programming Guide — Chapter 7, Display Lists — 13

display-list indices. The default display-list base is 0. The list base has no ejff€atlbrst(),
which executes only one display list or on gINewList().

void glCallLists(GLsizei n, GLenum type, const GLvoid *lists);
Executes n display lists. The indices of the lists to be executed are computed by adding the offset
indicated by the current display-list base (specified glitistBase()) to the signed integer values in
the array pointed to by lists.
The type parameter indicates the data type of the values in lists. It can be setto GL_BYTE,
GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, ¢
GL_FLOAT, indicating that lists should be treated as an array of bytes, unsigned bytes, shorts,
unsigned shorts, integers, unsigned integers, or floats, respectively. Type can also be GL_2_BYT
GL_3 BYTES, or GL_4 BYTES, in which case sequences of 2, 3, or 4 bytes are read from lists a
then shifted and added together, byte by byte, to calculate the display-list offset. The following
algorithm is used (where byte[0] is the start of a byte sequence).
/*b =2, 3, or 4; bytes are numbered 0, 1, 2, 3 in array */
offset = 0;
for(i=0;i<b;i++){
offset = offset << 8;
offset += byte[i];
index = offset + listbase;
For multiple-byte data, the highest-order data comes first as bytes are taken from the array in or«

As an example of the use of multiple display lists, look at the program fragments in Example 7-4taker
from the full program in Example 7-Ehis program draws characters with a stroked font (a set of letters
made from line segments). The routingStrokedFont(sets up the display-list indices for each letter so
that they correspond with their ASCII values.

Example 7-4 Defining Multiple Display Lists

void initStrokedFont(void)
{

GLuint base;

base = glGenLists(128);
glListBase(base);
glNewList(base+'A’, GL_COMPILE);
drawLetter(Adata); glEndList();
glNewList(base+'E’, GL_COMPILE);
drawLetter(Edata); glEndList();
glNewList(base+'P’, GL_COMPILE);
drawLetter(Pdata); glEndList();
glNewList(base+'R’, GL_COMPILE);
drawLetter(Rdata); glEndList();
gINewList(base+'S’, GL_COMPILE);
drawLetter(Sdata); glEndList();
gINewList(base+'’, GL_COMPILE); /* space character */

OpenGL Programming Guide — Chapter 7, Display Lists — 14

glTranslatef(8.0, 0.0, 0.0);
glEndList();

}

TheglGenLists()command allocates 128 contiguous display-list indices. The first of the contiguous
indices becomes the display-list base. A display list is made for each letter; each display-list index is
sum of the base and the ASCII value of that letter. In this example, only a few letters and the space
character are created.

After the display lists have been creatgifallLists() can be called to execute the display lists. For
example, you can pass a character string to the subrguini§trokedString()

void printStrokedString(GLbyte *s)
{
GLint len = strlen(s);
glCallLists(len, GL_BYTE, s);

}

The ASCII value for each letter in the string is used as the offset into the display-list indices. The curr
list base is added to the ASCII value of each letter to determine the final display-list index to be
executed. The output produced by Examplei§sBown in Figure 7-1

Figure 7-1 Stroked Font That Defines the Characters A, E, P, R, S

Example 7-5 Multiple Display Lists to Define a Stroked Font: stroke.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <string.h>

#define PT 1
#define STROKE 2
#define END 3

typedef struct charpoint {
GLfloat x,vy;
int type;

} CP;

OpenGL Programming Guide — Chapter 7, Display Lists — 15

CP Adata[] ={
{0, 0, PT} {0, 9, PT}, {1, 10, PT}, {4, 10, PT},
{5, 9, PT}, {5, 0, STROKE}, {0, 5, PT}, {5, 5, END}

5

CP Edata[] ={

{5, 0, PT}, {0, O, PT}, {0, 10, PT}, {5, 10, STROKE},
{0, 5, PT}, {4, 5, END}

h

CP Pdata[] ={
{0, 0, PT}, {0, 10, PT}, {4, 10, PT}, {5, 9, PT}, {5, 6, PT},
{4, 5, PT}, {0, 5, END}

h

CP Rdata[] ={

{0, 0, PT}, {0, 10, PT}, {4, 10, PT}, {5, 9, PT}, {5, 6, PT},
{4, 5, PT}, {0, 5, STROKE}, {3, 5, PT}, {5, 0, END}

h

CP Sdata[] ={

{0, 1, PT}, {1, O, PT}, {4, O, PT}, {5, 1, PT}, {5, 4, PT},
{4,5, PT}, {1, 5, PT}, {0, 6, PT}, {0, 9, PT}, {1, 10, PT},
{4, 10, PT}, {5, 9, END}

h

[* drawLetter() interprets the instructions from the array
* for that letter and renders the letter with line segments.
*
static void drawLetter(CP *I)
{
glBegin(GL_LINE_STRIP);
while (1) {
switch (I->type) {
case PT:
glVertex2fv(&l—>x);
break;
case STROKE:
glVertex2fv(&l—>x);
glEnd();
glBegin(GL_LINE_STRIP);
break;
case END:

OpenGL Programming Guide — Chapter 7, Display Lists — 16

glVertex2fv(&l->x);

glEnd();
glTranslatef(8.0, 0.0, 0.0);
return;

}

[++;

[* Create a display list for each of 6 characters */
static void init (void)
{

GLuint base;

glShadeModel (GL_FLAT);

base = glGenLists (128);

glListBase(base);

glNewList(base+'A’, GL_COMPILE); drawlLetter(Adata);
glEndList();

glNewList(base+'E’, GL_COMPILE); drawlLetter(Edata);
glEndList();

glNewList(base+'P’, GL_COMPILE); drawlLetter(Pdata);
glEndList();

glNewList(base+'R’, GL_COMPILE); drawLetter(Rdata);
glEndList();

glNewList(base+'S’, GL_COMPILE); drawlLetter(Sdata);
glEndList();

gINewList(base+' ‘, GL_COMPILE);

glTranslatef(8.0, 0.0, 0.0); glEndList();

char *testl = "A SPARE SERAPE APPEARS AS";
char *test2 = "APES PREPARE RARE PEPPERS";

static void printStrokedString(char *s)
{

GLsizei len = strlen(s);
glCallLists(len, GL_BYTE, (GLbyte *)s);

}

void display(void)
{

OpenGL Programming Guide — Chapter 7, Display Lists — 17

glClear(GL_COLOR_BUFFER_BIT);
glColor3f(1.0, 1.0, 1.0);
glPushMatrix();
glScalef(2.0, 2.0, 2.0);
glTranslatef(10.0, 30.0, 0.0);
printStrokedString(testl);
glPopMatrix();
glPushMatrix();
glScalef(2.0, 2.0, 2.0);
glTranslatef(10.0, 13.0, 0.0);
printStrokedString(test2);
glPopMatrix();

glFlush();

void reshape(int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode (GL_PROJECTION);
glLoadldentity ();
gluOrtho2D (0.0, (GLdouble) w, 0.0, (GLdouble) h);

}

void keyboard(unsigned char key, int x, int y)
{
switch (key) {
case ‘"
glutPostRedisplay();
break;
case 27:
exit(0);

int main(int argc, char** argv)
{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutinitWindowsSize (440, 120);
glutCreateWindow (argv[0]);
init ();
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);

OpenGL Programming Guide — Chapter 7, Display Lists — 18

glutDisplayFunc(display);
glutMainLoop();
return O;

Managing State Variables with Display Lists

A display list can contain calls that change the value of OpenGL state variables. These values change
the display list is executed, just as if the commands were called in immediate mode and the changes
persist after execution of the display list is completed. As previously seen in Example 7-2and in
Example 7-6which follows, the changes to the current color and current matrix made during the
execution of the display list remain in effect after it has been called.

Example 7-6 Persistence of State Changes after Execution of a Display List

glNewList(listindex,GL_COMPILE);
glColor3f(1.0, 0.0, 0.0);
glBegin(GL_POLYGON);
glVertex2f(0.0,0.0);
glVertex2f(1.0,0.0);
glVertex2f(0.0,1.0);
glEnd();
glTranslatef(1.5,0.0,0.0);
glEndList();

So if you now call the following sequence, the line drawn after the display list is drawn with red as the
current color and translated by an additional (1.5, 0.0, 0.0):

glCallList(listindex);
glBegin(GL_LINES);
glVertex2f(2.0,-1.0);
glVertex2f(1.0,0.0);
glEnd();

Sometimes you want state changes to persist, but other times you want to save the values of state
variables before executing a display list and then restore these values after the list has executed.
Remember that you cannot ug&et*() in a display list, so you must use another way to query and store
the values of state variables.

You can usglPushAttrib()to save a group of state variables giRbpAttrib() to restore the values
when you're ready for them. To save and restore the current matriglRusshMatrix()and
glPopMatrix() as described in "Manipulating the Matrix Stacks" in Chapter 3. These push and pop
routines can be legally cached in a display list. To restore the state variables in Exanyale fhight
use the code shown in Example.7-7

Example 7-7 Restoring State Variables within a Display List

gINewList(listindex,GL_COMPILE);

OpenGL Programming Guide — Chapter 7, Display Lists — 19

glPushMatrix();
glPushAttrib(GL_CURRENT_BIT);
glColor3f(1.0, 0.0, 0.0);
glBegin(GL_POLYGON);

glVertex2f(0.0,0.0);

glVertex2f(1.0,0.0);

glVertex2f(0.0,1.0);
glEnd();
glTranslatef(1.5,0.0,0.0);
glPopAttrib();
glPopMatrix();

glEndList();

If you use the display list from Example 7-7, which restores values, the code in Example 7-8draws a
green, untranslated line. With the display list in Example 7-6, which doesn’t save and restore values, 1
line is drawn red, and its position is translated ten times (1.5, 0.0, 0.0).

Example 7-8 The Display List May or May Not Affect drawLine()

void display(void)

{
GLint i;

glClear(GL_COLOR_BUFFER_BIT);
glColor3f(0.0, 1.0, 0.0); /* set current color to green */
for (i=0;i<10; i++)

glCallList(listindex); /* display list called 10 times */
drawLine(); /* how and where does this line appear? */
glFlush();

Encapsulating Mode Changes

You can use display lists to organize and store groups of commands to change various modes or set
various parameters. When you want to switch from one group of settings to another, using display list:
might be more efficient than making the calls directly, since the settings might be cached in a format tl
matches the requirements of your graphics system.

Display lists may be more efficient than immediate mode for switching among various lighting,
lighting—model, and material-parameter settings. You might also use display lists for stipple patterns,
parameters, and clipping—plane equations. In general, you'll find that executing display lists is at least
fast as making the relevant calls directly, but remember that some overhead is involved in jumping to
display list.

Example 7-8hows how to use display lists to switch among three different line stipples. First, you call
glGenLists(to allocate a display list for each stipple pattern and create a display list for each pattern.

OpenGL Programming Guide — Chapter 7, Display Lists — 20

Then, you use@lCallList() to switch from one stipple pattern to another.

Example 7-9 Display Lists for Mode Changes

GLuint offset;
offset = glGenLists(3);

glNewList (offset, GL_COMPILE);
glDisable (GL_LINE_STIPPLE);
glEndList ();

glNewlList (offset+1, GL_COMPILE);
glEnable (GL_LINE_STIPPLE);
glLineStipple (1, OXOFOF);
glEndList ();

gINewlList (offset+2, GL_COMPILE);
glEnable (GL_LINE_STIPPLE);
glLineStipple (1, 0x1111);
glEndList ();

#define drawOneLine(x1,y1,x2,y2) glBegin(GL_LINES); \

glVertex2f ((x1),(y1)); glVertex2f ((x2),(y2)); glEnd();

glCallList (offset);
drawOneLine (50.0, 125.0, 350.0, 125.0);

glCallList (offset+1);
drawOneLine (50.0, 100.0, 350.0, 100.0);

glCallList (offset+2);
drawOneLine (50.0, 75.0, 350.0, 75.0);

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 21

Chapter 8
Drawing Pixels, Bitmaps, Fonts, and Images

Chapter Objectives
After reading this chapter, you'll be able to do the following:
Position and draw bitmapped data

Read pixel data (bitmaps and images) from the framebuffer into processor memory and from
memory into the framebuffer

Copy pixel data from one color buffer to another, or to another location in the same buffer
Magnify or reduce an image as it's written to the framebuffer

Control pixel-data formatting and perform other transformations as the data is moved to and frorr
the framebuffer

So far, most of the discussion in this guide has concerned the rendering of geomeéirjmoitets lines,
and polygons. Two other important classes of data that can be rendered by OpenGL are

Bitmaps, typically used for characters in fonts

Image data, which might have been scanned in or calculated

Both bitmaps and image data take the form of rectangular arrays of pixels. One difference between th
is that abitmap consists of a single bit of information about each pixel, and image data typically
includes several pieces of data per pixel (the complete red, green, blue, and alpha color components,
example). Also, bitmaps are like masks in that they’re used to overlay another image, but image data
simply overwrites or is blended with whatever data is in the framebuffer.

This chapter describes how to draw pixel data (bitmaps and images) from processor memory to the
framebuffer and how to read pixel data from the framebuffer into processor memory. It also describes
how to copy pixel data from one position to another, either from one buffer to another or within a singl
buffer. This chapter contains the following major sections:

"Bitmaps and Fonts" describes the commands for positioning and drawing bitmapped data. Such
data may describe a font.

"Images" presents the basic information about drawing, reading and copying pixel data.

"Imaging Pipeline” describes the operations that are performed on images and bitmaps when the
are read from the framebuffer and when they are written to the framebuffer.

"Reading and Drawing Pixel Rectangles" covers all the details of how pixel data is stored in
memory and how to transform it as it's moved into or out of memory.

"Tips for Improving Pixel Drawing Rates" lists tips for getting better performance when drawing
pixel rectangles.

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 1

In most cases, the necessary pixel operations are simple, so the first three sections might be all you n
to read for your application. However, pixel manipulation can be corifiesre are many ways to store
pixel data in memory, and you can apply any of several transformations to pixels as they’re moved to
from the framebuffer. These details are the subject of the fourth section of this chapter. Most likely,
you'll want to read this section only when you actually need to make use of the information. The last
section provides useful tips to get the best performance when rendering bitmaps and images.

Bitmaps and Fonts

A bitmap is a rectangular array of Os and 1s that serves as a drawing mask for a corresponding
rectangular portion of the window. Suppose you're drawing a bitmap and that the current raster color i
red. Wherever there’s a 1 in the bitmap, the corresponding pixel is replaced by a red pixel (or combine
with a red pixel, depending on which per—fragment operations are in effect. (See"Testing and Operatil
on Fragments" in Chapter 10.) If there’s a 0 in the bitmap, the contents of the pixel are unaffected. Th
most common use of bitmaps is for drawing characters on the screen.

OpenGL provides only the lowest level of support for drawing strings of characters and manipulating
fonts. The commandgiRasterPos*(andgIBitmap()position and draw a single bitmap on the screen. In
addition, through the display-list mechanism, you can use a sequence of character codes to index int
corresponding series of bitmaps representing those characters. (See Chapter 7 for more information ¢
display lists.) You'll have to write your own routines to provide any other support you need for
manipulating bitmaps, fonts, and strings of characters.

Consider Example 8;-Which draws the character F three times on the screen. Figure 8-1shows the F
a bitmap and its corresponding bitmap data.

Figure 8-1 Bitmapped F and Its Data

Example 8-1 Drawing a Bitmapped Character: drawf.c

#include <GL/gl.h>

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 2

#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

GLubyte rasters[24] = {
0xc0, 0x00, 0xc0, 0x00, 0xc0, 0x00, 0xc0, 0x00, 0xc0, 0x00,
0xff, 0x00, 0xff, 0x00, 0xc0, 0x00, Oxc0, 0x00, 0xc0, 0x00,
Oxff, OxcO, Oxff, Oxc0};

void init(void)

{
glPixelStorei (GL_UNPACK_ALIGNMENT, 1);
glClearColor (0.0, 0.0, 0.0, 0.0);

}

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);
glRasterPos2i (20, 20);
gIBitmap (10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
glBitmap (10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
gIBitmap (10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
glFlush();

void reshape(int w, int h)

{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
glOrtho (0, w, 0, h, -1.0, 1.0);
gIMatrixMode(GL_MODELVIEW);

void keyboard(unsigned char key, int x, int y)

{
switch (key) {

case 27:
exit(0);

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 3

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutlnitWindowsSize (100, 100);
glutinitWindowPosition(100, 100);
glutCreateWindow(argv[0]);
init();
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutDisplayFunc(display);
glutMainLoop();
return O;

}

In Figure 8-1, note that the visible part of the F character is at most 10 bits wide. Bitmap data is alway
stored in chunks that are multiples of 8 bits, but the width of the actual bitmap doesn’t have to be a
multiple of 8. The bits making up a bitmap are drawn starting from the lower-left corner: First, the
bottom row is drawn, then the next row above it, and so on. As you can tell from the code, the bitmap
stored in memory in this ordérthe array of rasters begins with 0xc0, 0x00, 0xc0, 0x00 for the bottom
two rows of the F and continues to 0xff, Oxc0, Oxff, OxcO for the top two rows.

The commands of interest in this exampleglRasterPos2i(andglBitmap() they're discussed in detalil
in the next section. For now, ignore the calgtBixelStorei() it describes how the bitmap data is stored
in computer memory. (See "Controlling Pixel-Storage Modes"for more information.)

The Current Raster Position

Thecurrent raster position is the origin where the next bitmap (or image) is to be drawn. In the F
example, the raster position was set by calijiiRpsterPos*(with coordinates (20, 20), which is where
the lower-left corner of the F was drawn:

glRasterPos2i(20, 20);

void glRasterPos{234}{sifd{(TYPE x, TYPE y, TYPE z, TYPE w);

void glRasterPos{234}{sifd}v(TYPE *coords);
Sets the current raster position. The X, y, z, and w arguments specify the coordinates of the raster
position. If the vector form of the function is used, the coords array contains the coordinates of the

raster position. If glIRasterPos2*() is used, z is implicitly set to zero and w is implicitly set to one;
similarly, with glRasterPos3*(), w is set to one.

The coordinates of the raster position are transformed to screen coordinates in exactly the same way
coordinates supplied with@dVertex*() command (that is, with the modelview and perspective matrices).
After transformation, they either define a valid spot in the viewport, or they're clipped out because the
coordinates were outside the viewing volume. If the transformed point is clipped out, the current raste!
position is invalid.

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 4

Note: If you want to specify the raster position in screen coordinates, you'll want to make sure you've
specified the modelview and projection matrices for simple 2D rendering, with something like this
sequence of commands, wheridth andheightare also the size (in pixels) of the viewport:

gIMatrixMode(GL_PROJECTION);

glLoadldentity();

gluOrtho2D(0.0, (GLfloat) width, 0.0, (GLfloat) height);
glMatrixMode(GL_MODELVIEW);

glLoadldentity();

To obtain the current raster position, you can use the query conyi@ettrloatv()with
GL_CURRENT_RASTER_POSITION as the first argument. The second argument should be a pointe
to an array that can hold the ¢, z, W values as floating—point numbers. @#BetBooleanv(vith
GL_CURRENT_RASTER_POSITION_VALID as the first argument to determine whether the current
raster position is valid.

Drawing the Bitmap
Once you've set the desired raster position, you can uggBhmap()command to draw the data.

void gIBitmap(GLsizei width, GLsizei height, GLflopbx

GLfloat o, GLfloat ¥,

GLfloat yj, const GLubyte *bitmap);
Draws the bitmap specified by bitmap, which is a pointer to the bitmap image. The origin of the
bitmap is placed at the current raster position. If the current raster position is invalid, nothing is
drawn, and the raster position remains invalid. The width and height arguments indicate the width
and height, in pixels, of the bitmap. The width need not be a multiple of 8, although the data is
stored in unsigned characters of 8 bits each. (In the F example, it wouldn't matter if there were
garbage bits in the data beyond the tenth bit; since glBitmap() was called with a width of 10, only :
bits of the row are rendered.) Usgg@and W to define the origin of the bitmap (positive values

move the origin up and to the right of the raster position; negative values move it down and to the
left); Xpj and ypj indicate the x and y increments that are added to the raster position after the

bitmap is rasterized (see Figure -2

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 5

Figure 8-2 Bitmap and Its Associated Parameters

Allowing the origin of the bitmap to be placed arbitrarily makes it easy for characters to extend below |
origin (typically used for characters with descenders, such as g, j, and y), or to extend beyond the left
the origin (used for various swash characters, which have extended flourishes, or for characters in for
that lean to the left).

After the bitmap is drawn, the current raster position is advancag layndyp; in thex- and/—directions,
respectively. (If you just want to advance the current raster position without drawing anything, call
glBitmap()with the bitmap parameter set to NULL and with tiwdth andheightset to zero.) For

standard Latin fontgpj is typically 0.0 andpj is positive (since successive characters are drawn from
left to right). For Hebrew, where characters go from right to lefixgh&alues would typically be

negative. Fonts that draw successive characters vertically in columns would use xgraridrnonzero
values foryp;. In Figure 8-2 each time the F is drawn, the current raster position advances by 11 pixel:
allowing a 1—-pixel space between successive characters.

Sincexpo, Ybo Xbi, andypj are floating—point values, characters need not be an integral number of pixe
apart. Actual characters are drawn on exact pixel boundaries, but the current raster position is kept in
floating point so that each character is drawn as close as possible to where it belongs. For example, il
code in the F example was modified so ttis 11.5 instead of 12, and if more characters were drawn,
the space between letters would alternate between 1 and 2 pixels, giving the best approximation to th
requested 1.5—pixel space.

Note: You can't rotate bitmap fonts because the bitmap is always drawn alignedxtarttig
framebuffer axes.

Choosing a Color for the Bitmap

You are familiar with usinglColor*() andglindex*() to set the current color or index to draw geometric
primitives. The same commands are used to set different state variables,
GL_CURRENT_RASTER_COLOR and GL_CURRENT_RASTER_INDEX, for rendering bitmaps.
The raster color state variables are set wgiBasterPos*()s called, which can lead to a trap. In the
following sequence of code, what is the color of the bitmap?

glColor3f(1.0, 1.0, 1.0); /* white */
glRasterPos3fv(position);
glColor3f(1.0, 0.0, 0.0); /*red */
gIBitmap(....);

The bitmap is white! The GL_CURRENT_RASTER_COLOR is set to white \gheasterPos3fv(is
called. The second call gdColor3f() changes the value of GL_CURRENT_COLOR for future
geometric rendering, but the color used to render the bitmap is unchanged.

To obtain the current raster color or index, you can use the query comgi@etisloatv()or
glGetintegerv(with GL_CURRENT_RASTER_COLOR or GL_CURRENT_RASTER_INDEX as the
first argument.

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 6

Fonts and Display Lists

Display lists are discussed in general terms in Chapter 7. However, a few of the display-list managen
commands have special relevance for drawing strings of characters. As you read this section, keep in
mind that the ideas presented here apply equally well to characters that are drawn using bitmap data
those drawn using geometric primitives (points, lines, and polygons). (See "Executing Multiple Display
Lists" in Chapter 7 for an example of a geometric font.)

A font typically consists of a set of characters, where each character has an identifying number (usual
the ASCII code) and a drawing method. For a standard ASCII character set, the capital letter A is nurr
65, B is 66, and so on. The string "DAB" would be represented by the three indices 68, 65, 66. In the
simplest approach, display-list number 65 draws an A, number 66 draws a B, and so on. Then to dra
string 68, 65, 66, just execute the corresponding display lists.

You can use the commaigiCallLists()in just this way:
void glCallLists(GLsizei n, GLenum type, const GLvoid *lists);

The first argument, indicates the number of characters to be draypeis usually GL_BYTE, and
listsis an array of character codes.

Since many applications need to draw character strings in multiple fonts and sizes, this simplest appr¢
isn’t convenient. Instead, you'd like to use 65 as A no matter what font is currently active. You could
force font 1 to encode A, B, and C as 1065, 1066, 1067, and font 2 as 2065, 2066, 2067, but then any
numbers larger than 256 would no longer fit in an 8—bit byte. A better solution is to add an offset to ev
entry in the string and to choose the display list. In this case, font 1 has A, B, and C represented by 1(
1066, and 1067, and in font 2, they might be 2065, 2066, and 2067. Then to draw characters in font 1
the offset to 1000 and draw display lists 65, 66, and 67. To draw that same string in font 2, set the offs
to 2000 and draw the same lists.

To set the offset, use the commagtidstBase() For the preceding examples, it should be called with
1000 or 2000 as the (only) argument. Now what you need is a contiguous list of unused display-list
numbers, which you can obtain fraggtGenLists()

GLuint glGenLists(GLsizei range);

This function returns a block oangedisplay-list identifiers. The returned lists are all marked as "used"
even though they’re empty, so that subsequent cajlSenLists()never return the same lists (unless
you've explicitly deleted them previously). Therefore, if you use 4 as the argumeng#@dnit.ists()
returns 81, you can use display-list identifiers 81, 82, 83, and 84 for your charagt&enlliists()can’t

find a block of unused identifiers of the requested length, it returns 0. (Note that the command
glDeleteLists(Imakes it easy to delete all the lists associated with a font in a single operation.)

Most American and European fonts have a small number of characters (fewer than 256), so it's easy |
represent each character with a different code that can be stored in a single byte. Asian fonts, among
others, may require much larger character sets, so a byte—per—character encoding is impossible. Ope
allows strings to be composed of 1-, 2—, 3—, or 4—-byte characters thriypgipttrameter in

glCallLists(). This parameter can have any of the following values:

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 7

GL_BYTE GL_UNSIGNED_BYTE
GL_SHORT GL_UNSIGNED_SHORT
GL_INT GL_UNSIGNED_INT
GL_FLOAT GL_2 BYTES

GL_3 BYTES GL_4 BYTES

(See "Executing Multiple Display Lists" in Chapter 7 for more information about these values.)

Defining and Using a Complete Font

TheglBitmap()command and the display-list mechanism described in the previous section make it ea:
to define a raster font. In Example 8-2, the upper—case characters of an ASCII font are defined. In this
example, each character has the same width, but this is not always the case. Once the characters are
defined, the program prints the message "THE QUICK BROWN FOX JUMPS OVER A LAZY DOG".

The code in Example 8i®similar to the F example, except that each character’s bitmap is stored in its
own display list. The display list identifier, when combined with the offset returngt3mnLists() is
equal to the ASCII code for the character.

Example 8-2 Drawing a Complete Font: font.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <string.h>

GLubyte space[] =

{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00};
GLubyte letters[][13] = {

{0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, Oxff, Oxc3, 0xc3, 0xc3, 0x66,

0x3c, 0x18},

{0x00, 0x00, Oxfe, Oxc7, 0xc3, 0xc3, 0xc7, Oxfe, Oxc7, Oxc3, 0xc3,
0xc7, Oxfe},

{0x00, 0x00, 0x7e, Oxe7, Oxc0, 0xcO, Oxc0, 0xcO0, 0xcO, 0xc0, 0xcO,
0xe7, 0x7e},

{0x00, 0x00, Oxfc, Oxce, Oxc7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc7,
Oxce, Oxfc},

{0x00, 0x00, 0xff, Oxc0, 0xcO, 0xc0, 0xcO0, Oxfc, OxcO, 0xcO, 0xcO,
0xc0, Oxff},

{0x00, 0x00, 0xc0, 0xc0, 0xc0, 0xc0, 0xcO, 0xc0, Oxfc, Oxc0, 0xcO,
0xc0, Oxff},

{0x00, 0x00, 0x7e, Oxe7, Oxc3, 0xc3, Oxcf, 0xcO, 0xcO, 0xc0, 0xcO,

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 8

0xe7, 0x7e},
{0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, Oxff, Oxc3, 0xc3, 0xc3,

0xc3, 0xc3},

{0x00, 0x00, Ox7e, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x7e},

{0x00, 0x00, Ox7c, Oxee, Oxc6, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
0x06, 0x06},

{0x00, 0x00, 0xc3, 0xc6, Oxcc, 0xd8, 0xfO, Oxe0, 0xfO, Oxd8, Oxcc
0xc6, 0xc3},

{0x00, 0x00, 0xff, Oxc0, 0xc0, 0xc0, 0xc0, 0xcO, 0xc0, 0xcO0, 0OxcO,
0xc0, 0xc0},

{0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, Oxdb, Oxff, Oxff,
0xe7, 0xc3},

{0x00, 0x00, 0xc7, 0xc7, Oxcf, Oxcf, Oxdf, Oxdb, Oxfb, Oxf3, Oxf3,
0xe3, 0xe3},

{0x00, 0x00, 0x7e, Oxe7, Oxc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3,
0xe7, 0x7e},

{0x00, 0x00, 0xc0, 0xc0, 0xc0, 0xc0, 0xcO, Oxfe, Oxc7, 0xc3, 0xc3,
0xc7, Oxfe},

{0x00, 0x00, 0x3f, Ox6e, Oxdf, Oxdb, Oxc3, 0xc3, 0xc3, 0xc3, 0xc3,
0x66, 0x3c},

{0x00, 0x00, 0xc3, 0xc6, Oxcc, 0xd8, Oxf0, Oxfe, Oxc7, Oxc3, 0xc3,
0xc7, Oxfe},

{0x00, 0x00, 0x7e, Oxe7, 0x03, 0x03, 0x07, Ox7e, Oxe0, OxcO, 0xcO,
0xe7, 0x7e},

{0x00, 0x00, Ox18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, Oxff},

{0x00, 0x00, 0x7e, Oxe7, Oxc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3,
0xc3, 0xc3},

{0x00, 0x00, 0x18, 0x3c, 0x3c, 0x66, 0x66, Oxc3, 0xc3, 0xc3, 0xc3,
0xc3, 0xc3},

{0x00, 0x00, 0xc3, 0xe7, Oxff, Oxff, Oxdb, Oxdb, Oxc3, 0xc3, 0xc3,
0xc3, 0xc3},

{0x00, 0x00, Oxc3, 0x66, 0x66, 0x3c, 0x3c, 0x18, 0x3c, 0x3c, 0x66,
0x66, 0xc3},

{0x00, 0x00, 0Ox18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x3c, Ox3c, 0x66,
0x66, 0xc3},

{0x00, 0x00, 0xff, Oxc0, 0xc0, 0x60, 0x30, 0x7e, 0x0c, 0x06, 0x03,
0x03, Oxff}
h

GLuint fontOffset;

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 9

void makeRasterFont(void)

{
GLuint i, j;
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

fontOffset = glGenlLists (128);

for (i=0,j="'A’; 1< 26; i++,j++) {
gINewList(fontOffset + j, GL_COMPILE);
glBitmap(8, 13, 0.0, 2.0, 10.0, 0.0, letters]i]);
glEndList();

}

gINewList(fontOffset + * , GL_COMPILE);

gIBitmap(8, 13, 0.0, 2.0, 10.0, 0.0, space);

glEndList();

void init(void)

{
glShadeModel (GL_FLAT);
makeRasterFont();

}

void printString(char *s)
{
glPushAttrib (GL_LIST_BIT);
glListBase(fontOffset);
glCallLists(strlen(s), GL_UNSIGNED_BYTE, (GLubyte *) s);
glPopAttrib ();
}

[* Everything above this line could be in a library
* that defines a font. To make it work, you've got
* to call makeRasterFont() before you start making
* calls to printString().
*
void display(void)
{
GLfloat white[3] ={ 1.0, 1.0, 1.0 };

glClear(GL_COLOR_BUFFER_BIT);
glColor3fv(white);

glRasterPos2i(20, 60);

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 10

printString("THE QUICK BROWN FOX JUMPS");
glRasterPo0s2i(20, 40);

printString("OVER A LAZY DOG");

glFlush ();

void reshape(int w, int h)

{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
glOrtho (0.0, w, 0.0, h, -1.0, 1.0);
gIMatrixMode(GL_MODELVIEW);

void keyboard(unsigned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutlnitWindowSize (300, 100);
glutinitWindowPaosition (100, 100);
glutCreateWindow(argv[0]);
init();
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutDisplayFunc(display);
glutMainLoop();
return O;

Images

An image is similar to a bitmap, but instead of containing only a single bit for each pixel in a rectangul:
region of the screen, an image can contain much more information. For example, an image can conta
complete (R, G, B, A) color stored at each pixel. Images can come from several sources, such as

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 11

A photograph that’s digitized with a scanner

An image that was first generated on the screen by a graphics program using the graphics hardw
and then read back, pixel by pixel

A software program that generated the image in memory pixel by pixel
The images you normally think of as pictures come from the color buffers. However, you can read or

write rectangular regions of pixel data from or to the depth buffer or the stencil buffer. (See Chapter 1(
for an explanation of these other buffers.)

In addition to simply being displayed on the screen, images can be used for texture maps, in which ca
they're essentially pasted onto polygons that are rendered on the screen in the normal way. (See Cha
9 for more information about this technique.)

Reading, Writing, and Copying Pixel Data

OpenGL provides three basic commands that manipulate image data:

glReadPixels()l Reads a rectangular array of pixels from the framebuffer and stores the data in
processor memory.

glDrawPixels(J Writes a rectangular array of pixels from data kept in processor memory into the
framebuffer at the current raster position specifiedIRasterPos*()

glCopyPixels()l Copies a rectangular array of pixels from one part of the framebuffer to another.
This command behaves similarly to a calgtBeadPixels(followed by a call tgliDrawPixels()
but the data is never written into processor memory.

For the aforementioned commands, the order of pixel data processing operations is shown in Figure ¢

Figure 8-3 Simplistic Diagram of Pixel Data Flow

The basic ideas in Figure 8—3are correct. The coordinagiRasterPos*()which specify the current
raster position used miDrawPixels(JandglCopyPixels() are transformed by the geometric processing
pipeline. BothglDrawPixels()andglCopyPixels(are affected by rasterization and per—fragment
operations. (But when drawing or copying a pixel rectangle, there’s almost never a reason to have fog

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 12

texture enabled.)

However, additional steps arise because there are many kinds of framebuffer data, many ways to stor
pixel information in computer memory, and various data conversions that can be performed during the
reading, writing, and copying operations. These possibilities translate to many different modes of
operation. If all your program does is copy images on the screen or read them into memory temporaril
so that they can be copied out later, you can ignore most of these modes. However, if you want your
program to modify the data while it's in mematyor example, if you have an image stored in one
format but the window requires a different formatr if you want to save image data to a file for future
restoration in another session or on another kind of machine with significantly different graphical
capabilities, you have to understand the various modes.

The rest of this section describes the basic commands in detail. The following sections discuss the de
of the series of imaging operations that comprise the Imaging Pipeline: pixel-storage modes,
pixel-transfer operations, and pixel-mapping operations.

Reading Pixel Data from Frame Buffer to Processor Memory

void glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type, GLvoid *pixels);

Reads pixel data from the framebuffer rectangle whose lower—-left cornex,igaafd whose
dimensions are width and height and stores it in the array pointed to by pixels. format indicates thi
kind of pixel data elements that are read (an index value or an R, G, B, or A component value, as
listed in Table 891and type indicates the data type of each element (see Taple 8-2

If you are usingyIReadPixels(Jo obtain RGBA or color-index information, you may need to clarify
which buffer you are trying to access. For example, if you have a double-buffered window, you need 1
specify whether you are reading data from the front buffer or back buffer. To control the current read
source buffer, caljiReadBuffer()(See "Selecting Color Buffers for Writing and Reading" in Chapter

10.)

format Constant Pixel Format

GL_COLOR_INDEX A single color index

GL_RGB A red color component, followed by a green color
component, followed by a blue color component

GL_RGBA A red color component, followed by a green color
component, followed by a blue color component,
followed by an alpha color component

GL_RED A single red color component

GL_GREEN A single green color component

GL_BLUE A single blue color component

GL_ALPHA A single alpha color component

GL_LUMINANCE A single luminance component

GL_LUMINANCE_ALPHA A luminance component followed by an alpha color
component

GL_STENCIL_INDEX A single stencil index

GL_DEPTH_COMPONENT A single depth component

Table 8-1Pixel Formats for glReadPixels() or glDrawPixels()

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 13

type Constant Data Type

GL_UNSIGNED_BYTE unsigned 8-bit integer

GL_BYTE signed 8-bit integer

GL_BITMAP single bits in unsigned 8-bit integers using the
same format aglBitmap()

GL_UNSIGNED_SHORT unsigned 16-bit integer

GL_SHORT signed 16-bit integer

GL_UNSIGNED_INT unsigned 32-bit integer

GL_INT signed 32-bit integer

GL_FLOAT single—precision floating point

Table 8—-2Data Types for gIReadPixels() or glDrawPixels()

Remember that, depending on the format, anywhere from one to four elements are read (or written). F
example, if the format is GL_RGBA and you're reading into 32-bit integers (thay@ei$ equal to
GL_UNSIGNED_INT or GL_INT), then every pixel read requires 16 bytes of storage (four component:
x four bytes/component).

Each element of the image is stored in memory as indicated by TablEtBeZlement represents a
continuous value, such as a red, green, blukinainance component, each value is scaled to fit into the
available number of bits. For example, assume the red component is initially specified as a floating—pt
value between 0.0 and 1.0. If it needs to be packed into an unsigned byte, only 8 bits of precision are
kept, even if more bits are allocated to the red component in the framebuffer. GL_UNSIGNED_SHOR
and GL_UNSIGNED_INT give 16 and 32 bits of precision, respectively. The normal (signed) versions
of GL_BYTE, GL_SHORT, and GL_INT have 7, 15, and 31 bits of precision, since the negative value:
are typically not used.

If the element is an index (a color index or a stencil index, for example), and the type is not GL_FLOA
the value is simply masked against the available bits in the type. The signed veGilorBYTE,
GL_SHORT, and GL_INT have masks with one fewer bit. For example, if a color index is to be stored
in a signed 8-bit integer, it's first masked against Ox7f. If the type is GL_FLOAT, the index is simply
converted into a single—precision floating—point number (for example, the index 17 is converted to the
float 17.0).

Writing Pixel Data from Processor Memory to Frame Buffer

void glDrawPixels(GLsizei width, GLsizei height, GLenum format,
GLenum type, const GLvoid *pixels);

Draws a rectangle of pixel data with dimensions width and height. The pixel rectangle is drawn wi
its lower—left corner at the current raster positifarmat and type have the same meaning as with
glReadPixels(). (For legal values for format and type, see Tablar@+-Table 8=2 The array

pointed to by pixels contains the pixel data to be drawn. If the current raster position is invalid,
nothing is drawn, and the raster position remains invalid.

Example 8-& a portion of a program, which usgi®rawPixels()to draw an pixel rectangle in the
lower-left corner of a windownakeChecklmage(€reates a 64-by-64 RGB array of a black—and—white
checkerboard imagglRasterPos2{j,0 positions the lower-left corner of the image. For now, ignore

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 14

glPixelStorei()

Example 8-3 Use of glDrawPixels(): image.c

#define checklmageWidth 64
#define checklmageHeight 64
GLubyte checklmage[checklmageHeight][checkimageWidth][3];

void makeChecklmage(void)

{

inti, j, c;

for (i = 0; i < checklmageHeight; i++) {
for (j = 0; j < checklmageWidth; j++) {
¢ = ((((1&0x8)==0)"((j&0x8))==0))*255;
checklmageli][j][0] = (GLubyte) c;
checklmage[i][jl[1] = (GLubyte) c;
checklmageli][jl[2] = (GLubyte) c;

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel(GL_FLAT);
makeChecklmage();
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

}

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT);
glRasterPos2i(0, 0);
glDrawPixels(checklmageWidth, checkimageHeight, GL_RGB,

GL_UNSIGNED_BYTE, checkimage);

glFlush();

}

When usingglDrawPixels()to write RGBA or color—index information, you may need to control the
current drawing buffers witglDrawBuffer() which, along withgIReadBuffer()is also described in
"Selecting Color Buffers for Writing and Reading" in Chapter 10.

Copying Pixel Data within the Frame Buffer

void glCopyPixels(GLint x, GLint y, GLsizei width, GLsizei height,

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 15

GLenum buffer);
Copies pixel data from the framebuffer rectangle whose lower-left cornexjypatd whose
dimensions are width and height. The data is copied to a new position whose lower-left corner is
given by the current raster position. buffer is either GL_COLOR, GL_STENCIL, or GL_DEPTH,
specifying the framebuffer that is used. glCopyPixels() behaves similarly to a glReadPixels()
followed by a glDrawPixels(), with the following translation for the buffer to format parameter:

If bufferis GL_DEPTH or GL_STENCIL, then GL_DEPTH_COMPONENT or
GL_STENCIL_INDEX is used, respectively.

If GL_COLOR is specified, GL_RGBA or GL_COLOR_INDEX is used, depending on whether the
system is in RGBA or color-index mode.

Note that there’s no need fof@mat or data parameter foglCopyPixels() since the data is never
copied into processor memory. The read source buffer and the destination bgifapyPixels(are
specified byglReadBuffer(andglDrawBuffer()respectively. BotlglDrawPixels()andglCopyPixels()
are used in Example 8-4

For all three functions, the exact conversions of the data going to or from the framebuffer depend on t
modes in effect at the time. See the next section for details.

Imaging Pipeline

This section discusses the complete Imaging Pipeline: the pixel-storage modes and pixel-transfer
operations, which include how to set up an arbitrary mapping to convert pixel data. You can also magi
or reduce a pixel rectangle before it's drawn by caltjiRjxelZoom() The order of these operations is
shown in Figure 8-4

Figure 8-4 Imaging Pipeline

WhenglDrawPixels()is called, the data is first unpacked from processor memory according to the
pixel-storage modes that are in effect and then the pixel-transfer operations are applied. The resultin
pixels are then rasterized. During rasterization, the pixel rectangle may be zoomed up or down,
depending on the current state. Finally, the fragment operations are applied and the pixels are written
the framebuffer. (See "Testing and Operating on Fragments" in Chapter 10 for a discussion of the
fragment operations.)

WhenglReadPixels()s called, data is read from the framebuffer, the pixel-transfer operations are
performed, and then the resulting data is packed into processor memory.

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 16

glCopyPixels(applies all the pixel-transfer operations during what would bhgiReadPixels(activity.
The resulting data is written as it would beddprawPixels() but the transformations aren’t applied a
second time. Figure 8—5shows hgi€opyPixels()moves pixel data, starting from the frame buffer.

Figure 8-5 glCopyPixels() Pixel Path

From "Drawing the Bitmap" and Figure 8—6 you see that rendering bitmaps is simpler than rendering
images. Neither the pixel-transfer operations nor the pixel-zoom operation are applied.

Figure 8-6 gIBitmap() Pixel Path

Note that the pixel-storage modes and pixel-transfer operations are applied to textures as they are re
from or written to texture memory. Figure 8—7shows the effegfibeximage*() glTexSubimage*()
andglGetTexImage()

Figure 8-7 glTexImage*(), glTexSublmage*(), and glGetTexImage() Pixel Paths

As seen in Figure 8—8 when pixel data is copied from the framebuffer into texture memory
(glCopyTeximage*(pr glCopyTexSublmage?()only pixel-transfer operations are applied. (Swpter
9 for more information on textures.)

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 17

Figure 8-8 glCopyTeximage*() and glCopyTexSublmage*() Pixel Paths

Pixel Packing and Unpacking
Packing and unpacking refer to the way that pixel data is written to and read from processor memory.

An image stored in memory has between one and four chunks of datagtathemtsThe data might
consist of just the color index or the luminance (luminance is the weighted sum of the red, green, and
blue values), or it might consist of the red, green, blue, and alpha components for each pixel. The
possible arrangements of pixel datafommats determine the number of elements stored for each pixel
and their order.

Some elements (such as a color index or a stencil index) are integers, and others (such as the red, gr
blue, and alpha components, or the depth component) are floating—point values, typically ranging
between 0.0 and 1.0. Floating—point components are usually stored in the framebuffer with lower
resolution than a full floating—point number would require (for example, color components may be stot
in 8 bits). The exact number of bits used to represent the components depends on the particular hard»
being used. Thus, it's often wasteful to store each component as a full 32-bit floating—point number,
especially since images can easily contain a million pixels.

Elements can be stored in memory as various data types, ranging from 8-bit bytes to 32-bit integers
floating—point numbers. OpenGL explicitly defines the conversion of each component in each format t
each of the possible data types. Keep in mind that you may lose data if you try to store a high-resolut
component in a type represented by a small number of bits.

Controlling Pixel-Storage Modes

Image data is typically stored in processor memory in rectangular two- or three—dimensional arrays.
Often, you want to display or store a subimage that corresponds to a subrectangle of the array. In
addition, you might need to take into account that different machines have different byte—ordering
conventions. Finally, some machines have hardware that is far more efficient at moving data to and fr
the framebuffer if the data is aligned on 2-byte, 4-byte, or 8—byte boundaries in processor memory. F
such machines, you probably want to control the byte alignment. All the issues raised in this paragrap
are controlled as pixel-storage modes, which are discussed in the next subsection. You specify these
modes by usinglPixelStore*() which you've already seen used in a couple of example programs.

All the possible pixel-storage modes are controlled withlBigelStore*()command. Typically, several
successive calls are made with this command to set several parameter values.

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 18

void glPixelStore{iff(GLenum pname, TYPEparam);
Sets the pixel-storage modes, which affect the operatipDrafvPixels(), gIReadPixels(),
glBitmap(), glPolygonStipple(), glTeximagelD(), glTexlmage2D(), glTexSublmagelD(),
glTexSublmage2D(), and glGetTeximage(). The possible parameter names for pname are shown
Table 8—3along with their data type, initial value, and valid range of values. The GL_UNPACK*
parameters control how data is unpacked from memory by glDrawPixels(), gIBitmap(),
glPolygonStipple(), glTeximagelD(), glTexlmage2D(), glTexSublmagelD(), and
glTexSublmage2D(). The GL_PACK* parameters control how data is packed into memory by
glReadPixels() and glGetTeximage().

Parameter Name Type Initial Value Valid Range
GL_UNPACK_SWAP_BYTES, GLboolean FALSE TRUE/FALSE
GL_PACK_SWAP_BYTES

GL_UNPACK_LSB_FIRST, GLboolean FALSE TRUE/FALSE
GL_PACK_LSB_FIRST

GL_UNPACK_ROW_LENGTH, GLint 0 any nonnegative
GL_PACK_ROW_LENGTH integer
GL_UNPACK_SKIP_ROWS, GLint 0 any nonnegative
GL_PACK_SKIP_ROWS integer
GL_UNPACK_SKIP_PIXELS, GLint 0 any nonnegative
GL_PACK_SKIP_PIXELS integer
GL_UNPACK_ALIGNMENT, GLint 4 1,2,4,8

GL_PACK_ALIGNMENT

Table 8-3 glPixelStore() Parameters

Since the corresponding parameters for packing and unpacking have the same meanings, they're
discussed together in the rest of this section and referred to without the GL_PACK or GL_UNPACK
prefix. For example, *SWAP_BYTES refers to GL_PACK_SWAP_BYTES and
GL_UNPACK_SWAP_BYTES.

If the *SWAP_BYTES parameter is FALSE (the default), the ordering of the bytes in memory is
whatever is native for the OpenGL client; otherwise, the bytes are reversed. The byte reversal applies
any size element, but really only has a meaningful effect for multibyte elements.

Note: As long as your OpenGL application doesn’t share images with other machines, you can ignore
the issue of byte ordering. If your application must render an OpenGL image that was created on a
different machine and the "endianness" of the two machines differs, byte ordering can be swapped us
*SWAP_BYTES. However, *SWAP_BYTES does not allow you to reorder elements (for example, to
swap red and green).

The *LSB_FIRST parameter applies when drawing or reading 1-bit images or bitmaps, for which a
single bit of data is saved or restored for each pixel. If *LSB_FIRST is FALSE (the default), the bits ar
taken from the bytes starting with the most significant bit; otherwise, they’re taken in the opposite orde
For example, if *LSB_FIRST is FALSE, and the byte in question is 0x31, the bits, in order, are {0, 0, 1
1,0,0,0, 1}. If *LSB_FIRST is TRUE, the orderis {1, 0, 0, 0, 1, 1, O, 0}.

Sometimes you want to draw or read only a subrectangle of the entire rectangle of image data stored
memory. If the rectangle in memory is larger than the subrectangle that's being drawn or read, you ne

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 19

to specify the actual length (measured in pixels) of the larger rectangle with *ROW_LENGTH. If
*ROW_LENGTH is zero (which it is by default), the row length is understood to be the same as the
width that's specified witlglReadPixels()glDrawPixels() or glCopyPixels() You also need to specify

the number of rows and pixels to skip before starting to copy the data for the subrectangle. These
numbers are set using the parameters *SKIP_ROWS and *SKIP_PIXELS, as shown in Figure 8-9 By
default, both parameters are 0, so you start at the lower-left corner.

Figure 8-9 *SKIP_ROWS, *SKIP_PIXELS, and *ROW_LENGTH Parameters

Often a particular machine’s hardware is optimized for moving pixel data to and from memory, if the
data is saved in memory with a particular byte alignment. For example, in a machine with 32-bit word
hardware can often retrieve data much faster if it's initially aligned on a 32-bit boundary, which typical
has an address that is a multiple of 4. Likewise, 64-bit architectures might work better when the data
aligned to 8-byte boundaries. On some machines, however, byte alignment makes no difference.

As an example, suppose your machine works better with pixel data aligned to a 4-byte boundary. Ime
are most efficiently saved by forcing the data for each row of the image to begin on a 4-byte boundanr
the image is 5 pixels wide and each pixel consists of 1 byte each of red, green, and blue information,
row requires 5 3 = 15 bytes of data. Maximum display efficiency can be achieved if the first row, and
each successive row, begins on a 4-byte boundary, so there is 1 byte of waste in the memory storage
each row. If your data is stored like this, set the *ALIGNMENT parameter appropriately (to 4, in this
case).

If *YALIGNMENT is set to 1, the next available byte is used. If it's 2, a byte is skipped if necessary at th
end of each row so that the first byte of the next row has an address that’'s a multiple of 2. In the case
bitmaps (or 1-bit images) where a single bit is saved for each pixel, the same byte alignment works,

although you have to count individual bits. For example, if you're saving a single bit per pixel, the row
length is 75, and the alignment is 4, then each row requires 75/8, or 9 3/8 bytes. Since 12 is the small
multiple of 4 that is bigger than 9 3/8, 12 bytes of memory are used for each row. If the alignment is 1,
then 10 bytes are used for each row, as 9 3/8 is rounded up to the next byte. (There is a simple use o

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 20

glPixelStorei()in Example 8=%

Pixel-Transfer Operations

As image data is transferred from memory into the framebuffer, or from the framebuffer into memory,
OpenGL can perform several operations on it. For example, the ranges of components can be
altered normally, the red component is between 0.0 and 1.0, but you might prefer to keep it in some
other range; or perhaps the data you're using from a different graphics system stores the red compon
in a different range. You can even create maps to perform arbitrary conversion of color indices or cola
components during pixel transfer. Conversions such as these performed during the transfer of pixels t
and from the framebuffer are called pixel-transfer operations. They’re controlled with the
glPixelTransfer*()andglPixelMap*() commands.

Be aware that although the color, depth, and stencil buffers have many similarities, they don’t behave
identically, and a few of the modes have special cases for special buffers. All the mode details are
covered in this section and the sections that follow, including all the special cases.

Some of the pixel-transfer function characteristics are seglRittelTransfer*() The other
characteristics are specified wilPixelMap*(), which is described in the next section.

void glPixelTransfer{if}(GLenum pname, TYPEparam);
Sets pixel-transfer modes that affect the operatigtDoawPixels(), gIReadPixels(),
glCopyPixels(), glTeximagelD(), glTeximage2D(), glCopyTeximagelD(), glCopyTexImage2D(),
glTexSublmagelD(), glTexSublmage2D(), glCopyTexSublmagelD(), giCopyTexSubimage2D(), ¢
glGetTexImage(). The parameter pname must be one of those listed in the first column of Table 8
and its value, param, must be in the valid range shown.

Parameter Name Type Initial Value Valid Range
GL_MAP_COLOR GLboolean FALSE TRUE/FALSE
GL_MAP_STENCIL GLboolean FALSE TRUE/FALSE
GL_INDEX_SHIFT GLint 0 (00, o0)
GL_INDEX_OFFSET GLint 0 (-e0, o)
GL_RED_SCALE GLfloat 1.0 (00, 00)
GL_GREEN_SCALE GLfloat 1.0 (-e0, o)
GL_BLUE_SCALE GLfloat 1.0 (00, o0)
GL_ALPHA_SCALE GLfloat 1.0 (-e0, o)
GL_DEPTH_SCALE GLfloat 1.0 (00, 00)
GL_RED_BIAS GLfloat 0 (&0, o)
GL_GREEN_BIAS GLfloat 0 (00, 00)
GL_BLUE_BIAS GLfloat 0 (00, o0)
GL_ALPHA_BIAS GLfloat 0 (-e0, o)
GL_DEPTH_BIAS GLfloat 0 (-e0,)

Table 8-4 glPixelTransfer*() Parameters (continued)

If the GL_MAP_COLOR or GL_MAP_STENCIL parameter is TRUE, then mapping is enabled. See thi
next subsection to learn how the mapping is done and how to change the contents of the maps. All thi

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 21

other parameters directly affect the pixel component values.

A scale and bias can be applied to the red, green, blue, alpha, and depth components. For example, \
may wish to scale red, green, and blue components that were read from the framebuffer before
converting them to a luminance format in processor memory. Luminance is computed as the sum of tt
red, green, and blue components, so if you use the default value for GL_RED_SCALE,
GL_GREEN_SCALE and GL_BLUE_SCALE, the components all contribute equally to the final
intensity or luminance value. If you want to convert RGB to luminance, according to the NTSC standa
you set GL_RED_SCALE to .30, GL_GREEN_SCALE to .59, and GL_BLUE_SCALE to .11.

Indices (color and stencil) can also be transformed. In the case of indices a shift and offset are appliet
This is useful if you need to control which portion of the color table is used during rendering.

Pixel Mapping

All the color components, color indices, and stencil indices can be modified by means of a table looku

before they are placed in screen memory. The command for controlling this mapgpiPigetMap*().

void glPixelMap{ui us f}v(GLenum map, GLint mapsize,

const TYPE *values);
Loads the pixel map indicated by map with mapsize entries, whose values are pointed to by value
Table 8-8ists the map names and values; the default sizes are all 1 and the default values are all
Each map’s size must be a power of 2.

Map Name Address Value
GL_PIXEL_MAP_I_TO_I color index color index
GL_PIXEL_MAP_S_TO_S stencil index stencil index
GL_PIXEL_MAP_I_TO R color index R
GL_PIXEL_MAP_I TO G color index G
GL_PIXEL_MAP_I TO B color index B
GL_PIXEL_MAP_I_TO_A color index A
GL_PIXEL_MAP_R TO R R R
GL_PIXEL_MAP_G_TO_G G G
GL_PIXEL_MAP_B_TO_B B B
GL_PIXEL_MAP_A_TO_A A A

Table 8-5glPixelMap*() Parameter Names and Values

The maximum size of the maps is machine-dependent. You can find the sizes of the pixel maps
supported on your machine wighGetintegerv() Use the query argument
GL_MAX_PIXEL_MAP_TABLE to obtain the maximum size for all the pixel map tables, and use
GL_PIXEL_MAP_* TO_* SIZE to obtain the current size of the specified map. The six maps whose
address is a color index or stencil index must always be sized to an integral power of 2. The four RGE
maps can be any size from 1 through GL_MAX_PIXEL_MAP_TABLE.

To understand how a table works, consider a simple example. Suppose that you want to create a
256—entry table that maps color indices to color indices using GL_PIXEL_MAP_I TO_I. You create a
table with an entry for each of the values between 0 and 255 and initialize the talg#ixghiViap*().
Assume you're using the table for thresholding and want to map indices below 101 (indices 0 to 100) 1

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 22

0, and all indices 101 and above to 255. In this case, your table consists of 101 Os and 155 255s. The
pixel map is enabled using the routmi®ixelTransfer*()to set the parameter GL_MAP_COLOR to
TRUE. Once the pixel map is loaded and enabled, incoming color indices below 101 come out as 0, a
incoming pixels between 101 and 255 are mapped to 255. If the incoming pixel is larger than 255, it's
first masked by 255, throwing out all the bits above the eighth, and the resulting masked value is looki
up in the table. If the incoming index is a floating—point value (say 88.14585), it's rounded to the neare
integer value (giving 88), and that number is looked up in the table (giving 0).

Using pixel maps, you can also map stencil indices or convert color indices to RGB. (See "Reading ar
Drawing Pixel Rectangles" for information about the conversion of indices.)

Magnifying, Reducing, or Flipping an Image

After the pixel-storage modes and pixel-transfer operations are applied, images and bitmaps are
rasterized. Normally, each pixel in an image is written to a single pixel on the screen. However, you c:
arbitrarily magnify, reduce, or even flip (reflect) an image by ugiRkelZoom()

void glPixelZoom(GLfloat zoogmGLfloat zoory);
Sets the magnification or reduction factors for pixel-write operatgliDsgwPixels() or
glCopyPixels()), in the xand ydimensions. By default, zogand zoory are 1.0. If they're both
2.0, each image pixel is drawn to 4 screen pixels. Note that fractional magnification or reduction
factors are allowed, as are negative factors. Negative zoom factors reflect the resulting image abc
the current raster position.

During rasterization, each image pixel is treated zmoayxzoony rectangle, and fragments are
generated for all the pixels whose centers lie within the rectangle. More specificalyp Ig) be the
current raster position. If a particular group of elements (index or componentsitis ith@ row and
belongs to thenth column, consider the region in window coordinates bounded by the rectangle with
corners at

(Xrp + zoonx * n, yrp +zoony * m) and &p + zoonx(n+1), yrp + zoony(m+1))

Any fragments whose centers lie inside this rectangle (or on its bottom or left boundaries) are produce
in correspondence with this particular group of elements.

A negative zoom can be useful for flipping an image. OpenGL describes images from the bottom row
pixels to the top (and from left to right). If you have a "top to bottom" image, such as a frame of video,
you may want to usgiPixelZoon{1.0, —1.0) to make the image right side up for OpenGL. Be sure that
you reposition the current raster position appropriately, if needed.

Example 8-4hows the use @lPixelZzoom() A checkerboard image is initially drawn in the lower—left
corner of the window. Pressing a mouse button and moving the mousgCmegPixels(Xo copy the
lower-left corner of the window to the current cursor location. (If you copy the image onto itself, it look
wacky!) The copied image is zoomed, but initially it is zoomed by the default value of 1.0, so you won’
notice. The ‘'z’ and ‘Z’ keys increase and decrease the zoom factors by 0.5. Any window damage caus
the contents of the window to be redrawn. Pressing the ‘r’ key resets the image and the zoom factors.

Example 8-4 Drawing, Copying, and Zooming Pixel Data: image.c

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 23

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

#define checklmageWidth 64
#define checklmageHeight 64
GLubyte checklmage[checklmageHeight][checkimageWidth][3];

static GLdouble zoomFactor = 1.0;
static GLint height;

void makeChecklmage(void)

{

inti, j, c;

for (i = 0; i < checklmageHeight; i++) {
for (j = 0; j < checklmageWidth; j++) {
¢ = ((((1&0x8)==0)"((j&0x8))==0))*255;
checklmage[i][j][0] = (GLubyte) c;
checklmage[i][jl[1] = (GLubyte) c;
checklmage[i][jl[2] = (GLubyte) c;

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel(GL_FLAT);
makeChecklmage();
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

}

void display(void)
{
glClear(GL_COLOR_BUFFER_BIT);
glRasterPos2i(0, 0);
glDrawPixels(checklmageWidth, checkimageHeight, GL_RGB,
GL_UNSIGNED_BYTE, checkimage);
glFlush();

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 24

void reshape(int w, int h)

{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
height = (GLint) h;
glMatrixMode(GL_PROJECTION);
glLoadldentity();
gluOrtho2D(0.0, (GLdouble) w, 0.0, (GLdouble) h);
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();

void motion(int x, int y)

{

static GLint screeny;

screeny = height — (GLint) y;

glRasterPos2i (x, screeny);

glPixelZoom (zoomFactor, zoomFactor);

glCopyPixels (0, 0, checkimageWidth, checkimageHeight,
GL_COLORY);

glPixelZzoom (1.0, 1.0);

glFlush ();

void keyboard(unsigned char key, int X, int y)
{
switch (key) {
case 'r:
case ‘R"
zoomFactor = 1.0;
glutPostRedisplay();
printf ("zoomFactor reset to 1.0\n");
break;
case ‘z’:
zoomFactor += 0.5;
if (zoomFactor >= 3.0)
zoomFactor = 3.0;
printf ("zoomFactor is now %4.1f\n", zoomFactor);
break;
case ‘'Z’:
zoomFactor —= 0.5;

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 25

if (zoomFactor <= 0.5)
zoomFactor = 0.5;
printf ("zoomFactor is now %4.1f\n", zoomFactor);
break;
case 27:
exit(0);
break;
default:
break;

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutlnitWindowSize (250, 250);
glutinitWindowPosition(100, 100);
glutCreateWindow(argv[0]);
init();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutMotionFunc(motion);
glutMainLoop();
return O;

Reading and Drawing Pixel Rectangles

This section describes the reading and drawing processes in detail. The pixel conversions performed
when going from framebuffer to memory (reading) are similar but not identical to the conversions
performed when going in the opposite direction (drawing), as explained in the following sections. You
may wish to skip this section the first time through, especially if you do not plan to use the pixel-transt
operations right away.

The Pixel Rectangle Drawing Process

Figure 8—10and the following list describe the operation of drawing pixels into the framebuffer.

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 26

Figure 8-10 Drawing Pixels with glDrawPixels()

1. If the pixels aren’t indices (that is, the format isn't GL_COLOR_INDEX or
GL_STENCIL_INDEX), the first step is to convert the components to floating—point format if
necessary. (See Table 4-1for the details of the conversion.)

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 27

2. Ifthe format is GL_LUMINANCE or GL_LUMINANCE_ALPHA, the luminance element is
converted into R, G, and B, by using the luminance value for each of the R, G, and B components
GL_LUMINANCE_ALPHA format, the alpha value becomes the A value. If GL_LUMINANCE is
specified, the A value is set to 1.0.

3. Each component (R, G, B, A, or depth) is multiplied by the appropriate scale, and the appropriate
bias is added. For example, the R component is multiplied by the value corresponding to
GL_RED_SCALE and added to the value corresponding to GL_RED_BIAS.

4. If GL_MAP_COLOR is true, each of the R, G, B, and A components is clamped to the range
[0.0,1.0], multiplied by an integer one less than the table size, truncated, and looked up in the tabl
(See "Tips for Improving Pixel Drawing Rates" for more details.)

5. Next, the R, G, B, and A components are clamped to [0.0,1.0], if they weren'’t already, and convet
to fixed—point with as many bits to the left of the binary point as there are in the corresponding
framebuffer component.

6. If you're working with index values (stencil or color indices), then the values are first converted to
fixed—point (if they were initially floating—point numbers) with some unspecified bits to the right of
the binary point. Indices that were initially fixed—point remain so, and any bits to the right of the
binary point are set to zero.

The resulting index value is then shifted right or left by the absolute value of GL_INDEX_SHIFT
bits; the value is shifted left if GL_INDEX_SHIFT > 0 and right otherwise. Finally,
GL_INDEX_OFFSET is added to the index.

7. The next step with indices depends on whether you're using RGBA mode or color-index mode. Ir
RGBA mode, a color index is converted to RGBA using the color components specified by
GL_PIXEL_MAP_I TO_R, GL_PIXEL_MAP_I TO_G, GL_PIXEL_MAP_I _TO_B, and
GL_PIXEL_MAP_| TO_A. (See "Pixel Mapping" for details.) Otherwise, if GL_MAP_COLOR is
GL_TRUE, a color index is looked up through the table GL_PIXEL_MAP_I_TO_|I. (If
GL_MAP_COLOR is GL_FALSE, the index is unchanged.) If the image is made up of stencil
indices rather than color indices, and if GL_MAP_STENCIL is GL_TRUE, the index is looked up it
the table corresponding to GL_PIXEL_MAP_S TO_S. If GL_MAP_STENCIL is FALSE, the
stencil index is unchanged.

8. Finally, if the indices haven't been converted to RGBA, the indices are then masked to the numbe
of bits of either the color—index or stencil buffer, whichever is appropriate.

The Pixel Rectangle Reading Process

Many of the conversions done during the pixel rectangle drawing process are also done during the pix
rectangle reading process. The pixel reading process is shown in Figure 8—11and described in the
following list.

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 28

Figure 8-11 Reading Pixels with glReadPixels()

1. If the pixels to be read aren't indices (that is, the format isn’t GL_COLOR_INDEX or
GL_STENCIL_INDEX), the components are mapped to [0.0,11@ht is, in exactly the opposite
way that they are when written.

2. Next, the scales and biases are applied to each component. If GL_MAP_COLOR is GL_TRUE,
they’re mapped and again clamped to [0.0,1.0]. If luminance is desired instead of RGB, the R, G,

and B components are added (L =R + G + B).

3. If the pixels are indices (color or stencil), they're shifted, offset, and, if GL_MAP_COLOR is

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 29

GL_TRUE, also mapped.

4. If the storage format is either GL_COLOR_INDEX or GL_STENCIL_INDEX, the pixel indices are
masked to the number of bits of the storage type (1, 8, 16, or 32) and packed into memory as
previously described.

5. If the storage format is one of the component kind (such as luminance or RGB), the pixels are
always mapped by the index—to—RGBA maps. Then, they're treated as though they had been RG
pixels in the first place (including potential conversion to luminance).

6. Finally, for both index and component data, the results are packed into memory according to the
GL_PACK* modes set witlglPixelStore*()

The scaling, bias, shift, and offset values are the same as those used when drawing pixels, so if you'r
both reading and drawing pixels, be sure to reset these components to the appropriate values before
a read or a draw. Similarly, the various maps must be properly reset if you intend to use maps for bott
reading and drawing.

Note: It might seem that luminance is handled incorrectly in both the reading and drawing operations.
For example, luminance is not usually equally dependent on the R, G, and B components as it may be
assumed from both Figure 8-10and Figure 8f Ytbu wanted your luminance to be calculated such that
the R component contributed 30 percent, the G 59 percent, and the B 11 percent, you can set
GL_RED_SCALE to .30, GL_RED_BIAS to 0.0, and so on. The computed L is then .30R + .59G +
.11B.

Tips for Improving Pixel Drawing Rates

As you can see, OpenGL has a rich set of features for reading, drawing and manipulating pixel data.
Although these features are often very useful, they can also decrease performance. Here are some tif
improving pixel draw rates.

For best performance, set all pixel-transfer parameters to their default values, and set pixel zoorr
(1.0,1.0).

A series of fragment operations is applied to pixels as they are drawn into the framebuffer. (See
"Testing and Operating on Fragments" in Chapter 10.) For optimum performance disable all
fragment operations.

While performing pixel operations, disable other costly states, such as texturing and lighting.

If you use an image format and type that matches the framebuffer, you can reduce the amount of
work that the OpenGL implementation has to do. For example, if you are writing images to an RG
framebuffer with 8 bits per component, cgliDrawPixels()with format set to RGB antypeset to
UNSIGNED_BYTE.

For some implementations, unsigned image formats are faster to use than signed image formats.

It is usually faster to draw a large pixel rectangle than to draw several small ones, since the cost «
transferring the pixel data can be amortized over many pixels.

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 30

If possible, reduce the amount of data that needs to be copied by using small data types (for
example, use GL_UNSIGNED_BYTE) and fewer components (for example, use format
GL_LUMINANCE_ALPHA).

Pixel-transfer operations, including pixel mapping and values for scale, bias, offset, and shift othe

than the defaults, may decrease performance.

OpenGL Programming Guide — Chapter 9, Texture Mapping — 31

Chapter 9
Texture Mapping

Chapter Objectives

After reading this chapter, you'll be able to do the following:
Understand what texture mapping can add to your scene
Specify a texture image
Control how a texture image is filtered as it's applied to a fragment

Create and manage texture images in texture objects and, if available, control a high—performanc
working set of those texture objects

Specify how the color values in the image combine with those of the fragment to which it's being
applied

Supply texture coordinates to indicate how the texture image should be aligned to the objects in'y
scene

Use automatic texture coordinate generation to produce effects like contour maps and environme
maps

So far, every geometric primitive has been drawn as either a solid color or smoothly shaded between
colors at its verticds that is, they’ve been drawn without texture mapping. If you want to draw a large
brick wall without texture mapping, for example, each brick must be drawn as a separate polygon.
Without texturing, a large flat wall which is really a single rectan@lemight require thousands of
individual bricks, and even then the bricks may appear too smooth and regular to be realistic.

Texture mapping allows you to glue an image of a brick wall (obtained, perhaps, by scanning in a
photograph of a real wall) to a polygon and to draw the entire wall as a single polygon. Texture mappi
ensures that all the right things happen as the polygon is transformed and rendered. For example, wh
the wall is viewed in perspective, the bricks may appear smaller as the wall gets farther from the
viewpoint. Other uses for texture mapping include depicting vegetation on large polygons representing
the ground in flight simulation; wallpaper patterns; and textures that make polygons look like natural
substances such as marble, wood, or cloth. The possibilities are endless. Although it's most natural to
think of applying textures to polygons, textures can be applied to all prinitpeisits, lines, polygons,
bitmaps, and images. Plates 6, 8, 18-21, 24-27, and 29-31 all demonstrate the use of textures.

Because there are so many possibilities, texture mapping is a fairly large, complex subject, and you n
make several programming choices when using it. For instance, you can map textures to surfaces ma
of a set of polygons or to curved surfaces, and you can repeat a texture in one or both directions to cc
the surface. A texture can even be one—dimensional. In addition, you can automatically map a texture
onto an object in such a way that the texture indicates contours or other properties of the item being
viewed. Shiny objects can be textured so that they appear to be in the center of a room or other
environment, reflecting the surroundings off their surfaces. Finally, a texture can be applied to a surfa

OpenGL Programming Guide — Chapter 9, Texture Mapping — 1

in different ways. It can be painted on directly (like a decal placed on a surface), used to modulate the
color the surface would have been painted otherwise, or used to blend a texture color with the surface
color. If this is your first exposure to texture mapping, you might find that the discussion in this chapte!
moves fairly quickly. As an additional reference, you might look at the chapter on texture mapping in
Fundamentals of Three—Dimensional Computer Gragiyjieslan Watt (Reading, MA: Addison-Wesley
Publishing Company, 1990).

Textures are simply rectangular arrays of dafiar example, color data, luminance data, or color and
alpha data. The individual values in a texture array are often ¢elel$ What makes texture mapping
tricky is that a rectangular texture can be mapped to nonrectangular regions, and this must be done ir
reasonable way.

Figure 9-1lillustrates the texture—-mapping process. The left side of the figure represents the entire tex
and the black outline represents a quadrilateral shape whose corners are mapped to those spots on tl
texture. When the quadrilateral is displayed on the screen, it might be distorted by applying various
transformations rotations, translations, scaling, and projections. The right side of the figure shows hov
the texture-mapped quadrilateral might appear on your screen after these transformations. (Note that
quadrilateral is concave and might not be rendered correctly by OpenGL without prior tessellation. Se
Chapter 11 for more information about tessellating polygons.)

Figure 9-1 Texture—Mapping Process

Notice how the texture is distorted to match the distortion of the quadrilateral. In this case, it's stretche
in thex direction and compressed in theirection; there’s a bit of rotation and shearing going on as
well. Depending on the texture size, the quadrilateral’s distortion, and the size of the screen image, sc
of the texels might be mapped to more than one fragment, and some fragments might be covered by
multiple texels. Since the texture is made up of discrete texels (in this cas25@%6 them), filtering
operations must be performed to map texels to fragments. For example, if many texels correspond to
fragment, they're averaged down to fit; if texel boundaries fall across fragment boundaries, a weightec
average of the applicable texels is performed. Because of these calculations, texturing is computation
expensive, which is why many specialized graphics systems include hardware support for texture

OpenGL Programming Guide — Chapter 9, Texture Mapping — 2

mapping.

An application may establish texture objects, with each texture object representing a single texture (at
possible associated mipmaps). Some implementations of OpenGL can support avspkiciglset of

texture objects that have better performance than texture objects outside the working set. These
high—performance texture objects are said tefidentand may have special hardware and/or software
acceleration available. You may use OpenGL to create and delete texture objects and to determine w
textures constitute your working set.

This chapter covers the OpenGL’s texture—mapping facility in the following major sections.

"An Overview and an Example" gives a brief, broad look at the steps required to perform texture
mapping. It also presents a relatively simple example of texture mapping.

"Specifying the Texture" explains how to specify one— or two—dimensional textures. It also discus
how to use a texture’s borders, how to supply a series of related textures of different sizes, and hu
to control the filtering methods used to determine how an applied texture is mapped to screen
coordinates.

"Filtering" details how textures are either magnified or minified as they are applied to the pixels of
polygons. Minification using special mipmap textures is also explained.

"Texture Objects" describes how to put texture images into objects so that you can control severa
textures at one time. With texture objects, you may be able to create a working set of
high—-performance textures, which are said to be resident. You may also prioritize texture objects
increase or decrease the likelihood that a texture object is resident.

"Texture Functions" discusses the methods used for painting a texture onto a surface. You can
choose to have the texture color values replace those that would be used if texturing wasn't in eff
or you can have the final color be a combination of the two.

"Assigning Texture Coordinates" describes how to compute and assign appropriate texture
coordinates to the vertices of an object. It also explains how to control the behavior of coordinates
that lie outside the default rarigehat is, how to repeat or clamp textures across a surface.

"Automatic Texture—Coordinate Generation"shows how to have OpenGL automatically generate
texture coordinates so that you can achieve such effects as contour and environment maps.

"Advanced Features" explains how to manipulate the texture matrix stack and how toquse the
texture coordinate.
Version 1.1 of OpenGL introduces several new texture—mapping operations:
1.
Thirty—eight additional internal texture image formats

Texture proxy, to query whether there are enough resources to accommodate a given texture
image

OpenGL Programming Guide — Chapter 9, Texture Mapping — 3

Texture subimage, to replace all or part of an existing texture image rather than completely
deleting and creating a texture to achieve the same effect

Specifying texture data from framebuffer memory (as well as from processor memory)
Texture objects, including resident textures and prioritizing
If you try to use one of these texture—-mapping operations and can't find it, check the version number «

your implementation of OpenGL to see if it actually supports it. (See "Which Version Am | Using?" in
Chapter 14.)

An Overview and an Example

This section gives an overview of the steps necessary to perform texture mapping. It also presents a
relatively simple texture—-mapping program. Of course, you know that texture mapping can be a very
involved process.

Steps in Texture Mapping

To use texture mapping, you perform these steps.

1. Create a texture object and specify a texture for that object.

2. Indicate how the texture is to be applied to each pixel.

3. Enable texture mapping.

4. Draw the scene, supplying both texture and geometric coordinates.

Keep in mind that texture mapping works only in RGBA mode. Texture mapping results in color—index
mode are undefined.

Create a Texture Object and Specify a Texture for That Object

A texture is usually thought of as being two—dimensional, like most images, but it can also be
one-dimensional. The data describing a texture may consist of one, two, three, or four elements per t
representing anything from a modulation constant to an (R, G, B, A) quadruple.

In Example 9-2which is very simple, a single texture object is created to maintain a single

two—dimensional texture. This example does not find out how much memory is available. Since only c
texture is created, there is no attempt to prioritize or otherwise manage a working set of texture object
Other advanced techniques, such as texture borders or mipmaps, are not used in this simple example

Indicate How the Texture Is to Be Applied to Each Pixel

You can choose any of four possible functions for computing the final RGBA value from the fragment
color and the texture—-image data. One possibility is simply to use the texture color as the final color; tl
is thedecalmode, in which the texture is painted on top of the fragment, just as a decal would be appli
(Example 9-1uses decal mode.) Téplacemode, a variant of the decal mode, is a second method.
Another method is to use the texturertodulate or scale, the fragment’s color; this technique is useful

OpenGL Programming Guide — Chapter 9, Texture Mapping — 4

for combining the effects of lighting with texturing. Finally, a constant color can be blended with that of
the fragment, based on the texture value.

Enable Texture Mapping

You need to enable texturing before drawing your scene. Texturing is enabled or disabled using
glEnable()or gIDisable() with the symbolic constant GL_ TEXTURE_1D or GL_TEXTURE_2D for

one- or two—dimensional texturing, respectively. (If both are enabled, GL_TEXTURE_2D is the one tt
is used.)

Draw the Scene, Supplying Both Texture and Geometric Coordinates

You need to indicate how the texture should be aligned relative to the fragments to which it's to be
applied before it's "glued on." That is, you need to specify both texture coordinates and geometric
coordinates as you specify the objects in your scene. For a two—dimensional texture map, for example
texture coordinates range from 0.0 to 1.0 in both directions, but the coordinates of the items being
textured can be anything. For the brick—wall example, if the wall is square and meant to represent one
copy of the texture, the code would probably assign texture coordinates (0, 0), (1, 0), (1, 1), and (0, 1)
the four corners of the wall. If the wall is large, you might want to paint several copies of the texture m
on it. If you do so, the texture map must be designed so that the bricks on the left edge match up nice
with the bricks on the right edge, and similarly for the bricks on the top and those on the bottom.

You must also indicate how texture coordinates outside the range [0.0,1.0] should be treated. Do the
textures repeat to cover the object, or are they clamped to a boundary value?

A Sample Program

One of the problems with showing sample programs to illustrate texture mapping is that interesting
textures are large. Typically, textures are read from an image file, since specifying a texture
programmatically could take hundreds of lines of code. In Example 9-1, the f&wthieh consists of
alternating white and black squares, like a checkerbbirdenerated by the program. The program
applies this texture to two squares, which are then rendered in perspective, one of them facing the vie
squarely and the other tilting back at 45 degrees, as shown in Figure 9-2 In object coordinates, both
squares are the same size.

OpenGL Programming Guide — Chapter 9, Texture Mapping — 5

Figure 9-2 Texture—Mapped Squares

Example 9-1 Texture—Mapped Checkerboard: checker.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

I* Create checkerboard texture */

#define checklmageWidth 64

#define checklmageHeight 64

static GLubyte checklmage[checkimageHeight][checkimageWidth][4];

static GLuint texName;

void makeChecklmage(void)

{

inti, j, c;

for (i = 0; i < checklmageHeight; i++) {
for (j = 0; j < checklmageWidth; j++) {
¢ = ((((1&0x8)==0)"((j&0x8))==0))*255;
checklmageli][j][0] = (GLubyte) c;
checklmage[i][j][1] = (GLubyte) c;
checklmageli][jl[2] = (GLubyte) c;
checklmage[i][jl[3] = (GLubyte) 255;

OpenGL Programming Guide — Chapter 9, Texture Mapping — 6

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel(GL_FLAT);
glEnable(GL_DEPTH_TEST);

makeChecklmage();
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glGenTextures(1, &texName);
glBindTexture(GL_TEXTURE_2D, texName);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);
glTeximage2D(GL_TEXTURE_2D, 0, GL_RGBA, checklmageWidth,
checklmageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,
checklmage);

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_TEXTURE_2D);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glBindTexture(GL_TEXTURE_2D, texName);
glBegin(GL_QUADS);
glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, —1.0, 0.0);
glTexCoord2f(0.0, 1.0); glVertex3f(-2.0, 1.0, 0.0);
glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 1.0, 0.0);
glTexCoord2f(1.0, 0.0); glVertex3f(0.0, —1.0, 0.0);

glTexCoord2f(0.0, 0.0); glVertex3f(1.0, -1.0, 0.0);
glTexCoord2f(0.0, 1.0); glVertex3f(1.0, 1.0, 0.0);
glTexCoord2f(1.0, 1.0); glVertex3f(2.41421, 1.0, —1.41421);
glTexCoord2f(1.0, 0.0); glVertex3f(2.41421, -1.0, —1.41421);
glEnd();

glFlush();

glDisable(GL_TEXTURE_2D);

OpenGL Programming Guide — Chapter 9, Texture Mapping — 7

void reshape(int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 30.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
glTranslatef(0.0, 0.0, —3.6);

}
void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);
break;
default:
break;
}
}

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutlnitWindowsSize (250, 250);
glutinitWindowPosition(100, 100);
glutCreateWindow(argv[0]);
init();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutMainLoop();
return O;

}

The checkerboard texture is generated in the roantiaeeCheckimage@nd all the texture-mapping
initialization occurs in the routiriait(). giGenTextures(andglBindTexture(hame and create a texture
object for a texture image. (See "Texture Objects.") The single, full-resolution texture map is specifiec
by glTeximage2D()whose parameters indicate the size of the image, type of the image, location of the
image, and other properties of it. (See "Specifying the Texture" for more information about

OpenGL Programming Guide — Chapter 9, Texture Mapping — 8

glTeximage2D()

The four calls tglTexParameter*(specify how the texture is to be wrapped and how the colors are to
be filtered if there isn’t an exact match between pixels in the texture and pixels on the screen. (See
"Repeating and Clamping Textures" and "Filtering.")

In display() glEnable()turns on texturingglTexEnv*()sets the drawing mode to GL_DECAL so that the
textured polygons are drawn using the colors from the texture map (rather than taking into account wt
color the polygons would have been drawn without the texture).

Then, two polygons are drawn. Note that texture coordinates are specified along with vertex coordinai
TheglTexCoord*()command behaves similarly to tggNormal() commandglTexCoord*()sets the

current texture coordinates; any subsequent vertex command has those texture coordinates associate
with it until glTexCoord*()is called again.

Note: The checkerboard image on the tilted polygon might look wrong when you compile and run it or
your machinél for example, it might look like two triangles with different projections of the
checkerboard image on them. If so, try setting the parameter
GL_PERSPECTIVE_CORRECTION_HINT to GL_NICEST and running the example again. To do this
useglHint().

Specifying the Texture

The commandjiTexImage2D(Jefines a two—dimensional texture. It takes several arguments, which are
described briefly here and in more detail in the subsections that follow. The related command for
one-dimensional texturegTexlmagelD()is described in "One-Dimensional Textures."

void glTexlmage2D(GLenum target, GLint level, GLint internalFormat,
GLsizei width, GLsizei height, GLint border,

GLenum format, GLenum type,

const GLvoid *pixels);

Defines a two—dimensional texture. Tdrget parameter is set to either the constant
GL_TEXTURE_2D or GL_PROXY_TEXTURE_2D. You use the level parameter if you're supplyin
multiple resolutions of the texture map; with only one resolution, level should be 0. (See "Multiple
Levels of Detail" for more information about using multiple resolutions.)

The next parameter, internalFormat, indicates which of the R, G, B, and A components or luminar
or intensity values are selected for use in describing the texels of an image. The value of
internalFormat is an integer from 1 to 4, or one of thirty—eight symbolic constants. The thirty—eight
symbolic constants that are also legal values for internalFormat are GL_ALPHA, GL_ALPHA4,
GL_ALPHAS8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCEA4,
GL_LUMINANCES, GL_LUMINANCE12, GL_LUMINANCE16, GL_LUMINANCE_ALPHA,
GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2, GL_LUMINANCES8_ALPHAS,
GL_LUMINANCE12_ALPHA4, GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA1S6,
GL_INTENSITY, GL_INTENSITY4, GL_INTENSITYS8, GL_INTENSITY12, GL_INTENSITY16,
GL_RGB, GL_R3_G3_B2, GL_RGB4, GL_RGBS5, GL_RGBS8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_ A1, GL_RGBAS8, GL_RGB10_A2,
GL_RGBA12, and GL_RGBAL16. (See "Texture Functions" for a discussion of how these selected

OpenGL Programming Guide — Chapter 9, Texture Mapping — 9

components are applied.)

If internalFormat is one of the thirty—eight symbolic constants, then you are asking for specific
components and perhaps the resolution of those components. For example, if internalFormat is
GL_R3_G3_B2, you are asking that texels be 3 bits of red, 3 bits of green, and 2 bits of blue, but
OpenGL is not guaranteed to deliver this. OpenGL is only obligated to choose an internal
representation that closely approximates what is requested, but an exact match is usually not
required. By definition, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA
are lenient, because they do not ask for a specific resolution. (For compatibility with the OpenGL
release 1.0, the numeric values 1, 2, 3, and 4, for internalFormat, are equivalent to the symbolic
constants GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA, respectively.)
The width and height parameters give the dimensions of the texture image; border indicates the
width of the border, which is either zero (no border) or one. (See "Using a Texture’s Borders".) Bo

width and height must have the forf2b, where m is a nonnegative integer (which can have a
different value for width than for height) and b is the value of border. The maximum size of a textu
map depends on the implementation of OpenGL, but it must be at |8&4t(64 66x66 with

borders).

The format and type parameters describe the format and data type of the texture image data. The
have the same meaning as they do for giDrawPixels(). (See "Imaging Pipeline" in Chapter 8.) In
fact, texture data is in the same format as the data used by glDrawPixels(), so the settings of
glPixelStore*() and glPixelTransfer*() are applied. (In Example,3ké call

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
is made because the data in the example isn’t padded at the end of each texel row.) The format
parameter can be GL_COLOR_INDEX, GL_RGB, GL_RGBA, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_LUMINANCE, or GL_LUMINANCE_ALPHAhat is, the same formats available
for glDrawPixels() with the exceptions of GL_STENCIL_INDEX and GL_DEPTH_COMPONENT.

Similarly, the type parameter can be GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT, or GL_BITMAP.

Finally, pixels contains the texture—-image data. This data describes the texture image itself as we
as its border.

The internal format of a texture image may affect the performance of texture operations. For example,
some implementations perform texturing with GL_RGBA faster than GL_RGB, because the color
components align the processor memory better. Since this varies, you should check specific informati
about your implementation of OpenGL.

The internal format of a texture image also may control how much memory a texture image consumes
For example, a texture of internal format GL_RGBAS8 uses 32 bits per texel, while a texture of internal
format GL_R3_G3 B2 only uses 8 hits per texel. Of course, there is a corresponding trade—off betwet
memory consumption and color resolution.

Note: Although texture—mapping results in color-index mode are undefined, you can still specify a
texture with a GL_COLOR_INDEX image. In that case, pixel-transfer operations are applied to conve
the indices to RGBA values by table lookup before they’re used to form the texture image.

The number of texels for both the width and height of a texture image, not including the optional borde
must be a power of 2. If your original image does not have dimensions that fit that limitation, you can t

OpenGL Programming Guide — Chapter 9, Texture Mapping — 10

the OpenGL Utility Library routingluScalelmage (o alter the size of your textures.

int gluScalelmage(GLenum format, GLint widthin, GLint heightin,
GLenum typein, const void *datain, GLint widthout,
GLint heightout, GLenum typeout, void *dataout);

Scales an image using the appropriate pixel-storage modes to unpack the datztdionThe

format, typein, and typeout parameters can refer to any of the formats or data types supported by
glDrawPixels(). The image is scaled using linear interpolation and box filtering (from the size
indicated by widthin and heightin to widthout and heightout), and the resulting image is written to
dataout, using the pixel GL_PACK* storage modes. The caller of gluScalelImage() must allocate
sufficient space for the output buffer. A value of O is returned on success, and a GLU error code i¢
returned on failure.

The framebuffer itself can also be used as a source for texturgl@pyTexImage2D(eads a
rectangle of pixels from the framebuffer and uses it for a new texture.

void glCopyTexlmage2D(GLenum target, GLint level,
GLint internalFormat,

GLint x, GLint y, GLsizei width, GLsizei height,

GLint border);

Creates a two—dimensional texture, using framebuffer data to define the texels. The pixels are ree
from the current GL_READ_ BUFFER and are processed exactly as if glCopyPixels() had been
called but stopped before final conversion. The settings of glPixelTransfer*() are applied.

The target parameter must be set to the constant GL_TEXTURE_2D. The level, internalFormat, a
border parameters have the same effects that they have for glTeximage2D(). The texture array is
taken from a screen-aligned pixel rectangle with the lower—left corner at coordinates specified by
(x, y) parameters. The width and height parameters specify the size of this pixel rectangle. Both

width and height must have the forfi%2b, where m is a nonnegative integer (which can have a
different value for width than for height) and b is the value of border.

The next sections give more detail about texturing, including the usetafdle¢ border andlevel
parameters. Thiargetparameter can be used to accurately query the size of a texture (by creating a
texture proxy withglTeximage*D() and whether a texture possibly can be used within the texture
resources of an OpenGL implementation. Redefining a portion of a texture is described in "Replacing
or Part of a Texture Image." One—dimensional textures are discussed in"One-Dimensional Textures."
The texture border, which has its size controlled byotrder parameter, is detailed in "Using a

Texture’s Borders." Thievelparameter is used to specify textures of different resolutions and is
incorporated into the special techniquempmappingwhich is explained in "Multiple Levels of

Detail." Mipmapping requires understanding how to filter textures as they’re applied; filtering is the
subject of "Filtering."

Texture Proxy

To an OpenGL programmer who uses textures, size is important. Texture resources are typically limit
and vary among OpenGL implementations. There is a special texture proxy target to evaluate whethe
sufficient resources are available.

glGetintegeryGL_MAX_TEXTURE_SIZE,...) tells you the largest dimension (width or height, without

OpenGL Programming Guide — Chapter 9, Texture Mapping — 11

borders) of a texture image, typically the size of the largest square texture supported. However,
GL_MAX_TEXTURE_SIZE does not consider the effect of the internal format of a texture. A texture
image that stores texels using the GL_RGBAL16 internal format may be using 64 bits per texel, so its
image may have to be 16 times smaller than an image with the GL_LUMINANCE4 internal format.
(Also, images requiring borders or mipmaps may further reduce the amount of available memory.)

A special place holder, @roxy, for a texture image allows the program to query more accurately
whether OpenGL can accommodate a texture of a desired internal format. To use the proxy to query
OpenGL, calglTeximage2D(Wwith atargetparameter of GL_PROXY_TEXTURE_2D and the given
level, internalFormat, width, height, border, formahdtype (For one—dimensional textures, use
corresponding 1D routines and symbolic constants.) For a proxy, you should pass NULL as the pointe
for thepixelsarray.

To find out whether there are enough resources available for your texture, after the texture proxy has
been created, query the texture state variablesgh@atTexLevelParameter*()f there aren’t enough
resources to accommodate the texture proxy, the texture state variables for width, height, border widtl
and component resolutions are set to 0.
void glGetTexLevelParameter{ifjv(GLenum target, GLint level,
GLenum pname, TYPE *params);
Returns in params texture parameter values for a specific level of detail, specified as level. target
defines the target texture and is one of GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_PROXY_TEXTURE_I1D, or GL_PROXY_TEXTURE_2D. Accepted values for pname are
GL_TEXTURE_WIDTH, GL_TEXTURE_HEIGHT, GL_TEXTURE_BORDER,
GL_TEXTURE_INTERNAL_FORMAT, GL_TEXTURE_RED_SIZE, GL_TEXTURE_GREEN_SIZE
GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE, GL_TEXTURE_LUMINANCE_SIZE,
or GL_TEXTURE_INTENSITY_SIZE.
GL_TEXTURE_COMPONENTS is also accepted for pname, but only for backward compatibility
with OpenGL Release TI0GL_TEXTURE_INTERNAL_FORMAT is the recommended symbolic
constant for Release 1.1.

Example 9—-Bemonstrates how to use the texture proxy to find out if there are enough resources to cre
a 64x64 texel texture with RGBA components with 8 bits of resolution. If this succeeds, then
glGetTexLevelParameteriv§tores the internal format (in this case, GL_RGBAS) into the variable
format

Example 9-2 Querying Texture Resources with a Texture Proxy

GLint format;

glTeximage2D(GL_PROXY_TEXTURE_2D, 0, GL_RGBAS,
64, 64, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glGetTexLevelParameteriv(GL_PROXY_TEXTURE_2D, O,
GL_TEXTURE_INTERNAL_FORMAT, &format);

Note: There is one major limitation about texture proxies: The texture proxy tells you if there is space
for your texture, but only if all texture resources are available (in other words, if it's the only texture in

OpenGL Programming Guide — Chapter 9, Texture Mapping — 12

town). If other textures are using resources, then the texture proxy query may respond affirmatively, b
there may not be enough space to make your texture resident (that is, part of a possibly high—perform
working set of textures). (See "Texture Objects" for more information about managing resident texture

Replacing All or Part of a Texture Image

Creating a texture may be more computationally expensive than modifying an existing one. In OpenG
Release 1.1, there are new routines to replace all or part of a texture image with new information. This
can be helpful for certain applications, such as using real-time, captured video images as texture ima
For that application, it makes sense to create a single texture agid es8ublmage2D(p repeatedly
replace the texture data with new video images. Also, there are no size restrictions for
glTexSublmage2D(¢hat force the height or width to be a power of two. This is helpful for processing
video images, which generally do not have sizes that are powers of two.

void glTexSublmage2D(GLenum target, GLint level, GLint xoffset,
GLint yoffset, GLsizei width, GLsizei height,
GLenum format, GLenum type, const GLvoid *pixels);

Defines a two—dimensional texture image that replaces all or part of a contiguous subregion (in 2[
it's simply a rectangle) of the current, existing two—dimensional texture imagerdéteparameter
must be set to GL_TEXTURE_2D.

The level, format, and type parameters are similar to the ones used for glTeximage2D(). level is tt
mipmap level-of—detail number. It is not an error to specify a width or height of zero, but the
subimage will have no effect. format and type describe the format and data type of the texture ime
data. The subimage is also affected by modes set by glPixelStore*() and glPixelTransfer*().
pixels contains the texture data for the subimage. width and height are the dimensions of the
subregion that is replacing all or part of the current texture image. xoffset and yoffset specify the
texel offset in the x and y directions (with (0, 0) at the lower—left corner of the texture) and specify
where to put the subimage within the existing texture array. This region may not include any texel.
outside the range of the originally defined texture array.

In Example 9-3ome of the code from Example $tats been modified so that pressing the ‘s’ key drops
a smaller checkered subimage into the existing image. (The resulting texture is shown in Figure 9-3)
Pressing the ‘r’ key restores the original image. Examplsi®a8s the two routines,
makeChecklmageséndkeyboard() that have been substantially changed. (See "Texture Objects" for
more information abowgIBindTexture()

OpenGL Programming Guide — Chapter 9, Texture Mapping — 13

Figure 9-3 Texture with Subimage Added

Example 9-3 Replacing a Texture Subimage: texsub.c

[* Create checkerboard textures */

#define checklmageWidth 64

#define checklmageHeight 64

#define sublmageWidth 16

#define sublmageHeight 16

static GLubyte checklmage[checkimageHeight][checkimageWidth][4];
static GLubyte sublmage[sublmageHeight][subimageWidth][4];

void makeChecklmages(void)

{

inti, j, c;

for (i = 0; i < checklmageHeight; i++) {
for (j = 0; j < checklmageWidth; j++) {
¢ = ((((1&0x8)==0)"((j&0x8))==0))*255;
checklmage[i][j][0] = (GLubyte) c;
checklmage[i][jl[1] = (GLubyte) c;
checklmageli][jl[2] = (GLubyte) c;
checklmage[i][jl[3] = (GLubyte) 255;
}
}
for (i = 0; i < sublmageHeight; i++) {
for (j = 0; j < sublmageWidth; j++) {
¢ = ((((I&0x4)==0)"((j&0x4))==0))*255;
sublmageli][j][0] = (GLubyte) c;
sublmageli][j][1] = (GLubyte) 0O;
sublmageli][jl[2] = (GLubyte) 0O;
sublmageli][j][3] = (GLubyte) 255;

OpenGL Programming Guide — Chapter 9, Texture Mapping — 14

}
void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case ‘s’
case ‘'S™
glBindTexture(GL_TEXTURE_2D, texName);
glTexSublmage2D(GL_TEXTURE_2D, 0, 12, 44,
sublmageWidth, sublmageHeight, GL_RGBA,
GL_UNSIGNED_BYTE, sublmage);
glutPostRedisplay();
break;
case r’:
case ‘R
glBindTexture(GL_TEXTURE_2D, texName);
glTeximage2D(GL_TEXTURE_2D, 0, GL_RGBA,
checklmageWidth, checklmageHeight, 0,
GL_RGBA, GL_UNSIGNED_BYTE, checkimage);
glutPostRedisplay();
break;
case 27:
exit(0);
break;
default:
break;
}
}

Once again, the framebuffer itself can be used as a source for texture data; this time, a texture subimi
glCopyTexSublmage2Di@ads a rectangle of pixels from the framebuffer and replaces a portion of an
existing texture arrayg(CopyTexSublmage2Di3 kind of a cross betwegCopyTeximage2D@nd
glTexSublmage2Dy)

void glCopyTexSublmage2D(GLenum target, GLint level,
GLint xoffset, GLint yoffset, GLint x, GLint y,
GLsizei width, GLsizei height);

Uses image data from the framebuffer to replace all or part of a contiguous subregion of the curre
existing two—dimensional texture image. The pixels are read from the current GL_READ_BUFFEF
and are processed exactly as if glCopyPixels() had been called, stopping before final conversion.
The settings of glPixelStore*() and glPixelTransfer*() are applied.

The target parameter must be set to GL_TEXTURE_2D. level is the mipmap level-of-detail numt
xoffset and yoffset specify the texel offset in the x and y directions (with (0, 0) at the lower—left cor

OpenGL Programming Guide — Chapter 9, Texture Mapping — 15

of the texture) and specify where to put the subimage within the existing texture array. The subimi
texture array is taken from a screen-aligned pixel rectangle with the lower-left corner at coordina
specified by the (x, y) parameters. The width and height parameters specify the size of this subim
rectangle.

One-Dimensional Textures

Sometimes a one—dimensional texture is suffidiémt example, if you're drawing textured bands where
all the variation is in one direction. A one—dimensional texture behaves like a two—dimensional one wi
height= 1, and without borders along the top and bottom. All the two—dimensional texture and subtext
definition routines have corresponding one—dimensional routines. To create a simple one—dimensiong
texture, usglTeximagelD()

void glTeximagelD(GLenum target, GLint level, GLint internalFormat,

GLsizei width, GLint border, GLenum format,
GLenum type, const GLvoid *pixels);

Defines a one—dimensional texture. All the parameters have the same meanings as for
glTeximage2D(), except that the image is nhow a one—dimensional array of texels. As before, the

value of width is® (or 2T4+2, if there’s a border), where m is a nonnegative integer. You can
supply mipmaps, proxies (set targetto GL_PROXY_TEXTURE_1D), and the same filtering option
are available as well.

For a sample program that uses a one—dimensional texture map, see Example 9-6
To replace all or some of the texels of a one—dimensional textugdTag&ublmage1Dy()

void glTexSublmagelD(GLenum target, GLint level, GLint xoffset,
GLsizei width, GLenum format,
GLenum type, const GLvoid *pixels);

Defines a one—dimensional texture array that replaces all or part of a contiguous subregion (in 1D
a row) of the current, existing one—dimensional texture imageaiidet parameter must be set to
GL_TEXTURE_1D.

The level, format, and type parameters are similar to the ones used for glTeximagelD(). level is tt
mipmap level-of-detail numbfermat and type describe the format and data type of the texture
image data. The subimage is also affected by modes set by glPixelStore*() or glPixelTransfer*().

pixelscontains the texture data for the subimagdthis the number of texels that replace part or all of
the current texture imagroffsetspecifies the texel offset for where to put the subimage within the
existing texture array.

To use the framebuffer as the source of a new or replacement for an old one-dimensional texture, usi
eitherglCopyTeximagelD@r glCopyTexSublmagelD()
void glCopyTexlmagelD(GLenum target, GLint level,

GLint internalFormat, GLint x, GLint y,
GLsizei width, GLint border);

Creates a one—dimensional texture, using framebuffer data to define the texels. The pixels are re:
from the current GL_READ_BUFFER and are processed exactly as if glCopyPixels() had been
called but stopped before final conversion. The settings of gIPixelStore*() and glPixelTransfer*()

OpenGL Programming Guide — Chapter 9, Texture Mapping — 16

are applied.

The target parameter must be set to the constant GL_TEXTURE_1D. The level, internalFormat, a
border parameters have the same effects that they have for glCopyTeximage2D(). The texture ar
is taken from a row of pixels with the lower-left corner at coordinates specified Ryyhe (

parameters. The width parameter specifies the number of pixels in this row. The value of Witth is

(or 2M™+2 if there’s a border), where m is a nonnegative integer.

void glCopyTexSublmagelD(GLenum target, GLint level, GLint xoffset,
GLint x, GLint y, GLsizei width);

Uses image data from the framebuffer to replace all or part of a contiguous subregion of the curre
existing one—dimensional texture image. The pixels are read from the current GL_READ_ BUFFEI
and are processed exactly as if glCopyPixels() had been called but stopped before final conversic
The settings of glPixelStore*() and glPixelTransfer*() are applied.

The target parameter must be set to GL_TEXTURE_1D. level is the mipmap level-of-detail numt
xoffset specifies the texel offset and specifies where to put the subimage within the existing textur
array. The subimage texture array is taken from a row of pixels with the lower—left corner at
coordinates specified by the (X, y) parameters. The width parameter specifies the number of pixel
this row.

Using a Texture’s Borders
Advanced

If you need to apply a larger texture map than your implementation of OpenGL allows, you can, with a
little care, effectively make larger textures by tiling with several different textures. For example, if you
need a texture twice as large as the maximum allowed size mapped to a square, draw the square as 1
subsquares, and load a different texture before drawing each piece.

Since only a single texture map is available at one time, this approach might lead to problems at the
edges of the textures, especially if some form of linear filtering is enabled. The texture value to be use
for pixels at the edges must be averaged with something beyond the edge, which, ideally, should com
from the adjacent texture map. If you define a border for each texture whose texel values are equal to
values of the texels on the edge of the adjacent texture map, then the correct behavior results when li
filtering takes place.

To do this correctly, notice that each map can have eight neighboesadjacent to each edge, and one

touching each corner. The values of the texels in the corner of the border need to correspond with the
texels in the texture maps that touch the corners. If your texture is an edge or corner of the whole tiling
you need to decide what values would be reasonable to put in the borders. The easiest reasonable th
do is to copy the value of the adjacent texel in the texture map. Remember that the border values nee
be supplied at the same time as the texture—image data, so you need to figure this out ahead of time.

A texture’s border color is also used if the texture is applied in such a way that it only partially covers ¢
primitive. (See "Repeating and Clamping Textures" for more information about this situation.)

Multiple Levels of Detail

OpenGL Programming Guide — Chapter 9, Texture Mapping — 17

Advanced

Textured objects can be viewed, like any other objects in a scene, at different distances from the
viewpoint. In a dynamic scene, as a textured object moves farther from the viewpoint, the texture map
must decrease in size along with the size of the projected image. To accomplish this, OpenGL has to
filter the texture map down to an appropriate size for mapping onto the object, without introducing
visually disturbing artifacts. For example, to render a brick wall, you may use a large (8428 &8el)
texture image when it is close to the viewer. But if the wall is moved farther away from the viewer until
it appears on the screen as a single pixel, then the filtered textures may appear to change abruptly at
certain transition points.

To avoid such artifacts, you can specify a series of prefiltered texture maps of decreasing resolutions,
calledmipmapsas shown in Figure 9-4 The temipmapwas coined by Lance Williams, when he
introduced the idea in his papePyramidal Parametrics(SIGGRAPH 1983 Proceedingd)ip stands

for the Latinmultim im parvg meaning "many things in a small place." Mipmapping uses some clever
methods to pack image data into memory.

Figure 9-4 Mipmaps

When using mipmapping, OpenGL automatically determines which texture map to use based on the s
(in pixels) of the object being mapped. With this approach, the level of detail in the texture map is
appropriate for the image that's drawn on the sdremthe image of the object gets smaller, the size of
the texture map decreases. Mipmapping requires some extra computation and texture storage area;
however, when it's not used, textures that are mapped onto smaller objects might shimmer and flash :
the objects move.

To use mipmapping, you must provide all sizes of your texture in powers of 2 between the largest size
and a k1 map. For example, if your highest-resolution map34&4you must also provide maps of

size 3X8, 16«4, 8x2, 4x1, 2x1, and k1. The smaller maps are typically filtered and averaged—down
versions of the largest map in which each texel in a smaller texture is an average of the corresponding
four texels in the larger texture. (Since OpenGL doesn’t require any particular method for calculating t

OpenGL Programming Guide — Chapter 9, Texture Mapping — 18

smaller maps, the differently sized textures could be totally unrelated. In practice, unrelated textures
would make the transitions between mipmaps extremely noticeable.)

To specify these textures, cgllfexlmage2D(pnce for each resolution of the texture map, with different
values for thdevel width, height andimageparameters. Starting with zeteyelidentifies which

texture in the series is specified; with the previous example, the largest texture ok&&evédld be
declared witHevel = 0, the 328 texture witHevel= 1, and so on. In addition, for the mipmapped

textures to take effect, you need to choose one of the appropriate filtering methods described in the ni
section.

Example 9—4#lustrates the use of a series of six texture maps decreasing in size #8t82x1. This
program draws a rectangle that extends from the foreground far back in the distance, eventually
disappearing at a point, as shown in "Plate 20" in Appendix |. Note that the texture coordinates range
from 0.0 to 8.0 so 64 copies of the texture map are required to tile the rectangle, eight in each directio
To illustrate how one texture map succeeds another, each map has a different color.

Example 9-4 Mipmap Textures: mipmap.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

GLubyte mipmaplmage32[32][32][4];
GLubyte mipmaplmage16[16][16][4];
GLubyte mipmaplmage8[8][8][4];
GLubyte mipmaplmage4[4][4][4];
GLubyte mipmaplmage?2[2][2][4];
GLubyte mipmaplmagel[1][1][4];

static GLuint texName;

void makelmages(void)

{

inti, j;

for (i=0;i<32;i++) {
for (j = 0;j < 32; j++) {
mipmaplimage32[i][j][0] = 255;
mipmaplimage32[i][j][1] = 255;
mipmaplimage32[i][jl[2] = O;
mipmaplmage32[i][j][3] = 255;
}

}
for (i = 0; i < 16; i++) {

OpenGL Programming Guide — Chapter 9, Texture Mapping — 19

for (j=0;j<16; j++){
mipmaplmage16Ji][j][0] = 255;
mipmaplimagel6]i][jl[1] = O;
mipmaplmage16[i][j][2] = 255;
mipmaplimagel6[i][j][3] = 255;
}
}
for (i=0;i<8;i++){
for (j=0;j<8;j++){
mipmaplmage8i][j][0] = 255;
mipmaplimage8i][jl[1] = O;
mipmaplmage8i][jl[2] = O;
mipmaplmage8i][j][3] = 255;
}
}
for(i=0;i<4;i++){
for j=0;j<4;j++){
mipmaplmage4|i][j][0] = O;
mipmaplmage4|i][jl[1] = 255;
mipmaplmage4|i][jl[2] = O;
mipmaplmage4|i][jl[3] = 255;
}
}
for(i=0;i<2;i++){
for (j=0;j<2;j++){
mipmaplmage?2[i][j][0] = O;
mipmaplmage2]i][jl[1] = O;
mipmaplmage2[i][j][2] = 255;
mipmaplmage2]i][jl[3] = 255;
}
}
mipmaplmagel1[0][0][0] = 255;
mipmaplimagel[0][0][1] = 255;
mipmaplmagel1[0][0][2] = 255;
mipmaplimagel[0][0][3] = 255;
}
void init(void)
{
glEnable(GL_DEPTH_TEST);
glShadeModel(GL_FLAT);

glTranslatef(0.0, 0.0, —3.6);

OpenGL Programming Guide — Chapter 9, Texture Mapping — 20

makelmages();
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glGenTextures(1, &texName);
giBindTexture(GL_TEXTURE_2D, texName);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST_MIPMAP_NEAREST);

glTeximage2D(GL_TEXTURE_2D, 0, GL_RGBA, 32, 32, 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmaplmage32);
glTeximage2D(GL_TEXTURE_2D, 1, GL_RGBA, 16, 16, 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmaplmagel6);
glTeximage2D(GL_TEXTURE_2D, 2, GL_RGBA, 8, 8, 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmaplmage8);
glTeximage2D(GL_TEXTURE_2D, 3, GL_RGBA, 4, 4, 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmaplmage4);
glTeximage2D(GL_TEXTURE_2D, 4, GL_RGBA, 2, 2, 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmaplmage?2);
glTeximage2D(GL_TEXTURE_2D, 5, GL_RGBA, 1, 1, 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmaplmagel);

gITexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glEnable(GL_TEXTURE_2D);
}

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glBindTexture(GL_TEXTURE_2D, texName);
giBegin(GL_QUADS);
glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, —1.0, 0.0);
glTexCoord2f(0.0, 8.0); glVertex3f(-2.0, 1.0, 0.0);
glTexCoord2f(8.0, 8.0); glVertex3f(2000.0, 1.0, —-6000.0);
glTexCoord2f(8.0, 0.0); glVertex3f(2000.0, —1.0, —6000.0);
glEnd();
glFlush();

void reshape(int w, int h)

{

OpenGL Programming Guide — Chapter 9, Texture Mapping — 21

glViewport(0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode(GL_PROJECTION);

glLoadldentity();

gluPerspective(60.0, (GLfloat)w/(GLfloat)h, 1.0, 30000.0);
gIMatrixMode(GL_MODELVIEW);

glLoadldentity();

}
void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);
break;
default:
break;
}
}

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutlnitWindowSize (500, 500);
glutinitWindowPosition(50, 50);
glutCreateWindow(argv[0]);
init();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutMainLoop();
return O;

}

Example 9-4lustrates mipmapping by making each mipmap a different color so that it's obvious when
one map is replaced by another. In a real situation, you define mipmaps so that the transition is as sm
as possible. Thus, the maps of lower resolution are usually filtered versions of an original,
high-resolution map. The construction of a series of such mipmaps is a software process, and thus is
part of OpenGL, which is simply a rendering library. However, since mipmap construction is such an
important operation, however, the OpenGL Utility Library contains two routines that aid in the
manipulation of images to be used as mipmapped textures.

Assuming you have constructed the level 0, or highest-resolution map, the routines
gluBuild1DMipmaps(andgluBuild2DMipmaps()construct and define the pyramid of mipmaps down to

OpenGL Programming Guide — Chapter 9, Texture Mapping — 22

a resolution of X 1 (or 1, for one—dimensional texture maps). If your original image has dimensions th:
are not exact powers of gluBuild*DMipmaps(helpfully scales the image to the nearest power of 2.

int gluBuild1DMipmaps(GLenum target, GLint components, GLint width,
GLenum format, GLenum type, void *data);

int gluBuild2DMipmaps(GLenum target, GLint components, GLint width,
GLint height, GLenum format, GLenum type,

void *data);

Constructs a series of mipmaps and calls glTexlmage*D() to load the images. The parameters for
target, components, width, height, format, type, and data are exactly the same as those for
glTeximagelD() and glTeximage2D(). A value of 0 is returned if all the mipmaps are constructed
successfully; otherwise, a GLU error code is returned.

Filtering

Texture maps are square or rectangular, but after being mapped to a polygon or surface and transforr
into screen coordinates, the individual texels of a texture rarely correspond to individual pixels of the
final screen image. Depending on the transformations used and the texture mapping applied, a single
pixel on the screen can correspond to anything from a tiny portion of a texel (magnification) to a large
collection of texels (minification), as shown in Figure 9-5 In either case, it's unclear exactly which texe
values should be used and how they should be averaged or interpolated. Consequently, OpenGL allo
you to specify any of several filtering options to determine these calculations. The options provide
different trade-offs between speed and image quality. Also, you can specify independently the filterin
methods for magnification and minification.

Figure 9-5 Texture Magnification and Minification

In some cases, it isn’'t obvious whether magnification or minification is called for. If the mipmap needs
be stretched (or shrunk) in both thandy directions, then magnification (or minification) is needed. If
the mipmap needs to be stretched in one direction and shrunk in the other, OpenGL makes a choice
between magnification and minification that in most cases gives the best result possible. It's best to tn
avoid these situations by using texture coordinates that map without such distortion. (See "Computing
Appropriate Texture Coordinates.")

The following lines are examples of how to g§EexParameter*(Xo specify the magnification and
minification filtering methods:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

OpenGL Programming Guide — Chapter 9, Texture Mapping — 23

GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);

The first argument tglTexParameter*()s either GL_TEXTURE_2D or GL_TEXTURE_1D, depending
on whether you’re working with two— or one—-dimensional textures. For the purposes of this discussior
the second argument is either GL_TEXTURE_MAG_FILTER or GL_TEXTURE_MIN_FILTER to
indicate whether you're specifying the filtering method for magnification or minification. The third
argument specifies the filtering method; Table 9-1lists the possible values.

Parameter Values
GL_TEXTURE_MAG_FILTER GL_NEAREST or GL_LINEAR
GL_TEXTURE_MIN_FILTER GL_NEAREST, GL_LINEAR,

GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST, or
GL_LINEAR_MIPMAP_LINEAR

Table 9-1Filtering Methods for Magnification and Minification

If you choose GL_NEAREST, the texel with coordinates nearest the center of the pixel is used for bot|
magnification and minification. This can result in aliasing artifacts (sometimes severe). If you choose
GL_LINEAR, a weighted linear average of the22array of texels that lie nearest to the center of the
pixel is used, again for both magnification and minification. When the texture coordinates are near the
edge of the texture map, the nearest &rray of texels might include some that are outside the texture
map. In these cases, the texel values used depend on whether GL_REPEAT or GL_CLAMP is in effe
and whether you've assigned a border for the texture. (See "Using a Texture’s Borders.") GL_NEARE
requires less computation than GL_LINEAR and therefore might execute more quickly, but
GL_LINEAR provides smoother results.

With magnification, even if you've supplied mipmaps, the largest texture leagi<£ 0) is always used.
With minification, you can choose a filtering method that uses the most appropriate one or two mipma
as described in the next paragraph. (If GL_NEAREST or GL_LINEAR is specified with minification, the
largest texture map is used.)

As shown in Table 9-four additional filtering choices are available when minifying with mipmaps.
Within an individual mipmap, you can choose the nearest texel value with
GL_NEAREST_MIPMAP_NEAREST, or you can interpolate linearly by specifying
GL_LINEAR_MIPMAP_NEAREST. Using the nearest texels is faster but yields less desirable results.
The particular mipmap chosen is a function of the amount of minification required, and there’s a cutofi
point from the use of one particular mipmap to the next. To avoid a sudden transition, use
GL_NEAREST_MIPMAP_LINEAR or GL_LINEAR_MIPMAP_LINEAR to linearly interpolate texel
values from the two nearest best choices of mipmaps. GL_ NEAREST_MIPMAP_LINEAR selects the
nearest texel in each of the two maps and then interpolates linearly between these two values.
GL_LINEAR_MIPMAP_LINEAR uses linear interpolation to compute the value in each of two maps
and then interpolates linearly between these two values. As you might expect,
GL_LINEAR_MIPMAP_LINEAR generally produces the smoothest results, but it requires the most

OpenGL Programming Guide — Chapter 9, Texture Mapping — 24

computation and therefore might be the slowest.

Texture Objects

Texture objects are an important new feature in release 1.1 of OpenGL. A texture object stores textur
data and makes it readily available. You can now control many textures and go back to textures that
been previously loaded into your texture resources. Using texture objects is usually the fastest way to
apply textures, resulting in big performance gains, because it is almost always much faster to bind (re
an existing texture object than it is to reload a texture image gdiaglmage*D()

Also, some implementations support a limitearking set of high—performance textures. You can use
texture objects to load your most often used textures into this limited area.

To use texture objects for your texture data, take these steps.
1. Generate texture names.

2. Initially bind (create) texture objects to texture data, including the image arrays and texture
properties.

3. If your implementation supports a working set of high—performance textures, see if you have enot
space for all your texture objects. If there isn’t enough space, you may wish to establish priorities
each texture object so that more often used textures stay in the working set.

4. Bind and rebind texture objects, making their data currently available for rendering textured mode

Naming A Texture Object

Any nonzero unsigned integer may be used as a texture name. To avoid accidentally reusing names,
consistently usglGenTextures(Jo provide unused texture names.

void glGenTextures(GLsizei n, GLuint *textureNames);
Returns n currently unused names for texture objects in the array textureNames. The names retul
in textureNames do not have to be a contiguous set of integers.
The names in textureNames are marked as used, but they acquire texture state and dimensionali
(1D or 2D) only when they are first bound.
Zero is a reserved texture name and is never returned as a texture name by glGenTextures().

glisTexture()determines if a texture name is actually in use. If a texture name was returned by
glGenTextures(put has not yet been bound (callgi§indTexture(with the name at least once), then
glisTexture(returns GL_FALSE.

GLboolean glisTexture(GLuint textureName);
Returns GL_TRUE if textureName is the name of a texture that has been bound and has not beer
subsequently deleted. Returns GL_FALSE if textureName is zero or textureName is a nonzero va
that is not the name of an existing texture.

Creating and Using Texture Objects

The same routinglBindTexture() both creates and uses texture objects. When a texture name is initiall

OpenGL Programming Guide — Chapter 9, Texture Mapping — 25

bound (used witlglBindTexture(), a new texture object is created with default values for the texture
image and texture properties. Subsequent calitTeximage*() glTexSubimage*()
glCopyTeximage*()glCopyTexSublmage* (@I TexParameter*() andglPrioritize Textures(store data in
the texture object. The texture object may contain a texture image and associated mipmap images (if
any), including associated data such as width, height, border width, internal format, resolution of
components, and texture properties. Saved texture properties include minification and magnification
filters, wrapping modes, border color, and texture priority.

When a texture object is subsequently bound once again, its data becomes the current texture state. |
state of the previously bound texture is replaced.)

void glBindTexture(GLenum target, GLuint textureName);
glBindTexture() does three things. When using textureName of an unsigned integer other than zel
for the first time, a new texture object is created and assigned that name. When binding to a
previously created texture object, that texture object becomes active. When binding to a textureN:
value of zero, OpenGL stops using texture objects and returns to the unnamed default texture.
When a texture object is initially bound (that is, created), it assumes the dimensionality of target,
which is either GL_TEXTURE_1D or GL_TEXTURE_2D. Immediately upon its initial binding, the
state of texture object is equivalent to the state of the default GL_TEXTURE_1D or
GL_TEXTURE_2D (depending upon its dimensionality) at the initialization of OpenGL. In this
initial state, texture properties such as minification and magnification filters, wrapping modes,
border color, and texture priority are set to their default values.

In Example 9-58wo texture objects are createdriit(). In display() each texture object is used to render
a different four—sided polygon.

Example 9-5 Binding Texture Objects: texbind.c

#define checklmageWidth 64
#define checklmageHeight 64
static GLubyte checklmage[checkimageHeight][checkimageWidth][4];
static GLubyte otherlmage[checkimageHeight][checkimageWidth][4];

static GLuint texName[2];

void makeChecklmages(void)

{

inti, j, c;

for (i = 0; i < checklmageHeight; i++) {
for (j = 0; j < checklmageWidth; j++) {
¢ = ((((1&0x8)==0)"((j&0x8))==0))*255;
checklmage[i][j][0] = (GLubyte) c;
checklmage[i][jl[1] = (GLubyte) c;
checklmageli][jl[2] = (GLubyte) c;
checklmageli][jl[3] = (GLubyte) 255;

OpenGL Programming Guide — Chapter 9, Texture Mapping — 26

¢ = ((((I&0x10)==0)"((j&0x10))==0))*255;
otherlmageli][j][0] = (GLubyte) c;
otherlmageli][j][1] = (GLubyte) 0O;
otherlmageli][jl[2] = (GLubyte) 0O;
otherlmageli][j][3] = (GLubyte) 255;

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel(GL_FLAT);
glEnable(GL_DEPTH_TEST);

makeChecklmages();
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glGenTextures(2, texName);
glBindTexture(GL_TEXTURE_2D, texName][0]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);
glTeximage2D(GL_TEXTURE_2D, 0, GL_RGBA, checklmageWidth,
checklmageHeight, 0, GL_RGBA, GL_UNSIGNED BYTE,
checklmage);

glBindTexture(GL_TEXTURE_2D, texName[1]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);
gITexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glTeximage2D(GL_TEXTURE_2D, 0, GL_RGBA, checklmageWidth,
checklmageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,
otherlmage);
glEnable(GL_TEXTURE_2D);

}

OpenGL Programming Guide — Chapter 9, Texture Mapping — 27

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glBindTexture(GL_TEXTURE_2D, texName][0]);
glBegin(GL_QUADS);
glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, -1.0, 0.0);
glTexCoord2f(0.0, 1.0); glVertex3f(-2.0, 1.0, 0.0);
glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 1.0, 0.0);
glTexCoord2f(1.0, 0.0); glVertex3f(0.0, —1.0, 0.0);
glEnd();
glBindTexture(GL_TEXTURE_2D, texName[1]);
giBegin(GL_QUADS);
glTexCoord2f(0.0, 0.0); glVertex3f(1.0, —1.0, 0.0);
glTexCoord2f(0.0, 1.0); glVertex3f(1.0, 1.0, 0.0);
glTexCoord2f(1.0, 1.0); glVertex3f(2.41421, 1.0, —-1.41421);
glTexCoord2f(1.0, 0.0); glVertex3f(2.41421, -1.0, —1.41421);
glEnd();
glFlush();

}

Whenever a texture object is bound once again, you may edit the contents of the bound texture object
Any commands you call that change the texture image or other properties change the contents of the
currently bound texture object as well as the current texture state.

In Example 9-mafter completion oflisplay() you are still bound to the texture named by the contents of
texName[1] Be careful that you don’t call a spurious texture routine that changes the data in that textu
object.

When using mipmaps, all related mipmaps of a single texture image must be put into a single texture
object. In Example 9-4, levels 0-5 of a mipmapped texture image are put into a single texture object
namedexName

Cleaning Up Texture Objects

As you bind and unbind texture objects, their data still sits around somewhere among your texture
resources. If texture resources are limited, deleting textures may be one way to free up resources.

void glDeleteTextures(GLsizei n, const GLuint *textureNames);
Deletes n texture objects, named by elements in the array textureNames. The freed texture name
may now be reused (for example, by glGenTextures()).
If a texture that is currently bound is deleted, the binding reverts to the default texture, as if
glBindTexture() were called with zero for the value of textureName. Attempts to delete nonexisten
texture names or the texture name of zero are ignored without generating an error.

A Working Set of Resident Textures

OpenGL Programming Guide — Chapter 9, Texture Mapping — 28

Some OpenGL implementations support a working set of high—performance textures, which are said t
resident. Typically, these implementations have specialized hardware to perform texture operations ai
limited hardware cache to store texture images. In this case, using texture objects is recommended,
because you are able to load many textures into the working set and then control them.

If all the textures required by the application exceed the size of the cache, some textures cannot be
resident. If you want to find out if a single texture is currently resident, bind its object, and then use

glGetTexParameter*v(jo find out the value associated with the GL_TEXTURE_RESIDENT state. If

you want to know about the texture residence status of many texturgbAreseexturesResident()

GLboolean glAreTexturesResident(GLsizei n, const
GLuint*textureNames, GLboolean *residences);

Queries the texture residence status of the n texture objects, named in the array textureNames.
residences is an array in which texture residence status is returned for the corresponding texture
objects in the array textureNames. If all the named textures in textureNames are resident, the
glAreTexturesResident() function returns GL_TRUE, and the contents of the array residences are
undisturbed. If any texture in textureNames is not resident, then glAreTexturesResident() returns
GL_FALSE and the elements in residences, which correspond to nonresident texture objects in
textureNames, are also set to GL_FALSE.

Note thagglAreTexturesResident@turns the current residence status. Texture resources are very
dynamic, and texture residence status may change at any time. Some implementations cache texture
when they are first used. It may be necessary to draw with the texture before checking residency.

If your OpenGL implementation does not establish a working set of high—performance textures, then t
texture objects are always considered resident. In thatglAseTexturesResident@lways returns
GL_TRUE and basically provides no information.

Texture Residence Strategies

If you can create a working set of textures and want to get the best texture performance possible, you
really have to know the specifics of your implementation and application. For example, with a visual
simulation or video game, you have to maintain performance in all situations. In that case, you should
never access a nonresident texture. For these applications, you want to load up all your textures upor
initialization and make them all resident. If you don’t have enough texture memory available, you may
need to reduce the size, resolution, and levels of mipmaps for your texture images, or you may use
glTexSublmage*(Jo repeatedly reuse the same texture memory.

For applications that create textures "on the fly," nonresident textures may be unavoidable. If some
textures are used more frequently than others, you may assign a higher priority to those texture objec
increase their likelihood of being resident. Deleting texture objects also frees up space. Short of that,
assigning a lower priority to a texture object may make it first in line for being moved out of the workin
set, as resources dwindigPrioritize Textures()is used to assign priorities to texture objects.

void glPrioritizeTextures(GLsizei n, const GLuint *textureNames,
const GLclampf *priorities);

Assigns the n texture objects, named in the array textureNames, the texture residence priorities ir
the corresponding elements of the array priorities. The priority values in the array priorities are

OpenGL Programming Guide — Chapter 9, Texture Mapping — 29

clamped to the range [0.0, 1.0] before being assigned. Zero indicates the lowest priority; these
textures are least likely to be resident. One indicates the highest priority.

glPrioritizeTextures() does not require that any of the textures in textureNames be bound. Howev¢
the priority might not have any effect on a texture object until it is initially bound.

glTexParameter*(Jalso may be used to set a single texture’s priority, but only if the texture is currently
bound. In fact, use gfiTexParameter*(js the only way to set the priority of a default texture.

If texture objects have equal priority, typical implementations of OpenGL apply a least recently used
(LRU) strategy to decide which texture objects to move out of the working set. If you know that your
OpenGL implementation has this behavior, then having equal priorities for all texture objects creates ¢
reasonable LRU system for reallocating texture resources.

If your implementation of OpenGL doesn’t use an LRU strategy for texture objects of equal priority (or
you don’t know how it decides), you can implement your own LRU strategy by carefully maintaining th
texture object priorities. When a texture is used (bound), you can maximize its priority, which reflects i
recent use. Then, at regular (time) intervals, you can degrade the priorities of all texture objects.

Note: Fragmentation of texture memory can be a problem, especially if you're deleting and creating Ic
of new textures. Although it is even possible that you can load all the texture objects into a working se
by binding them in one sequence, binding them in a different sequence may leave some textures
nonresident.

Texture Functions

In all the examples so far in this chapter, the values in the texture map have been used directly as col
to be painted on the surface being rendered. You can also use the values in the texture map to modul
the color that the surface would be rendered without texturing, or to blend the color in the texture map
with the original color of the surface. You choose one of four texturing functions by supplying the
appropriate arguments gbrexEnv*()

void glTexEn\if}(GLenum target, GLenum pname, TYPEparam);
void glTexEnWif}v(GLenum target, GLenum pname, TYPE *param);

Sets the current texturing function. target must be GL_TEXTURE_ENV. If pname is
GL_TEXTURE_ENV_MODE, param can be GL_DECAL, GL_REPLACE, GL_MODULATE, or
GL_BLEND, to specify how texture values are to be combined with the color values of the fragme
being processed. If pname is GL_ TEXTURE_ENV_COLOR, param is an array of four floating—po
values representing R, G, B, and A components. These values are used only if the GL_BLEND
texture function has been specified as well.

The combination of the texturing function and the base internal format determine how the textures are
applied for each component of the texture. The texturing function operates on selected components o
texture and the color values that would be used with no texturing. (Note that the selection is performer
after the pixel-transfer function has been applied.) Recall that when you specify your texture map witt
glTeximage*D() the third argument is the internal format to be selected for each texel.

Table 9-2and Table 9-3show how the texturing function and base internal format determine the
texturing application formula used for each component of the texture. There are six base internal form

OpenGL Programming Guide — Chapter 9, Texture Mapping — 30

(the letters in parentheses represent their values in the tables): GL_ALPHA (A), GL_LUMINANCE (L),
GL_LUMINANCE_ALPHA (L and A), GL_INTENSITY (I), GL_RGB (C), and GL_RGBA (C and A).
Other internal formats specify desired resolutions of the texture components and can be matched to o
of these six base internal formats.

Base Internal Format Replace Texture Function Modulate Texture Function
GL_ALPHA CcC=G, C=G,
A=At A = AthA
GL_LUMINANCE C=Ll, C = GlLt,
A=Asf A=Af
GL_LUMINANCE_ALPHA C =L, C = GlLt,
A=At A = AfAt
GL_INTENSITY C=k C =Gy,
A=lt A = Aslt
GL_RGB C=G C=GGC,
A= Af A= Af
GL_RGBA C=¢G, C=GGC,
A=At A = AfAt

Table 9-2 Replace and Modulate Texture Function

Base Internal Format Decal Texture Function Blend Texture Function
GL_ALPHA undefined C=¢
A = AfAt
GL_LUMINANCE undefined C = @1-L) + Ccly,
A=As
GL_LUMINANCE_ALPHA undefined C = @1-1 + Ccly,
A = AfAt
GL_INTENSITY undefined C=@1-) + &y,
A=Af(1-]) + Aclt,
GL_RGB C=G C=G(1-¢) + GGy,
A=Asf A=Af
GL_RGBA C=G(1-/) + CAy, C=G(1-¢) + GGy,
A= Af A= AfAt

Table 9-3 Decal and Blend Texture Function

Note: In Table 9-2and Table 9-3 a subscript of t indicates a texture value, f indicates the incoming
fragment value, c indicates the values assigned with GL_ TEXTURE_ENV_COLOR, and no subscript
indicates the final, computed value. Also in the tables, multiplication of a color triple by a scalar means
multiplying each of the R, G, and B components by the scalar; multiplying (or adding) two color triples
means multiplying (or adding) each component of the second by the corresponding component of the
first.

The decal texture function makes sense only for the RGB and RGBA internal formats (remember that
texture mapping doesn’t work in color-index mode). With the RGB internal format, the color that wouls
have been painted in the absence of any texture mapping (the fragment’s color) is replaced by the tex
color, and its alpha is unchanged. With the RGBA internal format, the fragment’s color is blended with

OpenGL Programming Guide — Chapter 9, Texture Mapping — 31

the texture color in a ratio determined by the texture alpha, and the fragment’s alpha is unchanged. Y«
use the decal texture function in situations where you want to apply an opaque texture to @rifobject
you were drawing a soup can with an opaque label, for example. The decal texture function also can t
used to apply an alpha blended texture, such as an insignia onto an airplane wing.

The replacement texture function is similar to decal; in fact, for the RGB internal format, they are exac
the same. With all the internal formats, the component values are either replaced or left alone.

For modulation, the fragment’s color is modulated by the contents of the texture map. If the base inter
format is GL_LUMINANCE, GL_LUMINANCE_ALPHA, or GL_INTENSITY, the color values are
multiplied by the same value, so the texture map modulates between the fragment'’s color (if the
luminance or intensity is 1) to black (if it's 0). For the GL_RGB and GL_RGBA internal formats, each ¢
the incoming color components is multiplied by a corresponding (possibly different) value in the textur
If there’s an alpha value, it's multiplied by the fragment’s alpha. Modulation is a good texture function
for use with lighting, since the lit polygon color can be used to attenuate the texture color. Most of the
texture—-mapping examples in the color plates use modulation for this reason. White, specular polygor
are often used to render lit, textured objects, and the texture image provides the diffuse color.

The blending texture function is the only function that uses the color specified by
GL_TEXTURE_ENV_COLOR. The luminance, intensity, or color value is used somewhat like an alph
value to blend the fragment’s color with the GL_ TEXTURE_ENV_COLOR. (See "Sample Uses of
Blending" in Chapter 6 for the billboarding example, which uses a blended texture.)

Assigning Texture Coordinates

As you draw your texture—-mapped scene, you must provide both object coordinates and texture
coordinates for each vertex. After transformation, the object coordinates determine where on the scre:
that particular vertex is rendered. The texture coordinates determine which texel in the texture map is
assigned to that vertex. In exactly the same way that colors are interpolated between two vertices of
shaded polygons and lines, texture coordinates are also interpolated between vertices. (Remember tF
textures are rectangular arrays of data.)

Texture coordinates can comprise one, two, three, or four coordinates. They're usually referred to as 1
s, t, r,andq coordinates to distinguish them from object coordinateg, (z,andw) and from evaluator
coordinatesy andv; see Chapter 12). For one—dimensional textures, you usedbelinate; for
two—dimensional textures, you ssa&ndt. In Release 1.1, threcoordinate is ignored. (Some
implementations have 3D texture mapping as an extension, and that extension usesritieate.) The

g coordinate, likaw, is typically given the value 1 and can be used to create homogeneous coordinates
it's described as an advanced feature in "The q Coordinate.”" The command to specify texture

coordinatesglTexCoord*() is similar toglVertex*(), glColor*(), andglNormal*()O it comes in similar
variations and is used the same way betwgBergin()andglEnd()pairs. Usually, texture—coordinate
values range from 0 to 1; values can be assigned outside this range, however, with the results descrit
in "Repeating and Clamping Textures."

void glTexCoord{1234}{sifd}(TYPEcoords);
void glTexCoord{1234}{sifd}v(TYPE *coords);

OpenGL Programming Guide — Chapter 9, Texture Mapping — 32

Sets the current texture coordinates (s, t, r,). Subsequent calls to glVertex*() result in those
vertices being assigned the current texture coordinates. With glTexCoord1*(), the s coordinate is ¢
to the specified value, tand r are set to 0, and q is set to 1. Using glTexCoord2*() allows you to
specify s and t; r and g are set to 0 and 1, respectively. With glTexCoord3*(), q is set to 1 and the
other coordinates are set as specified. You can specify all coordinates with glTexCoord4*(). Use t
appropriate suffix (s, i, f, or d) and the corresponding value for TYPE (GLshort, GLint, GLfloat, or
GLdouble) to specify the coordinates’ data type. You can supply the coordinates individually, or y«
can use the vector version of the command to supply them in a single array. Texture coordinates .
multiplied by the 44 texture matrix before any texture mapping occurs. (See "The Texture Matrix
Stack.") Note that integer texture coordinates are interpreted directly rather than being mapped to
the range [-1,1] as normal coordinates are.

The next section discusses how to calculate appropriate texture coordinates. Instead of explicitly
assigning them yourself, you can choose to have texture coordinates calculated automatically by Ope
as a function of the vertex coordinates. (See "Automatic Texture—Coordinate Gengration."

Computing Appropriate Texture Coordinates

Two-dimensional textures are square or rectangular images that are typically mapped to the polygon:
make up a polygonal model. In the simplest case, you're mapping a rectangular texture onto a model
that’s also rectangularfor example, your texture is a scanned image of a brick wall, and your rectangle
is to represent a brick wall of a building. Suppose the brick wall is square and the texture is square, ar
you want to map the whole texture to the whole wall. The texture coordinates of the texture square are
0), (1, 0), (1, 1), and (0, 1) in counterclockwise order. When you're drawing the wall, just give those fo
coordinate sets as the texture coordinates as you specify the wall’s vertices in counterclockwise order

Now suppose that the wall is two—-thirds as high as it is wide, and that the texture is again square. To
avoid distorting the texture, you need to map the wall to a portion of the texture map so that the aspec
ratio of the texture is preserved. Suppose that you decide to use the lower two-thirds of the texture m
texture the wall. In this case, use texture coordinates of (0,0), (1,0), (1,2/3), and (0,2/3) for the texture
coordinates as the wall vertices are traversed in a counterclockwise order.

As a slightly more complicated example, suppose you'd like to display a tin can with a label wrapped
around it on the screen. To obtain the texture, you purchase a can, remove the label, and scan it in.
Suppose the label is 4 units tall and 12 units around, which yields an aspect ratio of 3 to 1. Since textt

must have aspect ratios 8t @ 1, you can either simply not use the top third of the texture, or you can
cut and paste the texture until it has the necessary aspect ratio. Suppose you decide not to use the to
third. Now suppose the tin can is a cylinder approximated by thirty polygons of length 4 units (the heig
of the can) and width 12/30 (1/30 of the circumference of the can). You can use the following texture
coordinates for each of the thirty approximating rectangles:

1: (0, 0), (1/30, 0), (1/30, 2/3), (0, 2/3)
2: (1/30, 0), (2/30, 0), (2/30, 2/3), (1/30, 2/3)
3: (2/30, 0), (3/30, 0), (3/30, 2/3), (2/30, 2/3)

OpenGL Programming Guide — Chapter 9, Texture Mapping — 33

30: (29/30, 0), (1, 0), (1, 2/3), (29/30, 2/3)

Only a few curved surfaces such as cones and cylinders can be mapped to a flat surface without geot
distortion. Any other shape requires some distortion. In general, the higher the curvature of the surfac
the more distortion of the texture is required.

If you don't care about texture distortion, it's often quite easy to find a reasonable mapping. For exam|
consider a sphere whose surface coordinates are given l/des, cosb sing, sin6), where &6<2r,

and &Ge<m. TheB-¢rectangle can be mapped directly to a rectangular texture map, but the closer you ¢
to the poles, the more distorted the texture is. The entire top edge of the texture map is mapped to the
north pole, and the entire bottom edge to the south pole. For other surfaces, such as that of a torus
(doughnut) with a large hole, the natural surface coordinates map to the texture coordinates in a way !
produces only a little distortion, so it might be suitable for many applications. Figure 9—-6shows two tol
one with a small hole (and therefore a lot of distortion near the center) and one with a large hole (and
only a little distortion).

Figure 9-6 Texture—Map Distortion

If you're texturing spline surfaces generated with evaluators (see Chapter 12yntieparameters for
the surface can sometimes be used as texture coordinates. In general, however, there’s a large artisti
component to successfully mapping textures to polygonal approximations of curved surfaces.

Repeating and Clamping Textures

You can assign texture coordinates outside the range [0,1] and have them either clamp or repeat in th
texture map. With repeating textures, if you have a large plane with texture coordinates running from (
to 10.0 in both directions, for example, you'll get 100 copies of the texture tiled together on the screen
During repeating, the integer part of texture coordinates is ignored, and copies of the texture map tile
surface. For most applications where the texture is to be repeated, the texels at the top of the texture
should match those at the bottom, and similarly for the left and right edges.

The other possibility is to clamp the texture coordinates: Any values greater than 1.0 are set to 1.0, ar

OpenGL Programming Guide — Chapter 9, Texture Mapping — 34

any values less than 0.0 are set to 0.0. Clamping is useful for applications where you want a single ca
of the texture to appear on a large surface. If the surface-texture coordinates range from 0.0 to 10.0 il
both directions, one copy of the texture appears in the lower corner of the surface. If you've chosen
GL_LINEAR as the filtering method (see "Filtering”), an equally weighted combination of the border
color and the texture color is used, as follows.

When repeating, thex2 array wraps to the opposite edge of the texture. Thus, texels on the right
edge are averaged with those on the left, and top and bottom texels are also averaged.

If there is a border, then the texel from the border is used in the weighting. Otherwise,
GL_TEXTURE_BORDER_COLOR is used. (If you've chosen GL_NEAREST as the filtering
method, the border color is completely ignored.)

Note that if you are using clamping, you can avoid having the rest of the surface affected by the textur
To do this, use alpha values of O for the edges (or borders, if they are specified) of the texture. The de
texture function directly uses the texture’s alpha value in its calculations. If you are using one of the ot
texture functions, you may also need to enable blending with good source and destination factors. (Se
"Blending" in Chapter 6.)

To see the effects of wrapping, you must have texture coordinates that venture beyond [0.0, 1.0]. Stat
with Example 9-1, and modify the texture coordinates for the squares by mapping the texture coordin:
from 0.0 to 3.0 as follows:

glBegin(GL_QUADS);
glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, —1.0, 0.0);
glTexCoord2f(0.0, 3.0); glVertex3f(-2.0, 1.0, 0.0);
glTexCoord2f(3.0, 3.0); glVertex3f(0.0, 1.0, 0.0);
glTexCoord2f(3.0, 0.0); glVertex3f(0.0, —-1.0, 0.0);

glTexCoord2f(0.0, 0.0); glVertex3f(1.0, -1.0, 0.0);

glTexCoord2f(0.0, 3.0); glVertex3f(1.0, 1.0, 0.0);

glTexCoord2f(3.0, 3.0); glVertex3f(2.41421, 1.0, -1.41421);
glTexCoord2f(3.0, 0.0); glVertex3f(2.41421, -1.0, —1.41421); glEnd()

’

With GL_REPEAT wrapping, the result is as shown in Figure 9-7.

OpenGL Programming Guide — Chapter 9, Texture Mapping — 35

Figure 9-7 Repeating a Texture

In this case, the texture is repeated in bottsthiedt directions, since the following calls are made to
glTexParameter*()

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

If GL_CLAMP is used instead of GL_REPEAT for each direction, you see something similar to Figure
9-8

Figure 9-8 Clamping a Texture

You can also clamp in one direction and repeat in the other, as shown in Figure 9-9

OpenGL Programming Guide — Chapter 9, Texture Mapping — 36

Figure 9-9 Repeating and Clamping a Texture

You've now seen all the possible argumentgfdexParameter*()which is summarized here.

void glTexParameter{if}(GLenum target, GLenum pname, TYPE param);
void glTexParameter{iffjv(GLenum target, GLenum pname,
TYPE *param);
Sets various parameters that control how a texture is treated as it's applied to a fragment or store:

in a texture object. The target parameter is either GL_TEXTURE_2D or GL_TEXTURE_1D to
indicate a two— or one—dimensional texture. The possible valygsgfoe and param are shown in
Table 9-4You can use the vector version of the command to supply an array of values for
GL_TEXTURE_BORDER_COLOR, or you can supply individual values for other parameters usin
the nonvector version. If these values are supplied as integers, they’re converted to floating—point
according to Table 4-+-they’re also clamped to the range [0,1].

Parameter Values
GL_TEXTURE_WRAP_S GL_CLAMP, GL_REPEAT
GL_TEXTURE_WRAP_T GL_CLAMP, GL_REPEAT
GL_TEXTURE_MAG_FILTER GL_NEAREST, GL_LINEAR
GL_TEXTURE_MIN_FILTER GL_NEAREST, GL_LINEAR,

GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST,
GL_LINEAR_MIPMAP_LINEAR

GL_TEXTURE_BORDER_COLOR any four values in [0.0, 1.0]
GL_TEXTURE_PRIORITY [0.0, 1.0] for the current texture object

Table 9-4 glTexParameter*() Parameters
Try This

Figure 9-8and Figure 9-9are drawn using GL_NEAREST for the minification and magnification filter.
What happens if you change the filter values to GL_LINEAR? Why?

Automatic Texture—Coordinate Generation

You can use texture mapping to make contours on your models or to simulate the reflections from an

OpenGL Programming Guide — Chapter 9, Texture Mapping — 37

arbitrary environment on a shiny model. To achieve these effects, let OpenGL automatically generate

texture coordinates for you, rather than explicitly assigning themglhiigxCoord*() To generate

texture coordinates automatically, use the comnudifiexGen()

void glTexGen{ifd}(GLenum coord, GLenum pname, TYPEparam);

void glTexGen{ifd}v(GLenum coord, GLenum pname, TYPE *param);
Specifies the functions for automatically generating texture coordinates. The first parameter, coor
must be GL_S, GL_T, GL_R, or GL_Q to indicate whether texture coordinate s, t, r, or g is to be
generated. The pname parameter is GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or
GL_EYE_PLANE. If it's GL_TEXTURE_GEN_MODE, param is an integer (or, in the vector versio
of the command, points to an integer) that's either GL_OBJECT_LINEAR, GL_EYE_LINEAR, or
GL_SPHERE_MAP. These symbolic constants determine which function is used to generate the
texture coordinate. With either of the other possible values for pname, param is a pointer to an
array of values (for the vector version) specifying parameters for the texture—generation function.

The different methods of texture—coordinate generation have different uses. Specifying the reference
plane in object coordinates is best for when a texture image remains fixed to a moving object. Thus,
GL_OBJECT_LINEAR would be used for putting a wood grain on a table top. Specifying the reference
plane in eye coordinates (GL_EYE_LINEAR) is best for producing dynamic contour lines on moving
objects. GL_EYE_LINEAR may be used by specialists in geosciences, who are drilling for oil or gas. /
the drill goes deeper into the ground, the drill may be rendered with different colors to represent the
layers of rock at increasing depths. GL_SPHERE_MAP is predominantly used for environment mappi
(See "Environment Mapping.")

Creating Contours

When GL_TEXTURE_GEN_MODE and GL_OBJECT_LINEAR are specified, the generation function
is a linear combination of the object coordinates of the vexigxdzo Wo):

generated coordinatepgxg + p2yo +p3z0 + p4wWQo

Thepy, ..., p4 values are supplied as tharamargument t@lTexGen*v() with pnameset to
GL_OBJECT_PLANE. Witlpg, ...,p4 correctly normalized, this function gives the distance from the
vertex to a plane. For examplepif = p3 = p4 = 0 andpg = 1, the function gives the distance between
the vertex and the plamxe= 0. The distance is positive on one side of the plane, negative on the other,
and zero if the vertex lies on the plane.

Initially in Example 9-6, equally spaced contour lines are drawn on a teapot; the lines indicate the
distance from the plane= 0. The coefficients for the plare= 0 are in this array:

static GLfloat xequalzero[] = {1.0, 0.0, 0.0, 0.0};

Since only one property is being shown (the distance from the plane), a one—-dimensional texture mag
suffices. The texture map is a constant green color, except that at equally spaced intervals it includes
red mark. Since the teapot is sitting onxhgplane, the contours are all perpendicular to its base. "Plate
18" in Appendix | shows the picture drawn by the program.

In the same example, pressing the ‘s’ key changes the parameters of the reference plane to

OpenGL Programming Guide — Chapter 9, Texture Mapping — 38

static GLfloat slanted[] = {1.0, 1.0, 1.0, 0.0};

the contour stripes are parallel to the plarey + z= 0, slicing across the teapot at an angle, as shown in
"Plate 18" in Appendix I. To restore the reference plane to its initial vaki®, press the ‘X’ key.

Example 9-6 Automatic Texture—Coordinate Generation: texgen.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

#define stripelmageWidth 32
GLubyte stripelmage[4*stripelmageWidth];

static GLuint texName;

void makeStripelmage(void)

{

int j;

for (j = 0; j < stripelmageWidth; j++) {
stripelmage[4*]] = (GLubyte) ((j<=4) ? 255 : 0);
stripelmage[4*j+1] = (GLubyte) ((j>4) ? 255 : 0);
stripelmage[4*j+2] = (GLubyte) O;
stripelmage[4*j+3] = (GLubyte) 255;

[* planes for texture coordinate generation */
static GLfloat xequalzero[] = {1.0, 0.0, 0.0, 0.0};
static GLfloat slanted[] = {1.0, 1.0, 1.0, 0.0};
static GLfloat *currentCoeff;

static GLenum currentPlane;

static GLint currentGenMode;

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glEnable(GL_DEPTH_TEST);
glShadeModel(GL_SMOQOTH);

makeStripelmage();

OpenGL Programming Guide — Chapter 9, Texture Mapping — 39

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glGenTextures(l, &texName);

glBindTexture(GL_TEXTURE_1D, texName);

glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR);

glTeximagelD(GL_TEXTURE_1D, 0, GL_RGBA, stripelmageWidth, O,

GL_RGBA, GL_UNSIGNED_BYTE, stripelmage);

gITexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
currentCoeff = xequalzero;

currentGenMode = GL_OBJECT_LINEAR,;

currentPlane = GL_OBJECT_PLANE;

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);
glTexGenfv(GL_S, currentPlane, currentCoeff);

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_1D);
glEnable(GL_CULL_FACE);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);
glEnable(GL_AUTO_NORMAL);
glEnable(GL_NORMALIZE);
glFrontFace(GL_CW);

glCullFace(GL_BACK);

gIMaterialf (GL_FRONT, GL_SHININESS, 64.0);

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();

glRotatef(45.0, 0.0, 0.0, 1.0);
glBindTexture(GL_TEXTURE_1D, texName);
glutSolidTeapot(2.0);

glPopMatrix ();

glFlush();

OpenGL Programming Guide — Chapter 9, Texture Mapping — 40

void reshape(int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
if (w <= h)
glOrtho (-3.5, 3.5, —3.5*(GLfloat)h/(GLfloat)w,
3.5*(GLfloat)h/(GLfloat)w, —3.5, 3.5);
else
glOrtho (—-3.5*(GLfloat)w/(GLfloat)h,
3.5*(GLfloat)w/(GLfloat)h, -3.5, 3.5, -3.5, 3.5);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

}

void keyboard (unsigned char key, int x, int y)
{
switch (key) {

case ‘e’

case ‘E"
currentGenMode = GL_EYE_LINEAR,;
currentPlane = GL_EYE_PLANE;
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);
glTexGenfv(GL_S, currentPlane, currentCoeff);
glutPostRedisplay();
break;

case ‘0"

case ‘O’
currentGenMode = GL_OBJECT_LINEAR,;
currentPlane = GL_OBJECT_PLANE;
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);
glTexGenfv(GL_S, currentPlane, currentCoeff);
glutPostRedisplay();
break;

case ‘s’

case ‘S™
currentCoeff = slanted;
glTexGenfv(GL_S, currentPlane, currentCoeff);
glutPostRedisplay();
break;

case ‘X"

case ‘X"
currentCoeff = xequalzero;

OpenGL Programming Guide — Chapter 9, Texture Mapping — 41

glTexGenfv(GL_S, currentPlane, currentCoeff);
glutPostRedisplay();
break;
case 27:
exit(0);
break;
default:
break;

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutlnitWindowSize (256, 256);
glutinitWindowPosition(100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutMainLoop();
return O;

}

You enable texture—coordinate generation fostt@ordinate by passing GL_TEXTURE_GEN_S to
glEnable() To generate other coordinates, enable them with GL_TEXTURE_GEN_T,
GL_TEXTURE_GEN_R, or GL_TEXTURE_GEN_Q. UgiDisable()with the appropriate constant to
disable coordinate generation. Also note the use of GL_REPEAT to cause the contour lines to be
repeated across the teapot.

The GL_OBJECT_LINEAR function calculates the texture coordinates in the model’s coordinate
system. Initially in Example 9-6, the GL_OBJECT_LINEAR function is used, so the contour lines
remain perpendicular to the base of the teapot, no matter how the teapot is rotated or viewed. Howev:
you press the ‘e’ key, the texture generation mode is changed from GL_OBJECT_LINEAR to
GL_EYE_LINEAR, and the contour lines are calculated relative to the eye coordinate system. (Pressil
the ‘o’ key restores GL_OBJECT_LINEAR as the texture generation mode.) If the reference glane is
0, the result is a teapot with red stripes parallel tgythplane from the eye’s point of view, as shown in
"Plate 18" in Appendix |. Mathematically, you are multiplying the veqigpn£p3p4) by the inverse of

the modelview matrix to obtain the values used to calculate the distance to the plane. The texture
coordinate is generated with the following function:

generated coordinatepg’Xe + p2'Y e+ pP3Ze + P4’ We

OpenGL Programming Guide — Chapter 9, Texture Mapping — 42

where p1’ p2' p3' p4’) = (p1P2p3P4)M-1

In this case Xg Ye Ze We) are the eye coordinates of the vertex, @nd.., p4 are supplied as thgaram

argument t@ITexGen*()with pnameset to GL_EYE_PLANE. The primed values are calculated only at
the time they're specified so this operation isn’t as computationally expensive as it looks.

In all these examples, a single texture coordinate is used to generate contosemdiritexture

coordinates can be generated independently, however, to indicate the distances to two different plane
With a properly constructed two—dimensional texture map, the resulting two sets of contours can be
viewed simultaneously. For an added level of complexity, you can calculaedbedinate using
GL_OBJECT_LINEAR and thecoordinate using GL_EYE_LINEAR.

Environment Mapping

The goal of environment mapping is to render an object as if it were perfectly reflective, so that the
colors on its surface are those reflected to the eye from its surroundings. In other words, if you look at
perfectly polished, perfectly reflective silver object in a room, you see the walls, floor, and other object
in the room reflected off the object. (A classic example of using environment mapping is the evil,
morphing cyborg in the filnTerminator 2) The objects whose reflections you see depend on the positior
of your eye and on the position and surface angles of the silver object. To perform environment mapp
all you have to do is create an appropriate texture map and then have OpenGL generate the texture
coordinates for you.

Environment mapping is an approximation based on the assumption that the items in the environment
far away compared to the surfaces of the shiny dbjdwat is, it's a small object in a large room. With

this assumption, to find the color of a point on the surface, take the ray from the eye to the surface, ar
reflect the ray off the surface. The direction of the reflected ray completely determines the color to be
painted there. Encoding a color for each direction on a flat texture map is equivalent to putting a polist
perfect sphere in the middle of the environment and taking a picture of it with a camera that has a len¢
with a very long focal length placed far away. Mathematically, the lens has an infinite focal length and
the camera is infinitely far away. The encoding therefore covers a circular region of the texture map,
tangent to the top, bottom, left, and right edges of the map. The texture values outside the circle make
difference, as they are never accessed in environment mapping.

To make a perfectly correct environment texture map, you need to obtain a large silvered sphere, take
photograph of it in some environment with a camera located an infinite distance away and with a lens
that has an infinite focal length, and scan in the photograph. To approximate this result, you can use ¢
scanned-in photograph of an environment taken with an extremely wide—angle (or fish—-eye) lens. Pla
shows a photograph taken with such a lens and the results when that image is used as an environmei
map.

Once you've created a texture designed for environment mapping, you need to invoke OpenGL’s
environment—-mapping algorithm. This algorithm finds the point on the surface of the sphere with the
same tangent surface as the point on the object being rendered, and it paints the object’s point with tF
color visible on the sphere at the corresponding point.

To automatically generate the texture coordinates to support environment mapping, use this code iny

OpenGL Programming Guide — Chapter 9, Texture Mapping — 43

program:

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);

The GL_SPHERE_MAP constant creates the proper texture coordinates for the environment mapping
As shown, you need to specify it for both ghendt directions. However, you don’t have to specify any
parameters for the texture—coordinate generation function.

The GL_SPHERE_MAP texture function generates texture coordinates using the following mathemati
steps.

1. uis the unit vector pointing from the origin to the vertex (in eye coordinates).

2. n'’isthe current normal vector, after transformation to eye coordinates.
3. risthe reflection vectorr)(ryrz)T, which is calculated by - 2 Tu.

4. Then an interim valuen, is calculated by

1. Finally, thes andt texture coordinates are calculated by

and

_ 1
= r?fm +5
Advanced Features

Advanced

This section describes how to manipulate the texture matrix stack and how to gisedhginate. Both
techniques are considered advanced, since you don’t need them for many applications of texture

mapping.

The Texture Matrix Stack

Just as your model coordinates are transformed by a matrix before being rendered, texture coordinate

OpenGL Programming Guide — Chapter 9, Texture Mapping — 44

are multiplied by a #4 matrix before any texture mapping occurs. By default, the texture matrix is the
identity, so the texture coordinates you explicitly assign or those that are automatically generated rem
unchanged. By modifying the texture matrix while redrawing an object, however, you can make the
texture slide over the surface, rotate around it, stretch and shrink, or any combination of the three. In
since the texture matrix is a completely generdl atrix, effects such as perspective can be achieved.

When the four texture coordinates {; r, g are multiplied by the texture matrix, the resulting vecsor (

t'r q) is interpreted as homogeneous texture coordinates. In other words, the texture map is indexec
s'/q’ andt'/q’ . (Remember that/q’ is ignored in standard OpenGL, but may be used by
implementations that support a 3D texture extension.) The texture matrix is actually the top matrix on
stack, which must have a stack depth of at least two matrices. All the standard matrix-manipulation
commands such agdPushMatrix() glPopMatrix(), giMultMatrix(), andglRotate*() can be applied to the
texture matrix. To modify the current texture matrix, you need to set the matrix mode to GL_TEXTURE
as follows:

glMatrixMode(GL_TEXTURE); /* enter texture matrix mode */
glRotated(...);

[* ... other matrix manipulations ... */
glMatrixMode(GL_MODELVIEW); /* back to modelview mode */

The q Coordinate

The mathematics of thegcoordinate in a general four—dimensional texture coordinate is as described in
the previous section. You can make usq if cases where more than one projection or perspective
transformation is needed. For example, suppose you want to model a spotlight that has some nonunif
patterri] brighter in the center, perhaps, or noncircular, because of flaps or lenses that modify the sha|
of the beam. You can emulate shining such a light on a flat surface by making a texture map that
corresponds to the shape and intensity of a light, and then projecting it on the surface in question usin
projection transformations. Projecting the cone of light onto surfaces in the scene requires a perspecti
transformation @# 1), since the lights might shine on surfaces that aren’t perpendicular to them. A
second perspective transformation occurs because the viewer sees the scene from a different (but
perspective) point of view. (See "Plate 27" in Appendix | for an example, and see "Fast Shadows and
Lighting Effects Using Texture Mapping" by Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran
and Paul Haeberli, SIGGRAPH 1992 Proceedingengputer Graphics26:2, July 1992, p. 249-252) for
more details.)

Another example might arise if the texture map to be applied comes from a photograph that itself was
taken in perspective. As with spotlights, the final view depends on the combination of two perspective
transformations.

OpenGL Programming Guide — Chapter 10, The Framebuffer — 45

Chapter 10
The Framebuffer

Chapter Objectives

After reading this chapter, you'll be able to do the following:
Understand what buffers make up the framebuffer and how they're used
Clear selected buffers and enable them for writing

Control the parameters of the scissoring, alpha, stencil, and depth—buffer tests that are applied to
pixels

Perform dithering and logical operations

Use the accumulation buffer for such purposes as scene antialiasing

An important goal of almost every graphics program is to draw pictures on the screen. The screen is
composed of a rectangular array of pixels, each capable of displaying a tiny square of color at that poi
in the image. After the rasterization stage (including texturing and fog), the data are not yet pixels, but
are fragments. Each fragment has coordinate data which corresponds to a pixel, as well as color and
depth values. Then each fragment undergoes a series of tests and operations, some of which have bt
previously described (See "Blending" in Chapter 6) and others that are discussed in this chapter.

If the tests and operations are survived, the fragment values are ready to become pixels. To draw the:
pixels, you need to know what color they are, which is the information that’s stored in the color buffer.
Whenever data is stored uniformly for each pixel, such storage for all the pixels is dalféer.a

Different buffers might contain different amounts of data per pixel, but within a given buffer, each pixel
is assigned the same amount of data. A buffer that stores a single bit of information about pixels is cal
abitplane.

As shown in Figure 10;the lower-left pixel in an OpenGL window is pixel (0, 0), corresponding to the

window coordinates of the lower-left corner of thRé& fegion occupied by this pixel. In general, pixel (
y) fills the region bounded byon the leftx+1 on the righty on the bottom, ang+1 on the top.

OpenGL Programming Guide — Chapter 10, The Framebuffer — 1

Figure 10—1 Region Occupied by a Pixel

As an example of a buffer, let's look more closely at the color buffer, which holds the color information
that’s to be displayed on the screen. Assume that the screen is 1280 pixels wide and 1024 pixels high

that it's a full 24-bit color screBrin other words, there are4 (or 16,777,216) different colors that can

be displayed. Since 24 bits translates to 3 bytes (8 bits/byte), the color buffer in this example has to st
at least 3 bytes of data for each of the 1,310,720 (1280*1024) pixels on the screen. A particular hardw
system might have more or fewer pixels on the physical screen as well as more or less color data per
pixel. Any particular color buffer, however, has the same amount of data saved for each pixel on the
screen.

The color buffer is only one of several buffers that hold information about a pixel. For example, in "A
Hidden—Surface Removal Survival Kit" in Chapter 5 you learned that the depth buffer holds depth
information for each pixel. The color buffer itself can consist of several subbufferfantebuffer on

a system comprises all of these buffers. With the exception of the color buffer(s), you don’t view these
other buffers directly; instead, you use them to perform such tasks as hidden-surface elimination,
antialiasing of an entire scene, stenciling, drawing smooth motion, and other operations.

This chapter describes all the buffers that can exist in an OpenGL implementation and how they’re us
It also discusses the series of tests and pixel operations that are performed before any data is written
the viewable color buffer. Finally, it explains how to use the accumulation buffer, which is used to

accumulate images that are drawn into the color buffer. This chapter has the following major sections.

"Buffers and Their Uses" describes the possible buffers, what they’re for, and how to clear them &
enable them for writing.

"Testing and Operating on Fragments" explains the scissoring, alpha, stencil, and depth—buffer te
that occur after a pixel's position and color have been calculated but before this information is
drawn on the screen. Several operafibhkending, dithering, and logical operatiGhsan also be

OpenGL Programming Guide — Chapter 10, The Framebuffer — 2

performed before a fragment updates the screen.

"The Accumulation Buffer" describes how to perform several advanced techniques using the
accumulation buffer. These techniques include antialiasing an entire scene, using motion blur, an
simulating photographic depth of field.

Buffers and Their Uses

An OpenGL system can manipulate the following buffers:
Color buffers: front-left, front-right, back-left, back-right, and any number of auxiliary color buffe
Depth buffer
Stencil buffer

Accumulation buffer

Your particular OpenGL implementation determines which buffers are available and how many bits pe
pixel each holds. Additionally, you can have multiple visuals, or window types, that have different
buffers available. Table 10-1lists the parameters to usel@#tintegerv(Xo query your OpenGL

system about per—pixel buffer storage for a particular visual.

Note: If you're using the X Window System, you're guaranteed, at a minimum, to have a visual with
one color buffer for use in RGBA mode with associated stencil, depth, and accumulation buffers that
have color components of nonzero size. Also, if your X Window System implementation supports a
Pseudo—Color visual, you are also guaranteed to have one OpenGL visual that has a color buffer for 1
in color-index mode with associated depth and stencil buffers. You’ll probably want to use
gIXGetConfig()to query your visuals; see Appendix C and@penGL Reference Manugr more
information about this routine.

Parameter Meaning

GL_RED_BITS, GL_GREEN_BITS, Number of bits per R, G, B, or A component in the
GL_BLUE_BITS, color buffers

GL_ALPHA_BITS

GL_INDEX_BITS Number of bits per index in the color buffers
GL_DEPTH_BITS Number of bits per pixel in the depth buffer
GL_STENCIL_BITS Number of bits per pixel in the stencil buffer
GL_ACCUM_RED_BITS, Number of bits per R, G, B, or A component in the
GL_ACCUM_GREEN_BITS, accumulation buffer

GL_ACCUM_BLUE_BITS,
GL_ACCUM_ALPHA BITS

Table 10-1 Query Parameters for Per—Pixel Buffer Storage

Color Buffers

The color buffers are the ones to which you usually draw. They contain either color-index or RGB coli
data and may also contain alpha values. An OpenGL implementation that supports stereoscopic viewi
has left and right color buffers for the left and right stereo images. If stereo isn’t supported, only the le

OpenGL Programming Guide — Chapter 10, The Framebuffer — 3

buffers are used. Similarly, double-buffered systems have front and back buffers, and a single—buffer
system has the front buffers only. Every OpenGL implementation must provide a front-left color buffel

Optional, nondisplayable auxiliary color buffers may also be supported. OpenGL doesn’t specify any
particular uses for these buffers, so you can define and use them however you please. For example, \
might use them for saving an image that you use repeatedly. Then rather than redrawing the image, y
can just copy it from an auxiliary buffer into the usual color buffers. (See the description of
glCopyPixels()in "Reading, Writing, and Copying Pixel Data" in Chapter 8 for more information about
how to do this.)

You can use GL_STEREO or GL_DOUBLEBUFFER wifitetBooleanv(Jo find out if your system
supports stereo (that is, has left and right buffers) or double—buffering (has front and back buffers). Tc
find out how many, if any, auxiliary buffers are present,gi€etintegerv(with GL_AUX_BUFFERS.

Depth Buffer

The depth buffer stores a depth value for each pixel. As described in "A Hidden—-Surface Removal
Survival Kit" in Chapter 5, depth is usually measured in terms of distance to the eye, so pixels with lar
depth-buffer values are overwritten by pixels with smaller values. This is just a useful convention,
however, and the depth buffer's behavior can be modified as described in "Depth Test." The depth bu
is sometimes called thebuffer(the z comes from the fact theandy values measure horizontal and
vertical displacement on the screen, andzth@lue measures distance perpendicular to the screen).

Stencil Buffer

One use for the stencil buffer is to restrict drawing to certain portions of the screen, just as a cardboar
stencil can be used with a can of spray paint to make fairly precise painted images. For example, if ya
want to draw an image as it would appear through an odd-shaped windshield, you can store an imag:
the windshield’s shape in the stencil buffer, and then draw the entire scene. The stencil buffer prevent
anything that wouldn’t be visible through the windshield from being drawn. Thus, if your application is
driving simulation, you can draw all the instruments and other items inside the automobile once, and ¢
the car moves, only the outside scene need be updated.

Accumulation Buffer

The accumulation buffer holds RGBA color data just like the color buffers do in RGBA mode. (The
results of using the accumulation buffer in color-index mode are undefined.) It's typically used for
accumulating a series of images into a final, composite image. With this method, you can perform
operations like scene antialiasing by supersampling an image and then averaging the samples to proc
the values that are finally painted into the pixels of the color buffers. You don't draw directly into the
accumulation buffer; accumulation operations are always performed in rectangular blocks, which are
usually transfers of data to or from a color buffer.

Clearing Buffers

In graphics programs, clearing the screen (or any of the buffers) is typically one of the most expensive

OpenGL Programming Guide — Chapter 10, The Framebuffer — 4

operations you can perfofiron a 1281024 monitor, it requires touching well over a million pixels.

For simple graphics applications, the clear operation can take more time than the rest of the drawing.
you need to clear not only the color buffer but also the depth and stencil buffers, the clear operation c:i
be three times as expensive.

To address this problem, some machines have hardware that can clear more than one buffer at once.
OpenGL clearing commands are structured to take advantage of architectures like this. First, you spe:
the values to be written into each buffer to be cleared. Then you issue a single command to perform tl
clear operation, passing in a list of all the buffers to be cleared. If the hardware is capable of
simultaneous clears, they all occur at once; otherwise, each buffer is cleared sequentially.

The following commands set the clearing values for each buffer.

void glClearColor(GLclampf red, GLclampf green, GLclampf blue,
GLclampf alpha);

void glClearindex(GLfloat index);

void glClearDepth(GLclampd depth);

void glClearStencil(GLint s);

void glClearAccum(GLfloat red, GLfloat green, GLfloat blue,
GLfloat alpha);

Specifies the current clearing values for the color buffer (in RGBA mode), the color buffer (in
color-index mode), the depth buffer, the stencil buffer, and the accumulation buffer. The GLclam
and GLclampd types (clamped GLfloat and clamped GLdouble) are clamped to be between 0.0 al
1.0. The default depth—clearing value is 1.0; all the other default clearing values are 0. The values
set with the clear commands remain in effect until they’re changed by another call to the same
command.

After you've selected your clearing values and you're ready to clear the buffeggCilesar().

void glClear(GLbitfield mask);
Clears the specified buffers. The value of mask is the bitwise logical OR of some combination of
GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, GL_STENCIL_BUFFER_BIT, and
GL_ACCUM_BUFFER_BIT to identify which buffers are to be cleared. GL_COLOR_BUFFER_BI
clears either the RGBA color or the color-index buffer, depending on the mode of the system at tt
time. When you clear the color or color-index buffer, all the color buffers that are enabled for
writing (see the next section) are cleared. The pixel ownership test, scissor test, and dithering, if
enabled, are applied to the clearing operation. Masking operations, such as glColorMask() and
glindexMask(), are also effective. The alpha test, stencil test, and depth test do not affect the
operation of glClear().

Selecting Color Buffers for Writing and Reading

The results of a drawing or reading operation can go into or come from any of the color buffers: front,
back, front-left, back-left, front-right, back-right, or any of the auxiliary buffers. You can choose an
individual buffer to be the drawing or reading target. For drawing, you can also set the target to draw i
more than one buffer at the same time. YouglBeawBuffer() to select the buffers to be written and
glReadBuffer(}o select the buffer as the sourcedtiReadPixels()glCopyPixels()glCopyTeximage*()
andglCopyTexSublmage*()

OpenGL Programming Guide — Chapter 10, The Framebuffer - 5

If you are using double-buffering, you usually want to draw only in the back buffer (and swap the buffi
when you're finished drawing). In some situations, you might want to treat a double-buffered window
though it were single-buffered by callgirawBuffer()to enable you to draw to both front and back
buffers at the same time.

glDrawBuffer()is also used to select buffers to render stereo images (GL*LEFT and GL*RIGHT) and t
render into auxiliary buffers (GL_AUX

void glDrawBuffer(GLenum mode);
Selects the color buffers enabled for writing or clearing. Disables buffers enabled by previous call:
to glDrawBuffer(). More than one buffer may be enabled at one time. The value of mode can be o
of the following:

GL_FRONT GL_FRONT_LEFT GL_AUX

GL_BACK GL_FRONT_RIGHT GL_FRONT_AND_BACK
GL_LEFT GL_BACK_LEFT GL_NONE

GL_RIGHT GL_BACK_RIGHT

Arguments that omit LEFT or RIGHT refer to both the left and right buffers; similarly, arguments
that omit FRONT or BACK refer to both. The i in GL_AUXi is a digit identifying a particular
auxiliary buffer.

By default, mode is GL_FRONT for single—buffered contexts and GL_BACK for double-buffered
contexts.

Note: You can enable drawing to nonexistent buffers as long as you enable drawing to at least one
buffer that does exist. If none of the specified buffers exist, an error results.

void glReadBuffer(GLenum mode);
Selects the color buffer enabled as the source for reading pixels for subsequent calls to
glReadPixels(), glCopyPixels(), glCopyTexlmage*(), and glCopyTexSublmage*(). Disables buffer:
enabled by previous calls to glReadBuffer(). The value of mode can be one of the following:

GL_FRONT GL_FRONT_LEFT GL_AUX

GL_BACK GL_FRONT_RIGHT

GL_LEFT GL_BACK_LEFT

GL_RIGHT GL_BACK_RIGHT
By default, mode is GL_FRONT for single—buffered contexts and GL_BACK for double-buffered
contexts.

Note: You must enable reading from a buffer that does exist or an error results.

Masking Buffers

Before OpenGL writes data into the enabled color, depth, or stencil buffers, a masking operation is
applied to the data, as specified with one of the following commands. A bitwise logical AND is
performed with each mask and the corresponding data to be written.

void glindexMask(GLuint mask);

void glColorMask(GLboolean red, GLboolean green, GLboolean blue,
GLboolean alpha);

void glDepthMask(GLboolean flag);

void glStencilMask(GLuint mask);

OpenGL Programming Guide — Chapter 10, The Framebuffer — 6

Sets the masks used to control writing into the indicated buffers. The mask set by glindexMask()
applies only in color-index mode. If a 1 appeamsask, the corresponding bit in the color-index
buffer is written; where a 0 appears, the bit isn't written. Similarly, glColorMask() affects drawing
in RGBA mode only. The red, green, blue, and alpha values control whether the corresponding
component is written. (GL_TRUE means it is written.) If flag is GL_TRUE for glDepthMask(), the
depth buffer is enabled for writing; otherwise, it's disabled. The mask for glStencilMask() is used fi
stencil data in the same way as the mask is used for color-index datel@xMask(). The default
values of all the GLboolean masks are GL_TRUE, and the default values for the two GLuint mask
are all 1's.

You can do plenty of tricks with color masking in color-index mode. For example, you can use each b
in the index as a different layer and set up interactions between arbitrary layers with appropriate settir
of the color map. You can create overlays and underlays, and do so—called color-map animations. (S
Chapter 14 for examples of using color masking.) Masking in RGBA mode is useful less often, but yot
can use it for loading separate image files into the red, green, and blue bitplanes, for example.

You've seen one use for disabling the depth buffer in "Three—Dimensional Blending with the Depth
Buffer" in Chapter 6. Disabling the depth buffer for writing can also be useful if a common background
is desired for a series of frames, and you want to add some features that may be obscured by parts of
background. For example, suppose your background is a forest, and you would like to draw repeated
frames with the same trees, but with objects moving among them. After the trees are drawn with their
depths recorded in the depth buffer, then the image of the trees is saved, and the new items are draw
with the depth buffer disabled for writing. As long as the new items don’t overlap each other, the pictu
is correct. To draw the next frame, restore the image of the trees and continue. You don’t need to rest
the values in the depth buffer. This trick is most useful if the background is extremely ddraplex
complex that it's much faster just to recopy the image into the color buffer than to recompute it from th
geometry.

Masking the stencil buffer can allow you to use a multiple-bit stencil buffer to hold multiple stencils (ol
per bit). You might use this technique to perform capping as explained in "Stencil Test" or to implemel
the Game of Life as described in "Life in the Stencil Buffer" in Chapter 14.

Note: The mask specified bylStencilMask(ontrols which stencil bitplanes are written. This mask
isn't related to the mask that's specified as the third paramegéstaicilFunc()which specifies which
bitplanes are considered by the stencil function.

Testing and Operating on Fragments

When you draw geometry, text, or images on the screen, OpenGL performs several calculations to rot
translate, scale, determine the lighting, project the object(s) into perspective, figure out which pixels in
the window are affected, and determine what colors those pixels should be drawn. Many of the earlier
chapters in this book give some information about how to control these operations. After OpenGL
determines that an individual fragment should be generated and what its color should be, several
processing stages remain that control how and whether the fragment is drawn as a pixel into the
framebuffer. For example, if it's outside a rectangular region or if it's farther from the viewpoint than th
pixel that's already in the framebuffer, it isn’'t drawn. In another stage, the fragment’s color is blended

OpenGL Programming Guide — Chapter 10, The Framebuffer - 7

with the color of the pixel already in the framebuffer.

This section describes both the complete set of tests that a fragment must pass before it goes into the
framebuffer and the possible final operations that can be performed on the fragment as it's written. Th
tests and operations occur in the following order; if a fragment is eliminated in an early test, none of tt
later tests or operations take place.

1. Scissor test
2. Alphatest
3. Stencil test
4. Depth test
5. Blending

6. Dithering

7. Logical operation

Each of these tests and operations is described in detail in the following sections.

Scissor Test

You can define a rectangular portion of your window and restrict drawing to take place within it by usir
theglScissor(command. If a fragment lies inside the rectangle, it passes the scissor test.

void glScissor(GLint x, GLint y, GLsizei width, GLsizei height);
Sets the location and size of the scissor rectangle (also known as the scissor box). The paramete
define the lower-left cornex,(y), and the width and height of the rectangle. Pixels that lie inside the
rectangle pass the scissor test. Scissoring is enabled and disabled by passing GL_SCISSOR_TE
glEnable() and glDisable(). By default, the rectangle matches the size of the window and scissorir
is disabled.

The scissor test is just a version of a stencil test using a rectangular region of the screen. It's fairly ea:
create a blindingly fast hardware implementation of scissoring, while a given system might be much
slower at stenciling perhaps because the stenciling is performed in software.

Advanced

An advanced use of scissoring is performing nonlinear projection. First divide the window into a regule
grid of subregions, specifying viewport and scissor parameters that limit rendering to one region at a
time. Then project the entire scene to each region using a different projection matrix.

To determine whether scissoring is enabled and to obtain the values that define the scissor rectangle,
can use GL_SCISSOR_TEST wigsEnabled(Jand GL_SCISSOR_BOX withlGetIntegerv()

Alpha Test

In RGBA mode, the alpha test allows you to accept or reject a fragment based on its alpha value. The
alpha test is enabled and disabled by passing GL_ALPHA TE§Emable()andglDisable() To

OpenGL Programming Guide — Chapter 10, The Framebuffer — 8

determine whether the alpha test is enabled, use GL_ALPHA_TESTgNgEnabled()

If enabled, the test compares the incoming alpha value with a reference value. The fragment is accep
or rejected depending on the result of the comparison. Both the reference value and the comparison
function are set withlAlphaFunc() By default, the reference value is zero, the comparison function is
GL_ALWAYS, and the alpha test is disabled. To obtain the alpha comparison function or reference
value, use GL_ALPHA_TEST_FUNC or GL_ALPHA_TEST_REF wgifsetintegerv()

void glAlphaFunc(GLenum func, GLclampf ref);
Sets the reference value and comparison function for the alpha test. The reference value ref is
clamped to be between zero and one. The possible values for func and their meaning are listed ir

Table 10-2
Parameter Meaning
GL_NEVER Never accept the fragment
GL_ALWAYS Always accept the fragment
GL_LESS Accept fragment if fragment alpha < reference alpha
GL_LEQUAL Accept fragment if fragment alpkareference alpha
GL_EQUAL Accept fragment if fragment alpha = reference alpha
GL_GEQUAL Accept fragment if fragment alpha reference alpha
GL_GREATER Accept fragment if fragment alpha > reference alpha
GL_NOTEQUAL Accept fragment if fragment alpRareference alpha

Table 10-2 glAlphaFunc() Parameter Values (continued)

One application for the alpha test is to implement a transparency algorithm. Render your entire scene
twice, the first time accepting only fragments with alpha values of one, and the second time accepting
fragments with alpha values that aren’t equal to one. Turn the depth buffer on during both passes, but
disable depth buffer writing during the second pass.

Another use might be to make decals with texture maps where you can see through certain parts of tr
decals. Set the alphas in the decals to 0.0 where you want to see through, set them to 1.0 otherwise,
the reference value to 0.5 (or anything between 0.0 and 1.0), and set the comparison function to
GL_GREATER. The decal has see-through parts, and the values in the depth buffer aren't affected. 1
technique, called billboarding, is described in "Sample Uses of Blending" in Chapter 6.

Stencil Test

The stencil test takes place only if there is a stencil buffer. (If there is no stencil buffer, the stencil test
always passes.) Stenciling applies a test that compares a reference value with the value stored at a p
in the stencil buffer. Depending on the result of the test, the value in the stencil buffer is modified. You
can choose the particular comparison function used, the reference value, and the modification perforn
with theglStencilFunc(andglStencilOp()commands.

void glStencilFunc(GLenum func, GLint ref, GLuint mask);
Sets the comparison function (func), reference value (ref), and a mask (mask) for use with the ste
test. The reference value is compared to the value in the stencil buffer using the comparison
function, but the comparison applies only to those bits where the corresponding bits of the mask ¢

OpenGL Programming Guide — Chapter 10, The Framebuffer — 9

1. The function can be GL_NEVER, GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL,
GL_GEQUAL, GL_GREATER, or GL_NOTEQUAL. Ifit's GL_LESS, for example, then the
fragment passes if ref is less than the value in the stencil buffer. If the stencil buffer contains s
bitplanes, the low-orderbits of mask are bitwise ANDed with the value in the stencil buffer and
with the reference value before the comparison is performed. The masked values are all interpret
as nonnegative values. The stencil test is enabled and disabled by passing GL_STENCIL_TEST t
glEnable() and glDisable(). By default, func is GL_ALWAYS, ref is 0, mask is all 1's, and stenciling
is disabled.

void glStencilOp(GLenum fail, GLenum zfail, GLenum zpass);
Specifies how the data in the stencil buffer is modified when a fragment passes or fails the stencil
test. The three functions fail, zfail, and zpass can be GL_KEEP, GL_ZERO, GL_REPLACE,
GL_INCR, GL_DECR, or GL_INVERT. They correspond to keeping the current value, replacing it
with zero, replacing it with the reference value, incrementing it, decrementing it, and
bitwise—inverting it. The result of the increment and decrement functions is clamped to lie betweel

zero and the maximum unsigned integer val8e1(2f the stencil buffer holdsbits). The fail

function is applied if the fragment fails the stencil test; if it passes, then zfail is applied if the depth
test fails and zpass if the depth test passes, or if no depth test is performed. (See "Depth Test.") E
default, all three stencil operations are GL_KEEP.

Stencil Queries

You can obtain the values for all six stencil-related parameters by using the query function
glGetintegerv(land one of the values shown in Table 10-3 You can also determine whether the stenci
test is enabled by passing GL_STENCIL_TESTgltsEnabled()

Query Value Meaning

GL_STENCIL_FUNC Stencil function

GL_STENCIL_REF Stencil reference value
GL_STENCIL_VALUE_MASK Stencil mask

GL_STENCIL_FAIL Stencil fail action
GL_STENCIL_PASS_DEPTH_FAIL Stencil pass and depth buffer fail action
GL_STENCIL_PASS_DEPTH_PASS Stencil pass and depth buffer pass action

Table 10-3 Query Values for the Stencil Test (continued)

Stencil Examples

Probably the most typical use of the stencil test is to mask out an irregularly shaped region of the scre
to prevent drawing from occurring within it (as in the windshield example in "Buffers and Their Uses").
To do this, fill the stencil mask with zeros, and then draw the desired shape in the stencil buffer with 1
You can't draw geometry directly into the stencil buffer, but you can achieve the same result by drawit
into the color buffer and choosing a suitable value forffassfunction (such as GL_REPLACE). (You
can usegyIDrawPixels{ to draw pixel data directly into the stencil buffer.) Whenever drawing occurs, a
value is also written into the stencil buffer (in this case, the reference value). To prevent the stencil-bt
drawing from affecting the contents of the color buffer, set the color mask to zero (or GL_FALSE). Yol

OpenGL Programming Guide — Chapter 10, The Framebuffer — 10

might also want to disable writing into the depth buffer.

After you've defined the stencil area, set the reference value to one, and the comparison function sucl
that the fragment passes if the reference value is equal to the stencil-plane value. During drawing, do
modify the contents of the stencil planes.

Example 10-@lemonstrates how to use the stencil test in this way. Two tori are drawn, with a
diamond-shaped cutout in the center of the scene. Within the diamond-shaped stencil mask, a spher
drawn. In this example, drawing into the stencil buffer takes place only when the window is redrawn, s
the color buffer is cleared after the stencil mask has been created.

Example 10-1 Using the Stencil Test: stencil.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

#define YELLOWMAT 1
#define BLUEMAT 2

void init (void)

{
GLfloat yellow_diffuse[]] ={ 0.7, 0.7, 0.0, 1.0 };
GLfloat yellow_specular[] ={ 1.0, 1.0, 1.0, 1.0 };

GLfloat blue_diffuse[] ={ 0.1, 0.1, 0.7, 1.0 };
GLfloat blue_specular[] ={0.1, 1.0, 1.0, 1.0 };

GLfloat position_one[] ={1.0, 1.0, 1.0, 0.0 };

gINewList(YELLOWMAT, GL_COMPILE);
glMaterialfv(GL_FRONT, GL_DIFFUSE, yellow_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, yellow_specular);
glMaterialf(GL_FRONT, GL_SHININESS, 64.0);

glEndList();

gINewList(BLUEMAT, GL_COMPILE);
glMaterialfv(GL_FRONT, GL_DIFFUSE, blue_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, blue_specular);
glMaterialf(GL_FRONT, GL_SHININESS, 45.0);
glEndList();

glLightfv(GL_LIGHTO, GL_POSITION, position_one);

OpenGL Programming Guide — Chapter 10, The Framebuffer — 11

glEnable(GL_LIGHTO);
glEnable(GL_LIGHTING);
glEnable(GL_DEPTH_TEST);

glClearStencil(0x0);
glEnable(GL_STENCIL_TEST);

[* Draw a sphere in a diamond-shaped section in the
* middle of a window with 2 tori.
*
void display(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

[* draw blue sphere where the stencil is 1 */
glStencilFunc (GL_EQUAL, 0x1, 0x1);
glStencilOp (GL_KEEP, GL_KEEP, GL_KEEP);
glCallList (BLUEMAT);
glutSolidSphere (0.5, 15, 15);

[* draw the tori where the stencil is not 1 */
glStencilFunc (GL_NOTEQUAL, 0x1, 0x1);
glPushMatrix();

glRotatef (45.0, 0.0, 0.0, 1.0);
glRotatef (45.0, 0.0, 1.0, 0.0);
glCallList (YELLOWMAT);
glutSolidTorus (0.275, 0.85, 15, 15);
glPushMatrix();
glRotatef (90.0, 1.0, 0.0, 0.0);
glutSolidTorus (0.275, 0.85, 15, 15);
glPopMatrix();
glPopMatrix();
}

[* Whenever the window is reshaped, redefine the
* coordinate system and redraw the stencil area.
*/
void reshape(int w, int h)
{

glViewport(0, 0, (GLsizei) w, (GLsizei) h);

[* create a diamond shaped stencil area */

OpenGL Programming Guide — Chapter 10, The Framebuffer — 12

glMatrixMode(GL_PROJECTION);
glLoadldentity();
if (w <=h)
gluOrtho2D(-3.0, 3.0, —3.0*(GLfloat)h/(GLfloat)w,
3.0*(GLfloat)h/(GLfloat)w);
else
gluOrtho2D(-3.0*(GLfloat)w/(GLfloat)h,
3.0*(GLfloat)w/(GLfloat)h, -3.0, 3.0);
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();

glClear(GL_STENCIL_BUFFER_BIT);
glStencilFunc (GL_ALWAYS, 0x1, 0x1);
glStencilOp (GL_REPLACE, GL_REPLACE, GL_REPLACE);
giBegin(GL_QUADS);
glVertex2f (-1.0, 0.0);
glVertex2f (0.0, 1.0);
glVertex2f (1.0, 0.0);
glVertex2f (0.0, —1.0);
glEnd();

gIMatrixMode(GL_PROJECTION);

glLoadldentity();

gluPerspective(45.0, (GLfloat) w/(GLfloat) h, 3.0, 7.0);
gIMatrixMode(GL_MODELVIEW);

glLoadldentity();

glTranslatef(0.0, 0.0, =5.0);

/* Main Loop

* Be certain to request stencil bits.

*/

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB

| GLUT_DEPTH | GLUT_STENCIL);

glutlnitWindowsSize (400, 400);
glutinitWindowPaosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutReshapeFunc(reshape);
glutDisplayFunc(display);

OpenGL Programming Guide — Chapter 10, The Framebuffer — 13

glutMainLoop();
return O;

}

The following examples illustrate other uses of the stencil test. (See Chapter 14 for additional ideas.)

Cappind! Suppose you're drawing a closed convex object (or several of them, as long as they do|
intersect or enclose each other) made up of several polygons, and you have a clipping plane that
or may not slice off a piece of it. Suppose that if the plane does intersect the object, you want to ¢
the object with some constant—colored surface, rather than seeing the inside of it. To do this, clea
the stencil buffer to zeros, and begin drawing with stenciling enabled and the stencil comparison

function set to always accept fragments. Invert the value in the stencil planes each time a fragme!
accepted. After all the objects are drawn, regions of the screen where no capping is required havi
zeros in the stencil planes, and regions requiring capping are nonzero. Reset the stencil function
that it draws only where the stencil value is nonzero, and draw a large polygon of the capping col
across the entire screen.

Overlapping translucent polygdisSuppose you have a translucent surface that's made up of
polygons that overlap slightly. If you simply use alpha blending, portions of the underlying objects
are covered by more than one transparent surface, which doesn't look right. Use the stencil plane
make sure that each fragment is covered by at most one portion of the transparent surface. Do th
by clearing the stencil planes to zeros, drawing only when the stencil plane is zero, and incremen
the value in the stencil plane when you draw.

Stipplingd Suppose you want to draw an image with a stipple pattern. (See "Displaying Points,
Lines, and Polygons" in Chapter 2 for more information about stippling.) You can do this by writin
the stipple pattern into the stencil buffer, and then drawing conditionally on the contents of the
stencil buffer. After the original stipple pattern is drawn, the stencil buffer isn’t altered while
drawing the image, so the object gets stippled by the pattern in the stencil planes.

Depth Test

For each pixel on the screen, the depth buffer keeps track of the distance between the viewpoint and
object occupying that pixel. Then if the specified depth test passes, the incoming depth value replace:
one already in the depth buffer.

The depth buffer is generally used for hidden—surface elimination. If a new candidate color for that pix
appears, it's drawn only if the corresponding object is closer than the previous object. In this way, afte
the entire scene has been rendered, only objects that aren’t obscured by other items remain. Initially,
clearing value for the depth buffer is a value that’s as far from the viewpoint as possible, so the depth
any object is nearer than that value. If this is how you want to use the depth buffer, you simply have tc
enable it by passing GL_DEPTH_TESTdi&nable()and remember to clear the depth buffer before you
redraw each frame. (See "Clearing Buffers.") You can also choose a different comparison function for
the depth test witglDepthFunc()

void glDepthFunc(GLenum func);

OpenGL Programming Guide — Chapter 10, The Framebuffer — 14

Sets the comparison function for the depth test. The value for func must be GL_NEVER,
GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER, or
GL_NOTEQUAL. An incoming fragment passes the depth test if its z value has the specified relat
to the value already stored in the depth buffer. The default is GL_LESS, which means that an
incoming fragment passes the test if its z value is less than that already stored in the depth buffer
this case, the z value represents the distance from the object to the viewpoint, and smaller values
mean the corresponding objects are closer to the viewpoint.

Blending, Dithering, and Logical Operations

Once an incoming fragment has passed all the tests described in the previous section, it can be comb
with the current contents of the color buffer in one of several ways. The simplest way, which is also th
default, is to overwrite the existing values. Alternatively, if you're using RGBA mode and you want the
fragment to be translucent or antialiased, you might average its value with the value already in the bul
(blending). On systems with a small number of available colors, you might want to dither color values
increase the number of colors available at the cost of a loss in resolution. In the final stage, you can u
arbitrary bitwise logical operations to combine the incoming fragment and the pixel that's already
written.

Blending

Blending combines the incoming fragment’s R, G, B, and alpha values with those of the pixel already
stored at the location. Different blending operations can be applied, and the blending that occurs depe
on the values of the incoming alpha value and the alpha value (if any) stored at the pixel. (See
"Blending" in Chapter 6 for an extensive discussion of this topic.)

Dithering

On systems with a small number of color bitplanes, you can improve the color resolution at the expen:
of spatial resolution by dithering the color in the image. Dithering is like halftoning in newspapers.
Although The New York Times has only two coldrslack and whitél it can show photographs by
representing the shades of gray with combinations of black and white dots. Comparing a newspaper
image of a photo (having no shades of gray) with the original photo (with grayscale) makes the loss of
spatial resolution obvious. Similarly, systems with a small number of color bitplanes may dither values
of red, green, and blue on neighboring pixels for the perception of a wider range of colors.

The dithering operation that takes place is hardware—dependent; all OpenGL allows you to do is to tur
on and off. In fact, on some machines, enabling dithering might do nothing at all, which makes sense

the machine already has high color resolution. To enable and disable dithering, pass GL_DITHER to

glEnable()andglDisable() Dithering is enabled by default.

Dithering applies in both RGBA and color-index mode. The colors or color indices alternate in some
hardware—dependent way between the two nearest possibilities. For example, in color-index mode, if
dithering is enabled and the color index to be painted is 4.4, then 60% of the pixels may be painted wi
index 4 and 40% of the pixels with index 5. (Many dithering algorithms are possible, but a dithered val
produced by any algorithm must depend upon only the incoming value and the fragment’'s x and y

OpenGL Programming Guide — Chapter 10, The Framebuffer — 15

coordinates.) In RGBA mode, dithering is performed separately for each component (including alpha).
To use dithering in color-index mode, you generally need to arrange the colors in the color map
appropriately in ramps, otherwise, bizarre images might result.

Logical Operations

The final operation on a fragment is thgical operation such as an OR, XOR, or INVERT, which is
applied to the incoming fragment values (source) and/or those currently in the color buffer (destinatior
Such fragment operations are especially useful on bit-blt-type machines, on which the primary graph
operation is copying a rectangle of data from one place in the window to another, from the window to
processor memory, or from memory to the window. Typically, the copy doesn’t write the data directly
into memory but instead allows you to perform an arbitrary logical operation on the incoming data and
the data already present; then it replaces the existing data with the results of the operation.

Since this process can be implemented fairly cheaply in hardware, many such machines are available
an example of using a logical operation, XOR can be used to draw on an image in an undoable way;
simply XOR the same drawing again, and the original image is restored. As another example, when u
color-index mode, the color indices can be interpreted as bit patterns. Then you can compose an ima
combinations of drawings on different layers, use writemasks to limit drawing to different sets of
bitplanes, and perform logical operations to modify different layers.

You enable and disable logical operations by passing GL_INDEX_LOGIC_OP or
GL_COLOR_LOGIC_OP tglEnable()andglDisable()for color-index mode or RGBA mode,
respectively. You also must choose among the sixteen logical operatiomglwijicOp(), or you'll just

get the effect of the default value, GL_COPY. (For backward compatibility with OpenGL Version 1.0,
glEnabléGL_LOGIC_OP) also enables logical operation in color-index mode.)

void glLogicOp(GLenum opcode);
Selects the logical operation to be performed, given an incoming (source) fragment and the pixel
currently stored in the color buffer (destination). Table 1$§hatvs the possible values for opcode
and their meaning (s represents source and d destination). The default value is GL_COPY.

Parameter Operation Parameter Operation
GL_CLEAR 0 GL_AND sOd
GL_COPY s GL_OR sOd
GL_NOOP d GL_NAND ~(s0d)
GL_SET 1 GL_NOR ~(s00d)
GL_COPY_INVERTED s GL_XOR s XOR d
GL_INVERT > GL_EQUIV -(s XOR d)
GL_AND_REVERSE s{-d GL_AND_INVERTED -sd
GL_OR_REVERSE sO-d GL_OR_INVERTED ~s0d

Table 10—-4 Sixteen Logical Operations

The Accumulation Buffer

Advanced

OpenGL Programming Guide — Chapter 10, The Framebuffer — 16

The accumulation buffer can be used for such things as scene antialiasing, motion blur, simulating
photographic depth of field, and calculating the soft shadows that result from multiple light sources.
Other techniques are possible, especially in combination with some of the other buffefhgSee
Accumulation Buffer: Hardware Support for High—Quality RenddvinBaul Haeberli and Kurt Akeley
(SIGGRAPH 1990 Proceedings, p. 309-318) for more information on the uses for the accumulation
buffer.)

OpenGL graphics operations don’t write directly into the accumulation buffer. Typically, a series of
images is generated in one of the standard color buffers, and these are accumulated, one at a time, ir
the accumulation buffer. When the accumulation is finished, the result is copied back into a color buffe
for viewing. To reduce rounding errors, the accumulation buffer may have higher precision (more bits
per color) than the standard color buffers. Rendering a scene several times obviously takes longer the
rendering it once, but the result is higher quality. You can decide what trade—off between quality and
rendering time is appropriate for your application.

You can use the accumulation buffer the same way a photographer can use film for multiple exposure
A photographer typically creates a multiple exposure by taking several pictures of the same scene
without advancing the film. If anything in the scene moves, that object appears blurred. Not surprising
a computer can do more with an image than a photographer can do with a camera. For example, a
computer has exquisite control over the viewpoint, but a photographer can’t shake a camera a predict
and controlled amount. (See "Clearing Buffers" for information about how to clear the accumulation
buffer; useglAccum()to control it.)

void glAccum(GLenum op, GLfloat value);
Controls the accumulation buffer. The op parameter selects the operation, and value is a number
be used in that operation. The possible operations are GL_ACCUM, GL_LOAD, GL_RETURN,
GL_ADD, and GL_MULT.

GL_ACCUM reads each pixel from the buffer currently selected for readingyiRtradBuffer()
multiplies the R, G, B, and alpha valuesviayjue and adds the result to the accumulation buffer.

GL_LOAD does the same thing, except that the values replace those in the accumulation buffer
rather than being added to them.

GL_RETURN takes values from the accumulation buffer, multiplies thewaloy and places the
result in the color buffer(s) enabled for writing.

GL_ADD and GL_MULT simply add or multiply the value of each pixel in the accumulation buffer
by valueand then return it to the accumulation buffer. For GL_MUdlueis clamped to be in the
range [-1.0,1.0]. For GL_ADD, no clamping occurs.

Scene Antialiasing

To perform scene antialiasing, first clear the accumulation buffer and enable the front buffer for readin
and writing. Then loop several times (saythrough code that jitters and draws the imaifgeiing is
moving the image to a slightly different position), accumulating the data with

OpenGL Programming Guide — Chapter 10, The Framebuffer — 17

glAccum(GL_ACCUM, 1.0/ nj;
and finally calling
glAccum(GL_RETURN, 1.0);

Note that this method is a bit faster if, on the first pass through the loop, GL_LOAD is used and clearir
the accumulation buffer is omitted. See Table I6possible jittering values. With this code, the image
is drawnn times before the final image is drawn. If you want to avoid showing the user the intermediat:
images, draw into a color buffer that's not displayed, accumulate from that, and use the GL_RETURN
call to draw into a displayed buffer (or into a back buffer that you subsequently swap to the front).

You could instead present a user interface that shows the viewed image improving as each additional
piece is accumulated and that allows the user to halt the process when the image is good enough. To
accomplish this, in the loop that draws successive imagesgjl@atum()with GL_RETURN after each
accumulation, using 16.0/1.0, 16.0/2.0, 16.0/3.0, ... as the second argument. With this technique, afte!
one pass, 1/16 of the final image is shown, after two passes, 2/16 is shown, and so on. After the
GL_RETURN, the code should check to see if the user wants to interrupt the process. This interface i
slightly slower, since the resultant image must be copied in after each pass.

To decide whanh should be, you need to trade off speed (the more times you draw the scene, the longe
takes to obtain the final image) and quality (the more times you draw the scene, the smoother it gets,
until you make maximum use of the accumulation buffer’'s resolution). "Plate 22" and "Plate 23" show
improvements made using scene antialiasing.

Example 10-8efines two routines for jittering that you might find useédcPerspective@nd
accFrustum() The routineaccPerspective(ls used in place afluPerspective()and the first four
parameters of both routines are the same. To jitter the viewing frustum for scene antialiasing,xpass the
andy jitter values (of less than one pixel) to the fifth and sixth parametescBerspective()Also pass

0.0 for the seventh and eighth parameteectd®’erspective@nd a nonzero value for the ninth parameter
(to prevent division by zero insidecPerspective]) These last three parameters are used for
depth—of-field effects, which are described later in this chapter.

Example 10-2 Routines for Jittering the Viewing Volume: accpersp.c

#define PI_ 3.14159265358979323846

void accFrustum(GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top, GLdouble near, GLdouble far, GLdouble pixdx,
GLdouble pixdy, GLdouble eyedx, GLdouble eyedy,
GLdouble focus)

GLdouble xwsize, ywsize;
GLdouble dx, dy;
GLint viewport[4];

glGetintegerv (GL_VIEWPORT, viewport);

OpenGL Programming Guide — Chapter 10, The Framebuffer — 18

Xwsize = right - left;

ywsize = top - bottom;

dx = —(pixdx*xwsize/(GLdouble) viewport[2] +
eyedx*near/focus);

dy = —(pixdy*ywsize/(GLdouble) viewport[3] +
eyedy*near/focus);

glMatrixMode(GL_PROJECTION);

glLoadldentity();

glFrustum (left + dx, right + dx, bottom + dy, top + dy,
near, far);

glMatrixMode(GL_MODELVIEW);

glLoadldentity();

glTranslatef (—eyedx, —eyedy, 0.0);

void accPerspective(GLdouble fovy, GLdouble aspect,
GLdouble near, GLdouble far, GLdouble pixdx, GLdouble pixdy,
GLdouble eyedx, GLdouble eyedy, GLdouble focus)

GLdouble fov2,left,right,bottom,top;
fov2 = ((fovy*PIl_) / 180.0) / 2.0;

top = near / (fcos(fov2) / fsin(fov2));
bottom = -top;

right = top * aspect;

left = —right;

accFrustum (left, right, bottom, top, near, far,
pixdx, pixdy, eyedx, eyedy, focus);
}

Example 10-8ses these two routines to perform scene antialiasing.

Example 10-3 Scene Antialiasing: accpersp.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <stdlib.h>
#include <math.h>
#include <GL/glut.h>
#include "jitter.h"

void init(void)

OpenGL Programming Guide — Chapter 10, The Framebuffer — 19

GLfloat mat_ambient[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat mat_specular[] ={ 1.0, 1.0, 1.0, 1.0 };
GLfloat light_position[] ={ 0.0, 0.0, 10.0, 1.0 };
GLfloat Im_ambient]] ={0.2,0.2,0.2, 1.0 };

gIMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
gIMaterialf(GL_FRONT, GL_SHININESS, 50.0);
glLightfv(GL_LIGHTO, GL_POSITION, light_position);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, Im_ambient);

glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);
glEnable(GL_DEPTH_TEST);
glShadeModel (GL_FLAT);

glClearColor(0.0, 0.0, 0.0, 0.0);
glClearAccum(0.0, 0.0, 0.0, 0.0);

void displayObjects(void)

{
GLfloat torus_diffuse[] ={0.7, 0.7, 0.0, 1.0 };
GLfloat cube_diffuse[] ={0.0,0.7,0.7,1.0 };
GLfloat sphere_diffuse[] ={ 0.7, 0.0, 0.7, 1.0 };
GLfloat octa_diffuse[] ={0.7,0.4,0.4,1.0};

glPushMatrix ();
glTranslatef (0.0, 0.0, —=5.0);
glRotatef (30.0, 1.0, 0.0, 0.0);

glPushMatrix ();

glTranslatef (-0.80, 0.35, 0.0);

glRotatef (100.0, 1.0, 0.0, 0.0);
glMaterialfv(GL_FRONT, GL_DIFFUSE, torus_diffuse);
glutSolidTorus (0.275, 0.85, 16, 16);

glPopMatrix ();

glPushMatrix ();

glTranslatef (-0.75, —0.50, 0.0);
glRotatef (45.0, 0.0, 0.0, 1.0);
glRotatef (45.0, 1.0, 0.0, 0.0);

OpenGL Programming Guide — Chapter 10, The Framebuffer — 20

glMaterialfv(GL_FRONT, GL_DIFFUSE, cube_diffuse);
glutSolidCube (1.5);
glPopMatrix ();

glPushMatrix ();

glTranslatef (0.75, 0.60, 0.0);

glRotatef (30.0, 1.0, 0.0, 0.0);

glMaterialfv(GL_FRONT, GL_DIFFUSE, sphere_diffuse);
glutSolidSphere (1.0, 16, 16);

glPopMatrix ();

glPushMatrix ();

glTranslatef (0.70, —-0.90, 0.25);
glMaterialfv(GL_FRONT, GL_DIFFUSE, octa_diffuse);
glutSolidOctahedron ();

glPopMatrix ();

glPopMatrix ();

#define ACSIZE 8

void display(void)

{
GLint viewport[4];
int jitter;

glGetintegerv (GL_VIEWPORT, viewport);

glClear(GL_ACCUM_BUFFER_BIT);
for (jitter = O; jitter < ACSIZE; jitter++) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
accPerspective (50.0,
(GLdouble) viewport[2]/(GLdouble) viewport[3],
1.0, 15.0, jg[jitter].x, j8[jitter].y, 0.0, 0.0, 1.0);
displayObijects ();
glAccum(GL_ACCUM, 1.0/ACSIZE);
}
glAccum (GL_RETURN, 1.0);
glFlush();

}

void reshape(int w, int h)

OpenGL Programming Guide — Chapter 10, The Framebuffer — 21

{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);

}

/* Main Loop
* Be certain you request an accumulation buffer.
*
int main(int argc, char** argv)
{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB
| GLUT_ACCUM | GLUT_DEPTH);
glutinitWindowsSize (250, 250);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init();
glutReshapeFunc(reshape);
glutDisplayFunc(display);
glutMainLoop();
return O;

}

You don’t have to use a perspective projection to perform scene antialiasing. You can antialias a scer
with orthographic projection simply by usigirranslate*()to jitter the scene. Keep in mind that
glTranslate*() operates in world coordinates, but you want the apparent motion of the scene to be less
than one pixel, measured in screen coordinates. Thus, you must reverse the world—coordinate mappi
calculating the jittering translation values, using its width or height in world coordinates divided by its
viewport size. Then multiply that world—coordinate value by the amount of jitter to determine how muc
the scene should be moved in world coordinates to get a predictable jitter of less than one pixel. Exan
10-4shows how thelisplay()andreshape(routines might look with a world—coordinate width and

height of 4.5.

Example 10-4 Jittering with an Orthographic Projection: accanti.c

#define ACSIZE 8
void display(void)
{
GLint viewport[4];
int jitter;

glGetintegerv (GL_VIEWPORT, viewport);

glClear(GL_ACCUM_BUFFER_BIT);
for (jitter = O; jitter < ACSIZE; jitter++) {

OpenGL Programming Guide — Chapter 10, The Framebuffer — 22

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix ();
/* Note that 4.5 is the distance in world space between
* left and right and bottom and top.
* This formula converts fractional pixel movement to
* world coordinates.
*/
glTranslatef (j8[jitter].x*4.5/viewport[2],
j8[jitter].y*4.5/viewport[3], 0.0);
displayObijects ();
glPopMatrix ();
glAccum(GL_ACCUM, 1.0/ACSIZE);
}
glAccum (GL_RETURN, 1.0);
glFlush();

}

void reshape(int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
if (w <=h)
glOrtho (-2.25, 2.25, —2.25*h/w, 2.25*h/w, —10.0, 10.0);
else
glOrtho (-2.25*w/h, 2.25*w/h, —-2.25, 2.25, -10.0, 10.0);
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();

}

Motion Blur

Similar methods can be used to simulate motion blur, as shown in "Plate 7" in Appendix | and Figure

10-2Suppose your scene has some stationary and some moving objects in it, and you want to make
motion-blurred image extending over a small interval of time. Set up the accumulation buffer in the sg
way, but instead of spatially jittering the images, jitter them temporally. The entire scene can be made
successively dimmer by calling

glAccum (GL_MULT, decayFactor);
as the scene is drawn into the accumulation buffer, wiesrgyFactoris a number from 0.0 to 1.0.
Smaller numbers fadecayFactorcause the object to appear to be moving faster. You can transfer the

completed scene with the object’s current position and "vapor trail" of previous positions from the
accumulation buffer to the standard color buffer with

OpenGL Programming Guide — Chapter 10, The Framebuffer — 23

glAccum (GL_RETURN, 1.0);

The image looks correct even if the items move at different speeds, or if some of them are accelerate«
As before, the more jitter points (temporal, in this case) you use, the better the final image, at least up
the point where you begin to lose resolution due to finite precision in the accumulation buffer. You car
combine motion blur with antialiasing by jittering in both the spatial and temporal domains, but you pa
for higher quality with longer rendering times.

Figure 10-2 Motion—Blurred Object

Depth of Field

A photograph made with a camera is in perfect focus only for items lying on a single plane a certain
distance from the film. The farther an item is from this plane, the more out of focus it is. The depth of
field for a camera is a region about the plane of perfect focus where items are out of focus by a small
enough amount.

Under normal conditions, everything you draw with OpenGL is in focus (unless your monitor’s bad, in
which case everything is out of focus). The accumulation buffer can be used to approximate what you
would see in a photograph where items are more and more blurred as their distance from a plane of
perfect focus increases. It isn't an exact simulation of the effects produced in a camera, but the result
looks similar to what a camera would produce.

To achieve this result, draw the scene repeatedly using calls with different argument values to
glFrustum() Choose the arguments so that the position of the viewpoint varies slightly around its true
position and so that each frustum shares a common rectangle that lies in the plane of perfect focus, a
shown in Figure 10-3 The results of all the renderings should be averaged in the usual way using the
accumulation buffer.

OpenGL Programming Guide — Chapter 10, The Framebuffer — 24

Figure 10-3 Jittered Viewing Volume for Depth—of-Field Effects

"Plate 10" in Appendix | shows an image of five teapots drawn using the depth—of-field effect. The go
teapot (second from the left) is in focus, and the other teapots get progressively blurrier, depending ug
their distance from the focal plane (gold teapot). The code to draw this image is shown in Example 10
(which assumeaccPerspective@ndaccFrustum(are defined as described in Example LOHze

scene is drawn eight times, each with a slightly jittered viewing volume, by caflaRerspective()As

you recall, with scene antialiasing, the fifth and sixth parameters jitter the viewing volumes anthe
directions. For the depth—of-field effect, however, you want to jitter the volume while holding it
stationary at the focal plane. The focal plane is the depth value defined by the ninth (last) parameter t
accPerspective(which isz = 5.0 in this example. The amount of blur is determined by multiplying the
andy jitter values (seventh and eighth parametemcoPerspectivef)by a constant. Determining the
constant is not a science; experiment with values until the depth of field is as pronounced as you wani
(Note that in Example 10he fifth and sixth parametersdocPerspective(are set to 0.0, so scene
antialiasing is turned off.)

Example 10-5 Depth—-of-Field Effect: dof.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <math.h>
#include "jitter.h"

void init(void)

{
GLfloat ambient[] ={ 0.0, 0.0, 0.0, 1.0 };

OpenGL Programming Guide — Chapter 10, The Framebuffer — 25

GLfloat diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat specular[] ={1.0, 1.0, 1.0, 1.0 };
GLfloat position[] ={ 0.0, 3.0, 3.0, 0.0 };

GLfloat Imodel_ambient[] ={0.2,0.2,0.2,1.0};
GLfloat local_view[] ={0.0 };

glLightfv(GL_LIGHTO, GL_AMBIENT, ambient);
glLightfv(GL_LIGHTO, GL_DIFFUSE, diffuse);
glLightfv(GL_LIGHTO, GL_POSITION, position);

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, Imodel_ambient);
glLightModelfv(GL_LIGHT_MODEL_LOCAL_VIEWER, local_view);

glFrontFace (GL_CW);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);
glEnable(GL_AUTO_NORMAL);
glEnable(GL_NORMALIZE);
glEnable(GL_DEPTH_TEST);

glClearColor(0.0, 0.0, 0.0, 0.0);
glClearAccum(0.0, 0.0, 0.0, 0.0);

/* make teapot display list */
teapotList = glGenLists(1);
glNewlList (teapotList, GL_COMPILE);
glutSolidTeapot (0.5);
glEndList ();

}

void renderTeapot (GLfloat x, GLfloat y, GLfloat z,
GLfloat ambr, GLfloat ambg, GLfloat ambb,
GLfloat difr, GLfloat difg, GLfloat difb,
GLfloat specr, GLfloat specg, GLfloat specb, GLfloat shine)

{
GLfloat mat[4];

glPushMatrix();

glTranslatef (x, y, 2);

mat[0] = ambr; mat[1] = ambg; mat[2] = ambb; mat[3] = 1.0;
gIMaterialfv (GL_FRONT, GL_AMBIENT, mat);

mat[0] = difr; mat[1] = difg; mat[2] = difb;

gIMaterialfv (GL_FRONT, GL_DIFFUSE, mat);

OpenGL Programming Guide — Chapter 10, The Framebuffer — 26

mat[0] = specr; mat[1] = specg; mat[2] = specb;
gIMaterialfv (GL_FRONT, GL_SPECULAR, mat);
gIMaterialf (GL_FRONT, GL_SHININESS, shine*128.0);
glCallList(teapotList);

glPopMatrix();

void display(void)
{
int jitter;
GLint viewport[4];

glGetintegerv (GL_VIEWPORT, viewport);
glClear(GL_ACCUM_BUFFER_BIT);

for (jitter = O; jitter < 8; jitter++) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
accPerspective (45.0,
(GLdouble) viewport[2]/(GLdouble) viewport[3],
1.0, 15.0, 0.0, 0.0,
0.33*jg[jitter].x, 0.33*8[jitter].y, 5.0);

[* ruby, gold, silver, emerald, and cyan teapots */
renderTeapot (-1.1, 0.5, —-4.5, 0.1745, 0.01175,
0.01175, 0.61424, 0.04136, 0.04136,
0.727811, 0.626959, 0.626959, 0.6);
renderTeapot (-0.5, -0.5, -5.0, 0.24725, 0.1995,
0.0745, 0.75164, 0.60648, 0.22648,
0.628281, 0.555802, 0.366065, 0.4);
renderTeapot (0.2, -0.5, -5.5, 0.19225, 0.19225,
0.19225, 0.50754, 0.50754, 0.50754,
0.508273, 0.508273, 0.508273, 0.4);
renderTeapot (1.0, -0.5, —6.0, 0.0215, 0.1745, 0.0215,
0.07568, 0.61424, 0.07568, 0.633,
0.727811, 0.633, 0.6);
renderTeapot (1.8, -0.5, -6.5, 0.0, 0.1, 0.06, 0.0,
0.50980392, 0.50980392, 0.50196078,
0.50196078, 0.50196078, .25);
glAccum (GL_ACCUM, 0.125);
}
glAccum (GL_RETURN, 1.0);
glFlush();

}

OpenGL Programming Guide — Chapter 10, The Framebuffer — 27

void reshape(int w, int h)
{

glViewport(0, 0, (GLsizei) w, (GLsizei) h);
}

/* Main Loop
* Be certain you request an accumulation buffer.
*
int main(int argc, char** argv)
{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB
| GLUT_ACCUM | GLUT_DEPTH);
glutinitWindowsSize (400, 400);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init();
glutReshapeFunc(reshape);
glutDisplayFunc(display);
glutMainLoop();
return O;

Soft Shadows

To accumulate soft shadows due to multiple light sources, render the shadows with one light turned o
a time, and accumulate them together. This can be combined with spatial jittering to antialias the scer
the same time. (See "Shadows" in Chapter 14 for more information about drawing shadows.)

Jittering

If you need to take nine or sixteen samples to antialias an image, you might think that the best choice
points is an equally spaced grid across the pixel. Surprisingly, this is not necessarily true. In fact,
sometimes it's a good idea to take points that lie in adjacent pixels. You might want a uniform
distribution or a normalized distribution, clustering toward the center of the pixel. (The aforementioned
SIGGRAPH paper discusses these issues.) In addition, Tablehdw$a few sets of reasonable

jittering values to be used for some selected sample counts. Most of the examples in the table are
uniformly distributed in the pixel, and all lie within the pixel.

Count Values

2 {0.25, 0.75}, {0.75, 0.25}

3 {0.5033922635, 0.8317967229}, {0.7806016275, 0.2504380877},
{0.2261828938, 0.4131553612}

4 {0.375, 0.25}, {0.125, 0.75}, {0.875, 0.25}, {0.625, 0.75}

5 {0.5, 0.5}, {0.3, 0.1}, {0.7, 0.9}, {0.9, 0.3}, {0.1, 0.7}

OpenGL Programming Guide — Chapter 10, The Framebuffer — 28

12

16

{0.4646464646, 0.4646464646}, {0.1313131313, 0.7979797979},
{0.5353535353, 0.8686868686}, {0.8686868686, 0.5353535353},
{0.7979797979, 0.1313131313}, {0.2020202020, 0.2020202020}
{0.5625, 0.4375}, {0.0625, 0.9375}, {0.3125, 0.6875}, {0.6875, 0.8125}, {0.8125,
0.1875}, {0.9375, 0.5625}, {0.4375, 0.0625}, {0.1875, 0.3125}

{0.5, 0.5}, {0.1666666666, 0.9444444444}, {0.5, 0.1666666666},

{0.5, 0.8333333333}, {0.1666666666, 0.2777777777},
{0.8333333333, 0.3888888888}, {0.1666666666, 0.6111111111},
{0.8333333333, 0.7222222222}, {0.8333333333, 0.0555555555}
{0.4166666666, 0.625}, {0.9166666666, 0.875}, {0.25, 0.375},
{0.4166666666, 0.125}, {0.75, 0.125}, {0.0833333333, 0.125}, {0.75,
0.625},

{0.25, 0.875}, {0.5833333333, 0.375}, {0.9166666666, 0.375},
{0.0833333333, 0.625}, {0.583333333, 0.875}

{0.375, 0.4375}, {0.625, 0.0625}, {0.875, 0.1875}, {0.125, 0.0625},
{0.375, 0.6875}, {0.875, 0.4375}, {0.625, 0.5625}, {0.375, 0.9375},
{0.625, 0.3125}, {0.125, 0.5625}, {0.125, 0.8125}, {0.375, 0.1875},
{0.875, 0.9375}, {0.875, 0.6875}, {0.125, 0.3125}, {0.625, 0.8125}

Table 10-5 (continued) Sample Jittering Values

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 29

Chapter 11
Tessellators and Quadrics

Chapter Objectives
After reading this chapter, you'll be able to do the following:

Render concave filled polygons by first tessellating them into convex polygons, which can be
rendered using standard OpenGL routines.

Use the GLU library to create quadrics objects to render and model the surfaces of spheres and
cylinders and to tessellate disks (circles) and partial disks (arcs).

The OpenGL library (GL) is designed for low-level operations, both streamlined and accessible to
hardware acceleration. The OpenGL Utility Library (GLU) complements the OpenGL library, supportin
higher—level operations. Some of the GLU operations are covered in other chapters. Mipmapping
(gluBuild*DMipmaps() and image scalinggluScalelmagej)are discussed along with other facets of
texture mapping in Chapter 9. Several matrix transformation GLU routjhe3rtho2D()
gluPerspective()gluLookAt() gluProject() andgluUnProject() are described in Chapter 3. The use of
gluPickMatrix()is explained in Chapter 13. The GLU NURBS facilities, which are built atop OpenGL
evaluators, are covered in Chapter 12. Only two GLU topics remain: polygon tessellators and quadric
surfaces, and those topics are discussed in this chapter.

To optimize performance, the basic OpenGL only renders convex polygons, but the GLU contains
routines to tessellate concave polygons into convex ones, which the basic OpenGL can handle. Wher
basic OpenGL operates upon simple primitives, such as points, lines, and filled polygons, the GLU ca
create higher-level objects, such as the surfaces of spheres, cylinders, and cones.

This chapter has the following major sections.

"Polygon Tessellation™ explains how to tessellate convex polygons into easier—to—render convex
polygons.

"Quadrics: Rendering Spheres, Cylinders, and Disks" describes how to generate spheres, cylinde
circles and arcs, including data such as surface normals and texture coordinates.

Polygon Tessellation

As discussed in "Describing Points, Lines, and Polygons" in Chapter 2, OpenGL can directly display
only simple convex polygons. A polygon is simple if the edges intersect only at vertices, there are no
duplicate vertices, and exactly two edges meet at any vertex. If your application requires the display o
concave polygons, polygons containing holes, or polygons with intersecting edges, those polygons mi
first be subdivided into simple convex polygons before they can be displayed. Such subdivision is call
tessellation and the GLU provides a collection of routines that perform tessellation. These routines tak
as input arbitrary contours, which describe hard—to-render polygons, and they return some combinati
triangles, triangle meshes, triangle fans, or lines.

Figure 11-1 shows some contours of polygons that require tessellation: from left to right, a concave

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 1

polygon, a polygon with a hole, and a self-intersecting polygon.

Figure 11-1 Contours That Require Tessellation
If you think a polygon may need tessellation, follow these typical steps.
1. Create a new tessellation object vgthNewTess()

2. UsegluTessCallback(everal times to register callback functions to perform operations during the
tessellation. The trickiest case for a callback function is when the tessellation algorithm detects ar
intersection and must call the function registered for the GLU_TESS COMBINE callback.

3. Specify tessellation properties by callglgTessProperty()The most important property is the
winding rule, which determines the regions that should be filled and those that should remain
unshaded.

4. Create and render tessellated polygons by specifying the contours of one or more closed polygon
the data for the object is static, encapsulate the tessellated polygons in a display list. (If you don’t
have to recalculate the tessellation over and over again, using display lists is more efficient.)

5. If you need to tessellate something else, you may reuse your tessellation object. If you are foreve
finished with your tessellation object, you may delete it gltiDeleteTess()

Note: The tessellator described here was introduced in version 1.2 of the GLU. If you are using an olc
version of the GLU, you must use routines described in "Describing GLU Errors". To query which
version of GLU you have, ugguGetString(GLU_VERSION)vhich returns a string with your GLU
version number. If you don’t seem to hgheGetString()in your GLU, then you have GLU 1.0, which

did not yet have thgluGetString()routine.

Create a Tessellation Object

As a complex polygon is being described and tessellated, it has associated data, such as the vertices
edges, and callback functions. All this data is tied to a single tessellation object. To perform tessellatic
your program first has to create a tessellation object using the rgluthewTess()

GLUtesselator* gluNewTess(void);
Creates a new tessellation object and returns a pointer to it. A null pointer is returned if the creatic
fails.

A single tessellation object can be reused for all your tessellations. This object is required only becaus
library routines might need to do their own tessellations, and they should be able to do so without

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 2

interfering with any tessellation that your program is doing. It might also be useful to have multiple
tessellation objects if you want to use different sets of callbacks for different tessellations. A typical
program, however, allocates a single tessellation object and uses it for all its tessellations. There’s no
need to free it because it uses a small amount of memory. On the other hand, it never hurts to be tidy

Tessellation Callback Routines

After you create a tessellation object, you must provide a series of callback routines to be called at
appropriate times during the tessellation. After specifying the callbacks, you describe the contours of
or more polygons using GLU routines. When the description of the contours is complete, the tessellati
facility invokes your callback routines as necessary.

Any functions that are omitted are simply not called during the tessellation, and any information they
might have returned to your program is lost. All are specified by the single rgltifessCallback()

void gluTessCallback(GLUtesselator *tessobj, GLenum type, void (*fn)());
Associates the callback function fn with the tessellation object tessobj. The type of the callback is
determined by the parameter type, which can be GLU_TESS_BEGIN, GLU_TESS_BEGIN_DAT#
GLU_TESS_EDGE_FLAG, GLU_TESS_EDGE_FLAG_DATA, GLU_TESS_VERTEX,
GLU_TESS VERTEX_DATA, GLU_TESS_END, GLU_TESS END_DATA, GLU_TESS_COMBI!
GLU_TESS_COMBINE_DATA, GLU_TESS_ERROR, and GLU_TESS_ERROR_DATA. The twel
possible callback functions have the following prototypes:
GLU_TESS_BEGIN void begin(GLenum type);

GLU_TESS_BEGIN_DATA void begin(GLenum type,
void *user_data);

GLU_TESS_EDGE_FLAG void edgeFlag(GLboolean flag);

GLU_TESS_EDGE_FLAG_DATA void edgeFlag(GLboolean flag,
void *user_data);

GLU_TESS_VERTEX void vertex(void *vertex_data);

GLU_TESS_VERTEX_DATA void vertex(void *vertex_data,
void *user_data);

GLU_TESS_END void end(void);

GLU_TESS_END_DATA void end(void *user_data);
GLU_TESS_ERROR void error(GLenum errno);
GLU_TESS_ERROR_DATA void error(GLenum errno, void *user_data);

GLU_TESS_COMBINE void combine(GLdouble coords[3],
void *vertex_data[4],

GLfloat weight[4],

void **outData);

GLU_TESS_COMBINE_DATA void combine(GLdouble coords[3],

void *vertex_data[4],

GLfloat weight[4],

void **outData,

void *user_data);
To change a callback routine, simply gdliTessCallback(vith the new routine. To eliminate a
callback routine without replacing it with a new one, a3 essCallback(@ null pointer for the

appropriate function.

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 3

As tessellation proceeds, the callback routines are called in a manner

similar to how you use the OpenGL commagtBegin() glEdgeFlag*() glVertex*(), andglEnd() (See
"Marking Polygon Boundary Edges" in Chapter 2 for more information apgdgeFlag*()) The

combine callback is used to create new vertices where edges intersect. The error callback is invoked
during the tessellation only if something goes wrong.

For every tessellator object created, a GLU_TESS BEGIN callback is invoked with one of four possib
parameters: GL_TRIANGLE_FAN, GL_TRIANGLE_STRIP, GL_TRIANGLES, and

GL_LINE_LOOP. When the tessellator decomposes the polygons, the tessellation algorithm will decic
which type of triangle primitive is most efficient to use. (If the GLU_TESS_BOUNDARY_ONLY
property is enabled, then GL_LINE_LOOP is used for rendering.)

Since edge flags make no sense in a triangle fan or triangle strip, if there is a callback associated with
GLU_TESS_EDGE_FLAG that enables edge flags, the GLU_TESS_BEGIN callback is called only wit
GL_TRIANGLES. The GLU_TESS EDGE_FLAG callback works exactly analogously to the OpenGL
glEdgeFlag*()call.

After the GLU_TESS_BEGIN callback routine is called and before the callback associated with
GLU_TESS_END is called, some combination of the GLU_TESS_EDGE_FLAG and
GLU_TESS_VERTEX callbacks is invoked (usually by callgltoTessVertex(which is described on

page 425). The associated edge flags and vertices are interpreted exactly as they are in OpenGL bet
glBegin()and the matchinglEnd()

If something goes wrong, the error callback is passed a GLU error number. A character string describ
the error is obtained using the routgieErrorString(). (See "Describing GLU Errors" for more
information about this routine.)

Example 11-%hows a portion of tess.c, where a tessellation object is created and several callbacks ar
registered.

Example 11-1 Registering Tessellation Callbacks: tess.c

[* a portion of init() */

tobj = gluNewTess();

gluTessCallback(tobj, GLU_TESS VERTEX,
(GLvoid (*) () &glVertex3dv);

gluTessCallback(tobj, GLU_TESS_BEGIN,
(GLvoid (*) ()) &beginCallback);

gluTessCallback(tobj, GLU_TESS_END,
(GLvoid (*) ()) &endCallback);

gluTessCallback(tobj, GLU_TESS ERROR,
(GLvoid (*) ()) &errorCallback);

[* the callback routines registered by gluTessCallback() */
void beginCallback(GLenum which)

{
glBegin(which);

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics - 4

void endCallback(void)
{
glEnd();

}

void errorCallback(GLenum errorCode)

{

const GLubyte *estring;

estring = gluErrorString(errorCode);
fprintf (stderr, "Tessellation Error: %s\n", estring);
exit (0);

}

In Example 11%he registered GLU_TESS_VERTEX callback is singilyertex3dv()and only the
coordinates at each vertex are passed along. However, if you want to specify more information at eve
vertex, such as a color value, a surface normal vector, or texture coordinate, you’ll have to make a mc
complex callback routine. Example 1kk@®ws the start of another tessellated object, further along in
program tess.c. The registered functientexCallback(expects to receive a parameter that is a pointer
to six double-length floating point values: ¥hg, andzcoordinates and the red, green, and blue color
values, respectively, for that vertex.

Example 11-2 Vertex and Combine Callbacks: tess.c

[* a different portion of init() */
gluTessCallback(tobj, GLU_TESS VERTEX,
(GLvoid (*) () &vertexCallback);
gluTessCallback(tobj, GLU_TESS BEGIN,
(GLvoid (*) ()) &beginCallback);
gluTessCallback(tobj, GLU_TESS_END,
(GLvoid (*) ()) &endCallback);
gluTessCallback(tobj, GLU_TESS ERROR,
(GLvoid (*) ()) &errorCallback);
gluTessCallback(tobj, GLU_TESS COMBINE,
(GLvoid (*) ()) &combineCallback);

/* new callback routines registered by these calls */
void vertexCallback(GLvoid *vertex)

{

const GLdouble *pointer;

pointer = (GLdouble *) vertex;
glColor3dv(pointer+3);

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 5

glVertex3dv(vertex);

}

void combineCallback(GLdouble coords[3],
GLdouble *vertex_data[4],
GLfloat weight[4], GLdouble **dataOut)
{
GLdouble *vertex;
int i;

vertex = (GLdouble *) malloc(6 * sizeof(GLdouble));
vertex[0] = coords|[O];
vertex[1] = coords[1];
vertex[2] = coords[2];
for (1=3;i<7;i++)
vertex[i] = weight[0] * vertex_data[0][i]
+ weight[1] * vertex_data[1][i]
+ weight[2] * vertex_data[2][i]
+ weight[3] * vertex_data[3][i];
*dataOut = vertex;

}

Example 11-2lso shows the use of the GLU_TESS_COMBINE callback. Whenever the tessellation
algorithm examines the input contours, detects an intersection, and decides it must create a new verte
the GLU_TESS_COMBINE callback is invoked. The callback is also called when the tessellator decid
to merge features of two vertices that are very close to one another. The newly created vertex is a line
combination of up to four existing vertices, referenceddayex_datf0..3] in Example 11-2 The
coefficients of the linear combination are givenimigh{0..3]; these weights sum to 1&bordsgives

the location of the new vertex.

The registered callback routine must allocate memory for another vertex, perform a weighted
interpolation of data usingertex_datandweight and return the new vertex pointerdasaOut
combineCallback()n Example 11-2interpolates the RGB color value. The function allocates a
six—element array, puts tkey, andz coordinates in the first three elements, and then puts the weighted
average of the RGB color values in the last three elements.

User—Specified Data

Six kinds of callbacks can be registered. Since there are two versions of each kind of callback, there ¢
twelve callbacks in all. For each kind of callback, there is one with user—specified data and one withot
The user—specified data is given by the applicatigluitessBeginPolygongnd is then passed,

unaltered, to each *DATA callback routine. With GLU_TESS_ BEGIN_DATA, the user—specified data
may be used for "per—polygon" data. If you specify both versions of a particular callback, the callback
with user_datas used, and the other is ignored. So, although there are twelve callbacks, you can have
maximum of six callback functions active at any time.

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 6

For instance, Example 11-2uses smooth shadingrsexCallback(specifies an RGB color for every
vertex. If you want to do lighting and smooth shading, the callback would specify a surface normal for
every vertex. However, if you want lighting and flat shading, you might specify only one surface norme
for every polygon, not for every vertex. In that case, you might choose to use the
GLU_TESS_BEGIN_DATA callback and pass the vertex coordinates and surface normal in the
user_datgpointer.

Tessellation Properties

Prior to tessellation and rendering, you may gis& essPropertyfo set several properties to affect the
tessellation algorithm. The most important and complicated of these properties is the winding rule, wh
determines what is considered "interior" and "exterior."

void gluTessProperty(GLUtesselator *tessobj, GLenum property,
GLdouble value);

For the tessellation object tessobj, the current value of property is set to value. property is one of
GLU_TESS BOUNDARY_ONLY, GLU_TESS_TOLERANCE, or GLU_TESS_WINDING_RULE.
If property is GLU_TESS BOUNDARY_ONLY, value is either GL_TRUE or GL_FALSE. When se
to GL_TRUE, polygons are no longer tessellated into filled polygons; line loops are drawn to
outline the contours that separate the polygon interior and exterior. The default value is GL_FALS
(See gluTessNormal() to see how to control the winding direction of the contours.)

If property is GLU_TESS_TOLERANCE, value is a distance used to calculate whether two vertice
are close together enough to be merged by the GLU_TESS_COMBINE callback. The tolerance vi
is multiplied by the largest coordinate magnitude of an input vertex to determine the maximum
distance any feature can move as a result of a single merge operation. Feature merging may not |
supported by your implementation, and the tolerance value is only a hint. The default tolerance
value is zero.

The GLU_TESS WINDING_RULE property determines which parts of the polygon are on the
interior and which are the exterior and should not be filled. value can be one of
GLU_TESS_WINDING_ODD (the default), GLU_TESS_WINDING_NONZERO,
GLU_TESS_WINDING_POSITIVE, GLU_TESS_WINDING_NEGATIVE, or
GLU_TESS_WINDING_ABS_GEQ_TWO.

Winding Numbers and Winding Rules

For a single contour, the winding number of a point is the signed number of revolutions we make arou
that point while traveling once around the contour (where a counterclockwise revolution is positive anc
clockwise revolution is negative). When there are several contours, the individual winding numbers ar
summed. This procedure associates a signed integer value with each point in the plane. Note that the
winding number is the same for all points in a single region.

Figure 11-2shows three sets of contours and winding numbers for points inside those contours. In the
left set, all three contours are counterclockwise, so each nested interior region adds one to the windin
number. For the middle set, the two interior contours are drawn clockwise, so the winding number
decreases and actually becomes negative.

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 7

Figure 11-2 Winding Numbers for Sample Contours

The winding rule classifies a regioniasideif its winding number belongs to the chosen category (odd,
nonzero, positive, negative, or "absolute value of greater than or equal to two"). The odd and nonzero
rules are common ways to define the interior. The positive, negative, and "absolute value>=2" winding
rules have some limited use for polygon CSG (computational solid geometry) operations.

The program tesswind.c demonstrates the effects of winding rules. The four sets of contours shown ir
Figure 11-3are rendered. The user can then cycle through the different winding rule properties to see
their effects. For each winding rule, the dark areas represent interiors. Note the effect of clockwise an
counterclockwise winding.

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 8

Figure 11-3 How Winding Rules Define Interiors

CSG Uses for Winding Rules

GLU_TESS_WINDING_ODD and GLU_TESS_WINDING_NONZERO are the most commonly used
winding rules. They work for the most typical cases of shading.

The winding rules are also designed for computational solid geometry (CSG) operations. Thy make it
easy to find the union, difference, or intersection (Boolean operations) of several contours.

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 9

First, assume that each contour is defined so that the winding number is zero for each exterior region
one for each interior region. (Each contour must not intersect itself.) Under this model, counterclockwi
contours define the outer boundary of the polygon, and clockwise contours define holes. Contours ma
be nested, but a nested contour must be oriented oppositely from the contour that contains it.

If the original polygons do not satisfy this description, they can be converted to this form by first runnir
the tessellator with the GLU_TESS_BOUNDARY_ONLY property turned on. This returns a list of
contours satisfying the restriction just described. By creating two tessellator objects, the callbacks fror
one tessellator can be fed directly as input to the other.

Given two or more polygons of the preceding form, CSG operations can be implemented as follows.

UNIONC To calculate the union of several contours, draw all input contours as a single polygon.
The winding number of each resulting region is the number of original polygons that cover it. The
union can be extracted by using the GLU_TESS_WINDING_NONZERO or
GLU_TESS_WINDING_POSITIVE winding rules. Note that with the nonzero winding rule, we
would get the same result if all contour orientations were reversed.

INTERSECTIONI This only works for two contours at a time. Draw a single polygon using two
contours. Extract the result using GLU_TESS _WINDING_ABS_GEQ_TWO.

DIFFERENCHI Suppose you want to compute A diff (B union C union D). Draw a single polygon
consisting of the unmodified contours from A, followed by the contours of B, C, and D, with their
vertex order reversed. To extract the result, use the GLU_TESS_ WINDING_POSITIVE winding
rule. (If B, C, and D are the result of a GLU_TESS BOUNDARY_ONLY operation, an alternative
to reversing the vertex order is to ugeTessNormal(jo reverse the sign of the supplied normal.

Other Tessellation Property Routines

There are complementary routines, which work alongglideessProperty()gluGetTessProperty()

retrieves the current values of tessellator properties. If the tessellator is being used to generate wire fr

outlines instead of filled polygongluTessNormal(tan be used to determine the winding direction of

the tessellated polygons.

void gluGetTessProperty(GLUtesselator *tessobj, GLenum property,

GLdouble *value);
For the tessellation object tessobj, the current value of property is returned to value. Values for
property and value are the same as for gluTessProperty().

void gluTessNormal(GLUtesselator *tessobj, GLdouble x, GLdouble v,
GLdouble 2);

For the tessellation object tessobj, gluTessNormal() defines a normal vector, which controls the
winding direction of generated polygons. Before tessellation, all input data is projected into a plan
perpendicular to the normal. Then, all output triangles are oriented counterclockwise, with respect
to the normal. (Clockwise orientation can be obtained by reversing the sign of the supplied norma
The default normal is (0, 0, 0).

If you have some knowledge about the location and orientation of the input data, then using

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 10

gluTessNormal(fan increase the speed of the tessellation. For example, if you know that all polygons
on the x-y plane, calluTessNormé#lessobj 0, 0, 1).

The default normal is (0, 0, 0), and its effect is not immediately obvious. In this case, it is expected the
the input data lies approximately in a plane, and a plane is fitted to the vertices, no matter how they at
truly connected. The sign of the normal is chosen so that the sum of the signed areas of all input cont:
is nonnegative (where a counterclockwise contour has a positive area). Note that if the input data doe
not lie approximately in a plane, then projection perpendicular to the computed normal may substantic
change the geometry.

Polygon Definition

After all the tessellation properties have been set and the callback actions have been registered, it is
finally time to describe the vertices that compromise input contours and tessellate the polygons.

void gluTessBeginPolygon (GLUtesselator *tessobj, void *user_data);
void gluTessEndPolygon (GLUtesselator *tessobj);

Begins and ends the specification of a polygon to be tessellated and associates a tessellation obji
tessobj, with it. user_data points to a user—defined data structure, which is passed along all the
GLU_TESS_* DATA callback functions that have been bound.

Calls togluTessBeginPolygongndgluTessEndPolygongurround the definition of one or more

contours. WhemgluTessEndPolygon{3 called, the tessellation algorithm is implemented, and the
tessellated polygons are generated and rendered. The callback functions and tessellation properties t
were bound and set to the tessellation object uglimgessCallback@ndgluTessProperty(are used.

void gluTessBeginContour (GLUtesselator *tessobj);
void gluTessEndContour (GLUtesselator *tessobj);

Begins and ends the specification of a closed contour, which is a portion of a polygon. A closed
contour consists of zero or more calls to gluTessVertex(), which defines the vertices. The last vert
of each contour is automatically linked to the first.

In practice, a minimum of three vertices is needed for a meaningful contour.

void gluTessVertex (GLUtesselator *tessobj, GLdouble coords[3],
void *vertex_data);

Specifies a vertex in the current contour for the tessellation object. coords contains the
three—dimensional vertex coordinates, gadex_data is a pointer that’s sent to the callback
associated with GLU_TESS VERTEX or GLU_TESS_VERTEX_DATA. Typically, vertex_data
contains vertex coordinates, surface normals, texture coordinates, color information, or whatever
else the application may find useful.

In the program tess.c, a portion of which is shown in Example tte-®olygons are defined. One
polygon is a rectangular contour with a triangular hole inside, and the other is a smooth—shaded,
self-intersecting, five—pointed star. For efficiency, both polygons are stored in display lists. The first
polygon consists of two contours; the outer one is wound counterclockwise, and the "hole" is wound
clockwise. For the second polygon, 8tararray contains both the coordinate and color data, and its
tessellation callbackiertexCallback()uses both.

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 11

It is important that each vertex is in a different memory location because the vertex data is not copied
gluTessVertex(pnly the pointeryertex_datais saved. A program that reuses the same memory for
several vertices may not get the desired result.

Note: In gluTessVertex(jt may seem redundant to specify the vertex coordinate data twice, for both th
coordsandvertex_datgparameters; however, both are necessanyrdsrefers only to the vertex
coordinatesvertex_datauses the coordinate data, but may also use other information for each vertex.

Example 11-3 Polygon Definition: tess.c

GLdouble rect[4][3] = {50.0, 50.0, 0.0,
200.0, 50.0, 0.0,
200.0, 200.0, 0.0,
50.0, 200.0, 0.0},

GLdouble tri[3][3] = {75.0, 75.0, 0.0,
125.0, 175.0, 0.0,
175.0, 75.0, 0.0};

GLdouble star[5][6] = {250.0, 50.0, 0.0, 1.0, 0.0, 1.0,
325.0, 200.0, 0.0, 1.0, 1.0, 0.0,
400.0, 50.0, 0.0, 0.0, 1.0, 1.0,
250.0, 150.0, 0.0, 1.0, 0.0, 0.0,
400.0, 150.0, 0.0, 0.0, 1.0, 0.0};

startList = glGenLists(2);

tobj = gluNewTess();

gluTessCallback(tobj, GLU_TESS VERTEX,
(GLvoid (*) () &glVertex3dv);

gluTessCallback(tobj, GLU_TESS BEGIN,
(GLvoid (*) ()) &beginCallback);

gluTessCallback(tobj, GLU_TESS END,
(GLvoid (*) ()) &endCallback);

gluTessCallback(tobj, GLU_TESS ERROR,
(GLvoid (*) ()) &errorCallback);

gINewList(startList, GL_COMPILE);
glShadeModel(GL_FLAT);
gluTessBeginPolygon(tobj, NULL);
gluTessBeginContour(tobj);
gluTessVertex(tobj, rect[0], rect[0]);
gluTessVertex(tobj, rect[1], rect[1]);
gluTessVertex(tobj, rect[2], rect[2]);
gluTessVertex(tobj, rect[3], rect[3]);
gluTessEndContour(tobj);
gluTessBeginContour(tobj);
gluTessVertex(tobj, tri[0], tri[0]);

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 12

gluTessVertex(tobj, tri[1], tri[1]);
gluTessVertex(tobj, tri[2], tri[2]);
gluTessEndContour(tobj);
gluTessEndPolygon(tobj);
glEndList();

gluTessCallback(tobj, GLU_TESS VERTEX,
(GLvoid (*) ()) &vertexCallback);
gluTessCallback(tobj, GLU _TESS BEGIN,
(GLvoid (*) ()) &beginCallback);
gluTessCallback(tobj, GLU_TESS END,
(GLvoid (*) ()) &endCallback);
gluTessCallback(tobj, GLU_TESS ERROR,
(GLvoid (*) ()) &errorCallback);
gluTessCallback(tobj, GLU_TESS COMBINE,
(GLvoid (*) ()) &combineCallback);

gINewList(startList + 1, GL_COMPILE);
glShadeModel(GL_SMOQOTH);
gluTessProperty(tobj, GLU_TESS_WINDING_RULE,
GLU_TESS_WINDING_POSITIVE);
gluTessBeginPolygon(tobj, NULL);
gluTessBeginContour(tobj);
gluTessVertex(tobj, star[0], star[0]);
gluTessVertex(tobj, star[1], star[1]);
gluTessVertex(tobj, star[2], star[2]);
gluTessVertex(tobj, star[3], star[3]);
gluTessVertex(tobj, star[4], star[4]);
gluTessEndContour(tobj);
gluTessEndPolygon(tobj);
glEndList();

Deleting a Tessellator Object

If you no longer need a tessellation object, you can delete it and free all associated memory with
gluDeleteTess()

void gluDeleteTess(GLUtesselator *tessobj);
Deletes the specified tessellation object, tessobj, and frees all associated memory.

Tessellator Performance Tips
For best performance, remember these rules.

1. Cache the output of the tessellator in a display list or other user structure. To obtain the

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 13

post-tessellation vertex coordinates, tessellate the polygons while in feedback mode. (See
"Feedback" in Chapter 13.)

2. UsegluTessNormal(jo supply the polygon normal.

3. Use the same tessellator object to render many polygons rather than allocate a new tessellator fo
each one. (In a multithreaded, multiprocessor environment, you may get better performance usincg
several tessellators.)

Describing GLU Errors

The GLU provides a routine for obtaining a descriptive string for an error code. This routine is not
limited to tessellation but is also used for NURBS and quadrics errors, as well as errors in the base Gl
(See "Error Handling" in Chapter 14 for information about OpenGL'’s error handling facility.)

Backward Compatibility

If you are using the 1.0 or 1.1 version of GLU, you have a much less powerful tessellator available. Tt
1.0/1.1 tessellator handles only simple nonconvex polygons or simple polygons containing holes. It dc
not properly tessellate intersecting contours (no COMBINE callback), nor process per—polygon data.

The 1.0/1.1 tessellator has some similarities to the current tessgllaiewTess(@ndgluDeleteTess()
are used for both tessellators. The main vertex specification routine reghdirssVertex()JThe
callback mechanism is controlled fluTessCallback(Jalthough there are only five callback functions
that can be registered, a subset of the current twelve.

Here are the prototypes for the 1.0/1.1 tessellator. The 1.0/1.1 tessellator still works in GLU 1.2, but it
use is no longer recommended.

void gluBeginPolygon(GLUtriangulatorObj *tessobj);
void gluNextContour(GLUtriangulatorObj *tessobj, GLenum type);
void gluEndPolygon(GLUtriangulatorObj *tessobj);

The outermost contour must be specified first, and it does not require an initial call to
gluNextContour(). For polygons without holes, only one contour is defined, and gluNextContour()
not used. If a polygon has multiple contours (that is, holes or holes within holes), the contours are
specified one after the other, each preceded by gluNextContour(). gluTessVertex() is called for ea
vertex of a contour.

For gluNextContour(), type can be GLU_EXTERIOR, GLU_INTERIOR, GLU_CCW, GLU_CW, or
GLU_UNKNOWN. These serve only as hints to the tessellation. If you get them right, the tessellat
might go faster. If you get them wrong, they’re ignored, and the tessellation still works. For
polygons with holes, one contour is the exterior contour and the other’s interior. The first contour i
assumed to be of type GLU_EXTERIOR. Choosing clockwise and counterclockwise orientation is
arbitrary in three dimensions; however, there are two different orientations in any plane, and the
GLU_CCW and GLU_CW types should be used consistently. Use GLU_UNKNOWN if you don’t
have a clue.

It is highly recommended that you convert GLU 1.0/1.1 code to the new tessellation interface for GLU
1.2 by following these steps.

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 14

1. Change references to the major data structure type from GLUtriangulatorObj to GLUtesselator. In
GLU 1.2, GLUtriangulatorObj and GLUtesselator are defined to be the same type.

2. ConvertgluBeginPolygon(jo two commandgyluTessBeginPolygongndgluTessBeginContour()
All contours must be explicitly started, including the first one.

3. ConvertgluNextContour(}o bothgluTessEndContour@ndgluTessBeginContour()ou have to
end the previous contour before starting the next one.

4. ConvertgluEndPolygon(}o bothgluTessEndContourg§ndgluTessEndPolygon(T he final contour
must be closed.

5. Change references to constantgltd'essCallback()in GLU 1.2, GLU_BEGIN, GLU_VERTEX,
GLU_END, GLU_ERROR, and GLU_EDGE_FLAG are defined as synonyms for
GLU_TESS_BEGIN, GLU_TESS_VERTEX, GLU_TESS_END, GLU_TESS_ERROR, and
GLU_TESS EDGE_FLAG.

Quadrics: Rendering Spheres, Cylinders, and Disks

The base OpenGL library only provides support for modeling and rendering simple points, lines, and
convex filled polygons. Neither 3D objects, nor commonly used 2D objects such as circles, are directl
available.

Throughout this book, you've been using GLUT to create some 3D objects. The GLU also provides
routines to model and render tessellated, polygonal approximations for a variety of 2D and 3D shapes
(spheres, cylinders, disks, and parts of disks), which can be calculated with quadric equations. This
includes routines to draw the quadric surfaces in a variety of styles and orientations. Quadric surfaces
defined by the following general quadratic equation:

a1x@ + apy2 + agz2 + agxy + agyx + apxz + ayx + agy + agz + 0= 0

(See David Roger®rocedural Elements for Computer Graphidew York, NY: McGraw-Hill Book
Company, 1985%.Creating and rendering a quadric surface is similar to using the tessellator. To use a
quadrics object, follow these steps.

1. To create a quadrics object, ugeNewQuadric()

2. Specify the rendering attributes for the quadrics object (unless you're satisfied with the default
values).

1. UsegluQuadricOrientation(¥o control the winding direction and differentiate the interior from
the exterior.

2. UsegluQuadricDrawStyle(jJo choose between rendering the object as points, lines, or filled
polygons.

3. For lit quadrics objects, ugduQuadricNormals(}o specify one normal per vertex or one
normal per face. The default is that no normals are generated at all.

4. For textured quadrics objects, gdeQuadricTexture()f you want to generate texture

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 15

coordinates.

3. Prepare for problems by registering an error—handling routinglw@uadricCallback() Then, if
an error occurs during rendering, the routine you've specified is invoked.

4. Now invoke the rendering routine for the desired type of quadrics opeSphere()gluCylinder(),
gluDisk(), or gluPartialDisk() For best performance for static data, encapsulate the quadrics object
in a display list.

5. When you're completely finished with it, destroy this object witiDeleteQuadric()If you need to
create another quadric, it's best to reuse your quadrics object.

Manage Quadrics Objects

A quadrics object consists of parameters, attributes, and callbacks that are stored in a data structure «
type GLUquadricObj. A quadrics object may generate vertices, normals, texture coordinates, and othe
data, all of which may be used immediately or stored in a display list for later use. The following routin
create, destroy, and report upon errors of a quadrics object.

GLUquadricObj* gluNewQuadric (void);
Creates a new quadrics object and returns a pointer to it. A null pointer is returned if the routine
fails.

void gluDeleteQuadric (GLUquadricObj *qobj);
Destroys the quadrics object qobj and frees up any memory used by it.

void gluQuadricCallback (GLUquadricObj *qobj, GLenum which, void (*fn)());
Defines a function fn to be called in special circumstances. GLU_ERROR is the only legal value fi
which, so fn is called when an error occurs. If fnis NULL, any existing callback is erased.

For GLU_ERRORTfn is called with one parameter, which is the error cgligrrorString() can be used
to convert the error code into an ASCII string.

Control Quadrics Attributes

The following routines affect the kinds of data generated by the quadrics routines. Use these routines
before you actually specify the primitives.

Example 11-4uadric.c, on page 435, demonstrates changing the drawing style and the kind of norme
generated as well as creating quadrics objects, error handling, and drawing the primitives.

void gluQuadricDrawStyle (GLUquadricObj *qobj, GLenum drawStyle);
For the quadrics object qobj, drawStyle controls the rendering style. Legal values for drawStyle ar
GLU_POINT, GLU_LINE, GLU_SILHOUETTE, and GLU_FILL.

GLU_POINT and GLU_LINE specify that primitives should be rendered as a point at every vertex or a
line between each pair of connected vertices.

GLU_SILHOUETTE specifies that primitives are rendered as lines, except that edges separating
coplanar faces are not drawn. This is most often usegluDisk() andgluPartialDisk()

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 16

GLU_FILL specifies rendering by filled polygons, where the polygons are drawn in a counterclockwise
fashion with respect to their normals. This may be affectegliiuadricOrientation()

void gluQuadricOrientation (GLUquadricObj *qobj, GLenum orientation);
For the quadrics object qobj, orientation is either GLU_OUTSIDE (the default) or GLU_INSIDE,
which controls the direction in which normals are pointing.

ForgluSphere()andgluCylinder() the definitions of outside and inside are obvious.dtabisk() and
gluPartialDisk() the positivez side of the disk is considered to be outside.

void gluQuadricNormals (GLUquadricObj *qobj, GLenum normals);
For the quadrics object qobj, normals is one of GLU_NONE (the default), GLU_FLAT, or
GLU_SMOOTH.

gluQuadricNormals()s used to specify when to generate normal vectors. GLU_NONE means that no
normals are generated and is intended for use without lighting. GLU_FLAT generates one normal for
each facet, which is often best for lighting with flat shading. GLU_SMOOTH generates one normal for
every vertex of the quadric, which is usually best for lighting with smooth shading.

void gluQuadricTexture (GLUquadricObj *qobj,
GLboolean textureCoords);

For the quadrics object qobj, textureCoords is either GL_FALSE (the default) or GL_TRUE. If the
value of textureCoords is GL_TRUE, then texture coordinates are generated for the quadrics obje
The manner in which the texture coordinates are generated varies, depending upon the type of
quadrics object rendered.

Quadrics Primitives

The following routines actually generate the vertices and other data that constitute a quadrics object. |
each casajobj refers to a quadrics object createdghyNewQuadric()

void gluSphere (GLUquadricObj *qobj, GLdouble radius,
GLint slices, GLint stacks);

Draws a sphere of the given radius, centered around the origin, (0, 0, 0). The sphere is subdivide:
around the z axis into a number of slices (similar to longitude) and along the z axis into a number
stacks (latitude).

If texture coordinates are also generated by the quadrics facility, the t coordinate ranges from 0.0
z = —radius to 1.0 a = radius, with tincreasing linearly along longitudinal lines. Meanwhile, s
ranges from 0.0 at the +y axis, to 0.25 at the +x axis, to 0.5 apthgis, to 0.75 at the-axis, and

back to 1.0 at the +y axis.

void gluCylinder (GLUquadricObj *qobj, GLdouble baseRadius,
GLdouble topRadius, GLdouble height,
GLint slices, GLint stacks);

Draws a cylinder oriented along the z axis, with the base of the cylinder at z = 0 and the top at z =
height. Like a sphere, the cylinder is subdivided around the z axis into a number of slices and alor
the z axis into a number of stacks. baseRadius is the radius of the cylinder at z = 0. topRadiusis t
radius of the cylinder at z = height. If topRadius is set to zero, then a cone is generated.

If texture coordinates are generated by the quadrics facility, then the t coordinate ranges linearly

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 17

from 0.0 at z = 0 to 1.0 at z = height. The stexture coordinates are generated the same way as th
are for a sphere.

Note: The cylinder is not closed at the top or bottom. The disks at the base and at the top are not dra

void gluDisk (GLUquadricObj *qobj, GLdouble innerRadius,
GLdouble outerRadius, GLint slices, GLint rings);

Draws a disk on the z = 0 plane, with a radius of outerRadius and a concentric circular hole with a
radius of innerRadius. If innerRadius is 0, then no hole is created. The disk is subdivided around t
Z axis into a number of slices (like slices of pizza) and also about the z axis into a number of
concentric rings.
With respect to orientation, the +z side of the disk is considered to be "outside"; that is, any norme
generated point along the +z axis. Otherwise, the normals point along &hés—
If texture coordinates are generated by the quadrics facility, then the texture coordinates are
generated linearly such that where R=outerRadius, the values for s and tat (R, 0, 0) is (1, 0.5), at
R, 0) they are (0.5, 1), at (-R, 0, 0) they are (0, 0.5), and at (0, —R, 0) they are (0.5, 0).

void gluPartialDisk (GLUquadricObj *qobj, GLdouble innerRadius,

GLdouble outerRadius, GLint slices, GLint rings,
GLdouble startAngle, GLdouble sweepAngle);

Draws a partial disk on the z = 0 plane. A partial disk is similar to a complete disk, in terms of
outerRadius, innerRadius, slices, and rings. The difference is that only a portion of a partial disk i<
drawn, starting from startAngle through startAngle+sweepAngle (where startAngle and sweepAnc
are measured in degrees, where 0 degrees is along the +y axis, 90 degrees along the +x axis, 18
along the y axis, and 270 along th& axis).

A partial disk handles orientation and texture coordinates in the same way as a complete disk.

Note: For all quadrics objects, it's better to use *Radius height and similar arguments to scale them
rather than thglScale*()command so that the unit-length normals that are generated don't have to be
renormalized. Set things andstacksarguments to values other than one to force lighting calculations at
a finer granularity, especially if the material specularity is high.

Example 11-dhows each of the quadrics primitives being drawn, as well as the effects of different

drawing styles.

Example 11-4 Quadrics Objects: quadric.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdio.h>
#include <stdlib.h>

GLuint startList;
void errorCallback(GLenum errorCode)

{

const GLubyte *estring;

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 18

estring = gluErrorString(errorCode);
fprintf(stderr, "Quadric Error: %s\n", estring);
exit(0);

}

void init(void)

{
GLUquadricObj *qobj;
GLfloat mat_ambient[] = { 0.5, 0.5, 0.5, 1.0 };
GLfloat mat_specular[] ={ 1.0, 1.0, 1.0, 1.0 };
GLfloat mat_shininess[] = {50.0 };
GLfloat light_position[] ={ 1.0, 1.0, 1.0, 0.0 };
GLfloat model_ambient[] ={ 0.5, 0.5, 0.5, 1.0 };

glClearColor(0.0, 0.0, 0.0, 0.0);

glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHTO, GL_POSITION, light_position);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, model_ambient);

glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);
glEnable(GL_DEPTH_TEST);

[* Create 4 display lists, each with a different quadric object.
* Different drawing styles and surface normal specifications
* are demonstrated.
*

startList = glGenLists(4);

gobj = gluNewQuadric();

gluQuadricCallback(gobj, GLU_ERROR, errorCallback);

gluQuadricDrawStyle(qobj, GLU_FILL); /* smooth shaded */
gluQuadricNormals(qobj, GLU_SMOOTH);
gINewlList(startList, GL_COMPILE);

gluSphere(gobj, 0.75, 15, 10);
glEndList();

gluQuadricDrawStyle(qobj, GLU_FILL); /* flat shaded */
gluQuadricNormals(qobj, GLU_FLAT);

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 19

gINewList(startList+1, GL_COMPILE);
gluCylinder(qobj, 0.5, 0.3, 1.0, 15, 5);
glEndList();

gluQuadricDrawStyle(qobj, GLU_LINE); /* wireframe */
gluQuadricNormals(qobj, GLU_NONE);
gINewList(startList+2, GL_COMPILE);

gluDisk(qobj, 0.25, 1.0, 20, 4);
glEndList();

gluQuadricDrawStyle(qobj, GLU_SILHOUETTE);
gluQuadricNormals(qobj, GLU_NONE);
gINewList(startList+3, GL_COMPILE);

gluPartialDisk(qobj, 0.0, 1.0, 20, 4, 0.0, 225.0);
glEndList();

void display(void)

{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();

glEnable(GL_LIGHTING);
glShadeModel (GL_SMOOTH);
glTranslatef(-1.0, —-1.0, 0.0);
glCallList(startList);

glShadeModel (GL_FLAT);
glTranslatef(0.0, 2.0, 0.0);
glPushMatrix();
glRotatef(300.0, 1.0, 0.0, 0.0);
glCallList(startList+1);
glPopMatrix();

glDisable(GL_LIGHTING);
glColor3f(0.0, 1.0, 1.0);
glTranslatef(2.0, —2.0, 0.0);
glCallList(startList+2);

glColor3f(1.0, 1.0, 0.0);

glTranslatef(0.0, 2.0, 0.0);
glCallList(startList+3);

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 20

glPopMatrix();
glFlush();
}

void reshape (int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
if (w <=h)
glOrtho(-2.5, 2.5, —2.5*(GLfloat)h/(GLfloat)w,
2.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
else
glOrtho(—2.5*(GLfloat)w/(GLfloat)h,
2.5*(GLfloat)w/(GLfloat)h, 2.5, 2.5, -=10.0, 10.0);
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();

}

void keyboard(unsigned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);
break;

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutlnitWindowsSize (500, 500);
glutinitWindowPosition(100, 100);
glutCreateWindow(argv[0]);
init();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutMainLoop();
return O;

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 21

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 22

Chapter 12
Evaluators and NURBS

Chapter Objectives
Advanced

After reading this chapter, you'll be able to do the following:
Use OpenGL evaluator commands to draw basic curves and surfaces

Use the GLU’s higher—level NURBS facility to draw more complex curves and surfaces

Note that this chapter presumes a number of prerequisites; they're listed in "Prerequisites."

At the lowest level, graphics hardware draws points, line segments, and polygons, which are usually
triangles and quadrilaterals. Smooth curves and surfaces are drawn by approximating them with large
numbers of small line segments or polygons. However, many useful curves and surfaces can be desc
mathematically by a small number of parameters such as eofgvol points Saving the 16 control

points for a surface requires much less storage than saving 1000 triangles together with the normal ve
information at each vertex. In addition, the 1000 triangles only approximate the true surface, but the
control points accurately describe the real surface.

Evaluators provide a way to specify points on a curve or surface (or part of one) using only the control
points. The curve or surface can then be rendered at any precision. In addition, normal vectors can be
calculated for surfaces automatically. You can use the points generated by an evaluator in many
wayd] to draw dots where the surface would be, to draw a wireframe version of the surface, or to drav
fully lighted, shaded, and even textured version.

You can use evaluators to describe any polynomial or rational polynomial splines or surfaces of any
degree. These include almost all splines and spline surfaces in use today, including B-splines, NURB
(Non-Uniform Rational B-Spline) surfaces, Bézier curves and surfaces, and Hermite splines. Since
evaluators provide only a low—level description of the points on a curve or surface, they’re typically us
underneath utility libraries that provide a higher—level interface to the programmer. The GLU’S NURB¢
facility is such a higher—level interfac¢he NURBS routines encapsulate lots of complicated code.
Much of the final rendering is done with evaluators, but for some conditions (trimming curves, for
example) the NURBS routines use planar polygons for rendering.

This chapter contains the following major sections.

"Prerequisites" discusses what knowledge is assumed for this chapter. It also gives several
references where you can obtain this information.

"Evaluators" explains how evaluators work and how to control them using the appropriate OpenG
commands.

"The GLU NURBS Interface" describes the GLU routines for creating NURBS surfaces.

Prerequisites

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 1

Evaluators make splines and surfaces that are based on a Bézier (or Bernstein) basis. The defining
formulas for the functions in this basis are given in this chapter, but the discussion doesn't include
derivations or even lists of all their interesting mathematical properties. If you want to use evaluators t
draw curves and surfaces using other bases, you must know how to convert your basis to a Bézier ba
In addition, when you render a Bézier surface or part of it using evaluators, you need to determine the
granularity of your subdivision. Your decision needs to take into account the trade—off between
high—quality (highly subdivided) images and high speed. Determining an appropriate subdivision strat
can be quite complicatédtoo complicated to be discussed here.

Similarly, a complete discussion of NURBS is beyond the scope of this book. The GLU NURBS
interface is documented here, and programming examples are provided for readers who already
understand the subject. In what follows, you already should know about NURBS control points, knot
sequences, and trimming curves.

If you lack some of these prerequisites, the following references will help.

Farin, Gerald ECurves and Surfaces for Computer—Aided Geometric Design, Fourth E8ition
Diego, CA: Academic Press, 1996.

Farin, Gerald ENURB Curves and Surfaces: from Projective Geometry to Practical Use.
Wellesley, MA: A. K. Peters Ltd., 1995.

Farin, Gerald E., editoNURBS for Curve and Surface Desi§ociety for Industrial and Applied
Mathematics, Philadelphia, PA, 1991.

Hoschek, Josef and Dieter Lasdemndamentals of Computer Aided Geometric Dediggllesley,
MA: A. K. Peters Ltd., 1993.

Piegl, Les and Wayne Tillethe NURBS BoolNew York, NY: Springer—Verlag, 1995.
Note: Some terms used in this chapter might have slightly different meanings in other books on spline
curves and surfaces, since there isn’t total agreement among the practitioners of this art. Generally, tt

OpenGL meanings are a bit more restrictive. For example, OpenGL evaluators always use Bézier bas
in other contexts, evaluators might refer to the same concept, but with an arbitrary basis.

Evaluators
A Bézier curve is a vector—valued function of one variable
Cu) = [X(u) Y(u) Z(u)]

whereu varies in some domain (say [0,1]). A Bézier surface patch is a vector-valued function of two
variables

Suy) = XUV Yy Zuvl

whereu andv can both vary in some domain. The range isn’t necessarily three—dimensional as shown
here. You might want two—dimensional output for curves on a plane or texture coordinates, or you mig
want four—dimensional output to specify RGBA information. Even one—dimensional output may make

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 2

sense for gray levels.

For eachu (or u andv, in the case of a surface), the formula@gy (or S()) calculates a point on the

curve (or surface). To use an evaluator, first define the funCiipar S(), enable it, and then use the
glEvalCoord1()or glEvalCoord2()command instead gfiVertex*(). This way, the curve or surface
vertices can be used like any other verfic&s form points or lines, for example. In addition, other
commands automatically generate series of vertices that produce a regular mesh uniformly spaced in
(or inu andv). One- and two—-dimensional evaluators are similar, but the description is somewhat simg
in one dimension, so that case is discussed first.

One-Dimensional Evaluators

This section presents an example of using one—dimensional evaluators to draw a curve. It then descri
the commands and equations that control evaluators.

One-Dimensional Example: A Simple Bézier Curve

The program shown in Example 12-1draws a cubic Bézier curve using four control points, as shown i
Figure 12-1

Figure 12-1 Bézier Curve

Example 12-1 Bézier Curve with Four Control Points: bezcurve.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <stdlib.h>
#include <GL/glut.h>

GLfloat ctrlpoints[4][3] = {

{-4.0, -4.0, 0.0}, { -2.0, 4.0, 0.0},
{2.0, 4.0, 0.0}, {4.0, 4.0, 0.0}};

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 3

void init(void)
{
glClearColor(0.0, 0.0, 0.0, 0.0);
glShadeModel(GL_FLAT);
gIMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, &ctrlpoints[0][0]);
glEnable(GL_MAP1_VERTEX_3);
}

void display(void)
{

int i

glClear(GL_COLOR_BUFFER_BIT);
glColor3f(1.0, 1.0, 1.0);
giBegin(GL_LINE_STRIP);
for (i=0; i <= 30; i++)
glEvalCoord1f((GLfloat) i/30.0);
glEnd();
[* The following code displays the control points as dots. */
glPointSize(5.0);
glColor3f(1.0, 1.0, 0.0);
glBegin(GL_POINTS);
for(i=0;i<4;i++)
glVertex3fv(&ctrlpoints[i][0]);
glEnd();
glFlush();

}

void reshape(int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
if (w <= h)
glOrtho(-5.0, 5.0, -5.0*(GLfloat)h/(GLfloat)w,
5.0*(GLfloat)h/(GLfloat)w, —-5.0, 5.0);
else
glOrtho(—5.0*(GLfloat)w/(GLfloat)h,
5.0*(GLfloat)w/(GLfloat)h, -5.0, 5.0, -5.0, 5.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

}

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 4

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutinitWindowsSize (500, 500);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();
return O;

}

A cubic Bézier curve is described by four control points, which appear in this exampleatrlfoents|]
[] array. This array is one of the argumentglkdap1f(). All the arguments for this command are as
follows:

GL_MAP1_VERTEX_ 3
Three—dimensional control points are provided and three—dimensional vertices are

produced
0.0 Low value of parameter
1.0 High value of parameter
3 The number of floating—point values to advance in the data between one control po

and the next

4 The order of the spline, which is the degree+1: in this case, the degree is 3 (since tl
is a cubic curve)

&ctrlpoints[0][0] Pointer to the first control point’s data

Note that the second and third arguments control the parameterization of thHe asithe variable
ranges from 0.0 to 1.0, the curve goes from one end to the other. Thegtialidble()enables the
one—dimensional evaluator for three—dimensional vertices.

The curve is drawn in the routidésplay()between theglBegin()andglEnd() calls. Since the evaluator
is enabled, the commaigiEvalCoord1f()is just like issuing glVertex()command with the coordinates
of a vertex on the curve corresponding to the input parameter

Defining and Evaluating a One—Dimensional Evaluator

The Bernstein polynomial of degrador ordem+1) is given by

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 5

If Pi represents a set of control points (one—, two-, three—, or even four— dimensional), then the equat

represents a Bézier curve avaries from 0.0 to 1.0. To represent the same curve but allawimgary
betweeruj anduy instead of 0.0 and 1.0, evaluate

The commandgiMapl() defines a one—dimensional evaluator that uses these equations.

void glMap1{fd}(GLenum target, TYPEul, TYPEuUZ2, GLint stride,
GLint order, const TYPE*points);

Defines a one—dimensional evaluator. Tdrget parameter specifies what the control points
represent, as shown in Table 12a1d therefore how many values need to be supplied in points. Thi
points can represent vertices, RGBA color data, normal vectors, or texture coordinates. For
example, with GL_MAP1_COLOR_4, the evaluator generates color data along a curve in
four—-dimensional (RGBA) color space. You also use the parameter values [i@btkit2—-10

enable each defined evaluator before you invoke it. Pass the appropriate value to glEnable() or
glDisable() to enable or disable the evaluator.

The second two parameters for giMap1*(), ul and u2, indicate the range for the variable u. The
variable stride is the number of single— or double—precision values (as appropriate) in each block
storage. Thus, it's an offset value between the beginning of one control point and the beginning of
the next.

The order is the degree plus one, and it should agree with the number of control points. The point
parameter points to the first coordinate of the first control point. Using the example data structure
for giIMap1*(), use the following for points:

(GLfloat *)(&ctlpoints[0].x)

Parameter Meaning
GL_MAP1_VERTEX_3 X, Y, zvertex coordinates
GL_MAP1_VERTEX 4 X, Y, Z, wertex coordinates
GL_MAP1_INDEX color index
GL_MAP1_COLOR_4 R,G,B, A
GL_MAP1_NORMAL normal coordinates
GL_MAP1_TEXTURE_COORD_1 s texture coordinates
GL_MAP1_TEXTURE_COORD_2 s, ttexture coordinates
GL_MAP1_TEXTURE_COORD_3 s, t, rtexture coordinates
GL_MAP1 _TEXTURE_COORD_4 s, t, 1, qtexture coordinates

Table 12-1 Types of Control Points for giMap1*()

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 6

More than one evaluator can be evaluated at a time. If you have both a GL_MAP1 VERTEX 3 and a
GL_MAP1_COLOR_4 evaluator defined and enabled, for example, then cglEvaCoord1()

generate both a position and a color. Only one of the vertex evaluators can be enabled at a time, althc
you might have defined both of them. Similarly, only one of the texture evaluators can be active. Othe
than that, however, evaluators can be used to generate any combination of vertex, normal, color, and
texture—coordinate data. If more than one evaluator of the same type is defined and enabled, the one
highest dimension is used.

UseglEvalCoord1*()to evaluate a defined and enabled one—dimensional map.

void glEvalCoord1{fd}(TYPE u);
void glEvalCoord1{fd}v(TYPE *u);

Causes evaluation of the enabled one—dimensional maps. The argusér value (or a pointer
to the value, in the vector version of the command) of the domain coordinate.

For evaluated vertices, values for color, color index, normal vectors, and texture coordinates are
generated by evaluation. CallsgizvalCoord*()do not use the current values for color, color index,
normal vectors, and texture coordinatg&valCoord*()also leaves those values unchanged.

Defining Evenly Spaced Coordinate Values in One Dimension

You can usglEvalCoord1()with any values fou, but by far the most common use is with evenly
spaced values, as shown previously in Example. Tb-Gbtain evenly spaced values, define a
one—dimensional grid usiggMapGrid1*() and then apply it usingiEvalMesh1()

void glMapGrid1{fd}(GLint n, TYPEul, TYPEu2);
Defines a grid that goes from ul to u2 in n steps, which are evenly spaced.

void glEvalMesh1(GLenum mode, GLint p1, GLint p2);
Applies the currently defined map grid to all enabled evaluators. The mode can be either GL_POI
or GL_LINE, depending on whether you want to draw points or a connected line along the curve.
The call has exactly the same effect as issuing a glEvalCoord1() for each of the steps between ar
including p1 and p2, where 0 <= p1, p2 <=n. Programmatically, it's equivalent to the following:

gIBegin(GL_POINTS); /* OR gIBegin(GL_LINE_STRIP); */

for (i = pl;i<=p2;it++)
glEvalCoord1(ul + i*(u2-ul)/n);
glEnd();

except that if i = 0 or i = n, then glEvalCoord1() is called with exactly ul or u2 as its parameter.

Two—-Dimensional Evaluators

In two dimensions, everything is similar to the one—dimensional case, except that all the commands
take two parameters,andv, into account. Points, colors, normals, or texture coordinates must be
supplied over a surface instead of a curve. Mathematically, the definition of a Bézier surface patch is
given by

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 7

wherePjj are a set ah*n control points, and thBj are the same Bernstein polynomials for one
dimension. As before, thgjj can represent vertices, normals, colors, or texture coordinates.

The procedure to use two—dimensional evaluators is similar to the procedure for one dimension.
1. Define the evaluator(s) witiiMap2*().
2. Enable them by passing the appropriate valggBoable()

3. Invoke them either by callimgEvalCoord2()between @lBegin()andglEnd() pair or by specifying
and then applying a mesh wigtMapGrid2() andglEvalMesh2()

Defining and Evaluating a Two—-Dimensional Evaluator
UseglMap2*() andglEvalCoord2*() to define and then invoke a two—dimensional evaluator.

void glMap2{fd}(GLenum target, TYPEul, TYPEuZ2, GLint ustride,
GLint uorder, TYPEV1, TYPEV2, GLint vstride,
GLint vorder, TYPE points);

The target parameter can have any of the values in Table &&€ebpt that the string MAP1 is

replaced with MAP2. As before, these values are also used with glEnable() to enable the
corresponding evaluator. Minimum and maximum values for both u and v are provided as ul, u2,
v1, and v2. The parameters ustride and vstride indicate the number of single— or double—precisiot
values (as appropriate) between independent settings for these values, allowing users to select a
subrectangle of control points out of a much larger array. For example, if the data appears in the
form

GLfloat ctlpoints[100][100][3];
and you want to use the 4x4 subset beginning at ctlpoints[20][30], choose ustride to be 100*3 anc
vstride to be 3. The starting point, points, should be set to &ctlpoints[20][30][0]. Finally, the order
parameters, uorder and vorder, can be different, allowing patches that are cubic in one direction
and quadratic in the other, for example.

void glEvalCoord2{fd}(TYPE u, TYPE v);
void glEvalCoord2{fd}v(TYPE *values);

Causes evaluation of the enabled two—dimensional maps. The arguraedtg are the values (or a
pointer to the values u and v, in the vector version of the command) for the domain coordinates. I
either of the vertex evaluators is enabled (GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4), the|
the normal to the surface is computed analytically. This normal is associated with the generated
vertex if automatic normal generation has been enabled by passing GL_AUTO_NORMAL to
glEnable(). If it's disabled, the corresponding enabled normal map is used to produce a normal. If
no such map exists, the current normal is used.

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 8

Two-Dimensional Example: A Bézier Surface

Example 12—-8raws a wireframe Bézier surface using evaluators, as shown in Figurn1Bis2
example, the surface is drawn with nine curved lines in each direction. Each curve is drawn as 30
segments. To get the whole program, add¢isbape(andmain()routines from Example 12-1

Figure 12-2 Bézier Surface

Example 12-2 Bézier Surface: bezsurf.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <stdlib.h>
#include <GL/glut.h>

GLfloat ctrlpoints[4][4][3] ={

{{-1.5, -1.5, 4.0}, {-0.5, -1.5, 2.0},
{0.5, -1.5, -1.0}, {1.5, -1.5, 2.0}},
{{-1.5, -0.5, 1.0}, {-0.5, -0.5, 3.0},
{0.5, -0.5, 0.0}, {1.5, 0.5, —-1.0}},
{{-1.5, 0.5, 4.0}, {-0.5, 0.5, 0.0},
{0.5, 0.5, 3.0}, {1.5, 0.5, 4.0}},
{{-1.5, 1.5, -2.0}, {-0.5, 1.5, -2.0},
{0.5,1.5,0.0}, {1.5, 1.5, -1.0}}

¥

void display(void)
{

inti, j;

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor3f(1.0, 1.0, 1.0);

glPushMatrix ();

glRotatef(85.0, 1.0, 1.0, 1.0);

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 9

for(j=0;j<=8;j++){
gIBegin(GL_LINE_STRIP);
for (i=0; i <= 30; i++)
glEvalCoord2f((GLfloat)i/30.0, (GLfloat)j/8.0);
glEnd();
gIBegin(GL_LINE_STRIP);
for (i=0; i <= 30; i++)
glEvalCoord2f((GLfloat)j/8.0, (GLfloat)i/30.0);
glEnd();
}
glPopMatrix ();
glFlush();
}

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
gIMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,

0, 1, 12, 4, &ctrlpoints[0][0][0]);

glEnable(GL_MAP2_VERTEX_3);
gIMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
glEnable(GL_DEPTH_TEST);
glShadeModel(GL_FLAT);

Defining Evenly Spaced Coordinate Values in Two Dimensions

In two dimensions, thgiMapGrid2*() andglEvalMesh2(commands are similar to the one—dimensional
versions, except that bothandv information must be included.

void giMapGrid2{fd}(GLint nu, TYPEu1, TYPEu2,
GLint nv, TYPEV1, TYPEV2);
void glEvalMesh2(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2);

Defines a two—dimensional map grid that goes fu@rto u2 in nu evenly spaced steps, from v1to v2
in nv steps (gIMapGrid2*()), and then applies this grid to all enabled evaluators (glEvalMesh2()).
The only significant difference from the one—dimensional versions of these two commands is that
glEvalMesh?2() the mode parameter can be GL_FILL as well as GL_POINT or GL_LINE. GL_FILL
generates filled polygons using the quad—mesh primitive. Stated pregBefiMesh2() is nearly
equivalent to one of the following three code fragments. (It's nearly equivalent because when i is
equal to nu or j to nv, the parameter is exactly equal to u2 or v2, not to ul+nui(ird+ which
might be slightly different due to round-off error.)

glBegin(GL_POINTS); /* mode == GL_POINT */

for (i = nul; i <= nu2; i++)

for (j = nvl; j <= nv2; j++)
glEvalCoord2(ul + i*(u2-ul)/nu, v1+j*(v2-v1)/nv);

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 10

glEnd();
or

for (i=nul;i<=nu2;i++){ /*mode == GL_LINE */
glBegin(GL_LINES);
for (j = nvl; j <= nv2; j++)
glEvalCoord2(ul + i*(u2-ul)/nu, vi+j*(v2-v1)/nv);
glEnd();
for (j = nvl; j <= nv2; j++) {
glBegin(GL_LINES);
for (i = nul; i <= nu2; i++)
glEvalCoord2(ul + i*(u2-ul)/nu, v1+j*(v2-v1)/nv);
glEnd();

or

for (i=nul;i<nu2;i++){ /*mode ==GL_FILL */
glBegin(GL_QUAD_STRIP);
for (j = nvl; j <= nv2; j++) {
glEvalCoord2(ul + i*(u2-ul)/nu, v1+j*(v2-v1)/nv);
glEvalCoord2(ul + (i+1)*(u2-ul)/nu, vi+j*(v2-v1)/nv);
glEnd();

Example 12-8hows the differences necessary to draw the same Bézier surface as Example 12-2
usingglMapGrid2() andglEvalMesh2()to subdivide the square domain into a uniform 8x8 grid. This
program also adds lighting and shading, as shown in Figure 12-3

Figure 12-3 Lit, Shaded Bézier Surface Drawn with a Mesh

Example 12-3 Lit, Shaded Bézier Surface Using a Mesh: bezmesh.c

void initlights(void)

{
GLfloat ambient[] ={0.2, 0.2, 0.2, 1.0};
GLfloat position[] = {0.0, 0.0, 2.0, 1.0},
GLfloat mat_diffuse[] = {0.6, 0.6, 0.6, 1.0};
GLfloat mat_specular[] ={1.0, 1.0, 1.0, 1.0};

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 11

GLfloat mat_shininess[] = {50.0};

glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);

glLightfv(GL_LIGHTO, GL_AMBIENT, ambient);
glLightfv(GL_LIGHTO, GL_POSITION, position);

glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
gIMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);

void display(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
glRotatef(85.0, 1.0, 1.0, 1.0);
glEvalMesh2(GL_FILL, 0, 20, 0, 20);
glPopMatrix();
glFlush();

void init(void)

{
glClearColor(0.0, 0.0, 0.0, 0.0);
glEnable(GL_DEPTH_TEST);
gIMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,

0, 1, 12, 4, &ctrlpoints[0][0][0]);

glEnable(GL_MAP2_VERTEX_3);
glEnable(GL_AUTO_NORMAL);
gIMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
initlights();

Using Evaluators for Textures

Example 12-énables two evaluators at the same time: The first generates three—dimensional points ¢
the same Bézier surface as Example 12-3 and the second generates texture coordinates. In this cas
texture coordinates are the same asithrdv coordinates of the surface, but a special flat Bézier patch
must be created to do this.

The flat patch is defined over a square with corners at (0, 0), (0, 1), (1, 0), and (1, 1); it generates (O, (
corner (0, 0), (0, 1) at corner (0, 1), and so on. Since it's of order two (linear degree plus one), evaluat

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 12

this texture at the pointi(\) generates texture coordinatss. It's enabled at the same time as the
vertex evaluator, so both take effect when the surface is drawn. (See "Plate 19" in Appendix I.) If you
want the texture to repeat three times in each direction, change every 1.0 in thexatsflf][] to 3.0.
Since the texture wraps in this example, the surface is rendered with nine copies of the texture map.

Example 12-4 Using Evaluators for Textures: texturesurf.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <stdlib.h>
#include <GL/glut.h>
#include <math.h>

GLfloat ctripoints[4][4][3] = {
{{-15,-15, 4.0}, {-0.5, -1.5, 2.0},
{0.5, -1.5, -1.0}, {1.5, -1.5, 2.0}},
{{-15, -05, 1.0}, { -0.5, -0.5, 3.0},
{0.5, -0.5, 0.0}, {1.5, 0.5, —-1.0}},
{{-15,0.5, 4.0}, { -0.5, 0.5, 0.0},
{0.5, 0.5, 3.0}, {1.5, 0.5, 4.0}},
{{-15, 15,-2.0},{-0.5, 1.5, -2.0},
{0.5,1.5,0.0}, {1.5, 1.5, -1.0}}

¥

GLfloat texpts[2][2][2] = {{{0.0, 0.0}, {0.0, 1.0}},

{{1.0, 0.0}, {1.0, 1.0}}};

void display(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor3f(1.0, 1.0, 1.0);
glEvalMesh2(GL_FILL, 0, 20, 0, 20);
glFlush();
}
#define imageWidth 64
#define imageHeight 64
GLubyte image[3*imageWidth*imageHeight];

void makelmage(void)

{
inti, j;
float ti, tj;

for (i = 0; i < imageWidth; i++) {
ti = 2.0*3.14159265*i/imageWidth;

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 13

for (j = 0; j < imageHeight; j++) {

tj = 2.0*3.14159265%*j/imageHeight;

image[3*(imageHeight*i+j)] =
(GLubyte) 127*(1.0+sin(ti));

image[3*(imageHeight*i+j)+1] =
(GLubyte) 127*(1.0+cos(2*t)));

image[3*(imageHeight*i+))+2] =
(GLubyte) 127*(1.0+cos(ti+t)));

void init(void)
{
gIMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,

0, 1, 12, 4, &ctrlpoints[0][0][0]);
gIMap2f(GL_MAP2_TEXTURE_COORD_2, 0, 1, 2, 2,

0, 1, 4, 2, &texpts[0][0][0]);
glEnable(GL_MAP2_TEXTURE_COORD_2);
glEnable(GL_MAP2_VERTEX_3);
glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
makelmage();
gITexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);
glTeximage2D(GL_TEXTURE_2D, 0, 3, imageWidth, imageHeight, 0,
GL_RGB, GL_UNSIGNED_BYTE, image);
glEnable(GL_TEXTURE_2D);
glEnable(GL_DEPTH_TEST);
glShadeModel (GL_FLAT);

void reshape(int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
if (w <= h)
glOrtho(-4.0, 4.0, —4.0*(GLfloat)h/(GLfloat)w,

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 14

4.0*(GLfloat)h/(GLfloat)w, —4.0, 4.0);
else
glOrtho(—4.0*(GLfloat)w/(GLfloat)h,
4.0*(GLfloat)w/(GLfloat)h, 4.0, 4.0, -4.0, 4.0);
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();
glRotatef(85.0, 1.0, 1.0, 1.0);

}

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutlnitWindowsSize (500, 500);
glutinitWindowPaosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();
return O;

The GLU NURBS Interface

Although evaluators are the only OpenGL primitive available to draw curves and surfaces directly, anc
even though they can be implemented very efficiently in hardware, they're often accessed by applicati
through higher—level libraries. The GLU provides a NURBS (Non-Uniform Rational B-Spline) interfac
built on top of the OpenGL evaluator commands.

A Simple NURBS Example

If you understand NURBS, writing OpenGL code to manipulate NURBS curves and surfaces is relativ:
easy, even with lighting and texture mapping. Follow these steps to draw NURBS curves or untrimme
NURBS surfaces. (See "Trim a NURBS Surface" for information about trimmed surfaces.)

1. If you intend to use lighting with a NURBS surface, g#iilnable()with GL_AUTO_NORMAL to
automatically generate surface normals. (Or you can calculate your own.)

2. UsegluNewNurbsRenderer{p create a pointer to a NURBS object, which is referred to when
creating your NURBS curve or surface.

3. If desired, calgluNurbsProperty(Jo choose rendering values, such as the maximum size of lines ot
polygons that are used to render your NURBS object.

4. CallgluNurbsCallback()f you want to be notified when an error is encountered. (Error checking

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 15

may slightly degrade performance but is still highly recommended.)
5. Start your curve or surface by calligigBeginCurve()or gluBeginSurface()

6. Generate and render your curve or surface.gallurbsCurve(pr gluNurbsSurface(@t least once
with the control points (rational or nonrational), knot sequence, and order of the polynomial basis
function for your NURBS object. You might call these functions additional times to specify surface
normals and/or texture coordinates.

7. CallgluEndCurve(JorgluEndSurface(Jo complete the curve or surface.

Example 12-Benders a NURBS surface in the shape of a symmetrical hill with control points ranging
from —3.0 to 3.0. The basis function is a cubic B—spline, but the knot sequence is nonuniform, with a
multiplicity of 4 at each endpoint, causing the basis function to behave like a Bézier curve in each
direction. The surface is lighted, with a dark gray diffuse reflection and white specular highlights. Figui
12-4shows the surface as a lit wireframe.

Figure 12-4 NURBS Surface

Example 12-5 NURBS Surface: surface.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

GLfloat ctlpoints[4][4][3];
int showPoints = 0;

GLUnurbsObj *theNurb;

void init_surface(void)
{
intu,v;
for (u=0; u<4; u++) {
for (v=0;v<4; v++) {

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 16

ctlpoints[u][v][0] = 2.0*((GLfloat)u — 1.5);
ctlpoints[u][v][1] = 2.0*((GLfloat)v — 1.5);

if(U==1|lu==2)&& (v==1]|v==2))
ctlpoints[u][v][2] = 3.0;

else
ctlpoints[u][v][2] = -3.0;

void nurbsError(GLenum errorCode)

{

const GLubyte *estring;

estring = gluErrorString(errorCode);
fprintf (stderr, "Nurbs Error: %s\n", estring);
exit (0);

}

void init(void)

{
GLfloat mat_diffuse[] ={0.7,0.7,0.7, 1.0 };
GLfloat mat_specular[] ={ 1.0, 1.0, 1.0, 1.0 };
GLfloat mat_shininess[] ={ 100.0 },

glClearColor (0.0, 0.0, 0.0, 0.0);

glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);

glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);
glEnable(GL_DEPTH_TEST);
glEnable(GL_AUTO_NORMAL);
glEnable(GL_NORMALIZE);

init_surface();
theNurb = gluNewNurbsRenderer();
gluNurbsProperty(theNurb, GLU_SAMPLING_TOLERANCE, 25.0);

gluNurbsProperty(theNurb, GLU_DISPLAY_MODE, GLU_FILL);
gluNurbsCallback(theNurb, GLU_ERROR,

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 17

(GLvoid (*)()) nurbsError);

void display(void)

{
GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
inti, j;

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix();
glRotatef(330.0, 1.,0.,0.);
glScalef (0.5, 0.5, 0.5);

gluBeginSurface(theNurb);
gluNurbsSurface(theNurb,

8, knots, 8, knots,

4 * 3, 3, &ctlpoints[0][0][0],

4,4, GL_MAP2_VERTEX_3);
gluEndSurface(theNurb);

if (showPoints) {
glPointSize(5.0);
glDisable(GL_LIGHTING);
glColor3f(1.0, 1.0, 0.0);
glBegin(GL_POINTS);
for (i=0;i<4;i++){
for (j=0;j<4;j++){
glVertex3f(ctlpoints[i][j][0],
ctlpointsli][j][1], ctlpoints[i][jl[2]);
}
}
glEnd();
glEnable(GL_LIGHTING);
}
glPopMatrix();
glFlush();
}

void reshape(int w, int h)

{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 18

glLoadldentity();
gluPerspective (45.0, (GLdouble)w/(GLdouble)h, 3.0, 8.0);
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();
glTranslatef (0.0, 0.0, -5.0);
}

void keyboard(unsigned char key, int X, int y)
{
switch (key) {
case ‘c"
case ‘C"
showPoints = IshowPoints;
glutPostRedisplay();
break;
case 27:
exit(0);
break;
default:
break;

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutinitWindowsSize (500, 500);
glutinitWindowPosition (100, 100);
glutCreateWindow(argv[0]);
init();
glutReshapeFunc(reshape);
glutDisplayFunc(display);
glutkeyboardFunc (keyboard);
glutMainLoop();
return O;

}

Manage a NURBS Object

As shown in Example 12-gluNewNurbsRenderer(gturns a new NURBS object, whose type is a
pointer to a GLUnurbsObj structure. You must make this object before using any other NURBS routint
When you're done with a NURBS object, you may gisé®eleteNurbsRenderer{p free up the memory
that was used.

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 19

GLUnurbsObj* gluNewNurbsRenderer (void);
Creates a new NURBS object, nobj. Returns a pointer to the new object, or zero, if OpenGL cann
allocate memory for a new NURBS object.

void gluDeleteNurbsRenderer (GLUnurbsObj *nobj);
Destroys the NURBS object nobj.

Control NURBS Rendering Properties

A set of properties associated with a NURBS object affects the way the object is rendered. These
properties include how the surface is rasterized (for example, filled or wireframe) and the precision of
tessellation.

void gluNurbsProperty(GLUnurbsObj *nobj, GLenum property,
GLfloat value);

Controls attributes of a NURBS object, nobj. The property argument specifies the property and ca
be GLU_DISPLAY_MODE, GLU_CULLING, GLU_SAMPLING_METHOD,
GLU_SAMPLING_TOLERANCE, GLU_PARAMETRIC_TOLERANCE, GLU_U_STEP,
GLU_V_STEP, or GLU_AUTO_LOAD_MATRIX. The value argument indicates what the property
should be.

The default value for GLU_DISPLAY_MODE is GLU_FILL, which causes the surface to be
rendered as polygons. If GLU_OUTLINE_POLYGON is used for the display—mode property, only
the outlines of polygons created by tessellation are rendered. GLU_OUTLINE_PATCH renders th
outlines of patches and trimming curves. (See "Create a NURBS Curve or Surface".)
GLU_CULLING can speed up performance by not performing tessellation if the NURBS object fal
completely outside the viewing volume; set this property to GL_TRUE to enable culling (the defau
is GL_FALSE).

Since a NURBS object is rendered as primitives, it's sampled at different values of its parameter(s
(u and v) and broken down into small line segments or polygons for rendering. If property is
GLU_SAMPLING_METHOD, then value is set to one of GLU_PATH_LENGTH (which is the
default), GLU_PARAMETRIC_ERROR, or GLU_DOMAIN_DISTANCE, which specifies how a
NURBS curve or surface should be tessellated. When value is set to GLU_PATH_LENGTH, the
surface is rendered so that the maximum length, in pixels, of the edges of tessellated polygons is
greater than what is specified by GLU_SAMPLING_TOLERANCE. When set to
GLU_PARAMETRIC_ERROR, then the value specified by GLU_PARAMETRIC_TOLERANCE is
the maximum distance, in pixels, between tessellated polygons and the surfaces they approximat
When set to GLU_DOMAIN_DISTANCE, the application specifies, in parametric coordinates, how
many sample points per unit length are taken in the u and v dimensions, using the values for
GLU_U_STEP and GLU_V_STEP.

If property is GLU_SAMPLING_TOLERANCE and the sampling method is GLU_PATH_LENGTH
value controls the maximum length, in pixels, to use for tessellated polygons. The default value of
50.0 makes the largest sampled line segment or polygon edge 50.0 pixels long. If property is
GLU_PARAMETRIC_TOLERANCE and the sampling method is GLU_PARAMETRIC_ERROR,
value controls the maximum distance, in pixels, between the tessellated polygons and the surface
they approximate. The default value for GLU_PARAMETRIC_TOLERANCE is 0.5, which makes t

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 20

tessellated polygons within one—half pixel of the approximated surface. If the sampling method is
GLU_DOMAIN_DISTANCE and property is either GLU_U_STEP or GLU_V_STEP, then value is
the number of sample points per unit length taken along the u or v dimension, respectively, in
parametric coordinates. The default for both GLU_U_STEP and GLU_V_STEP is 100.

The GLU_AUTO_LOAD_MATRIX property determines whether the projection matrix, modelview
matrix, and viewport are downloaded from the OpenGL server (GL_TRUE, the default), or whethe
the application must supply these matrices with gluLoadSamplingMatrices() (GL_FALSE).

void gluLoadSamplingMatrices (GLUnurbsODbj *nobj, const GLfloat modelMatrix[16], const GLfloat
projMatrix[16], const GLint viewport[4]);
If the GLU_AUTO_LOAD_MATRIX is turned off, the modelview and projection matrices and the
viewport specified in gluLoadSamplingMatrices() are used to compute sampling and culling
matrices for each NURBS curve or surface.

If you need to query the current value for a NURBS property, you maylwSetNurbsProperty()

void gluGetNurbsProperty (GLUnurbsObj *nobj, GLenum property,
GLfloat *value);

Given the property to be queried for the NURBS object nobj, return its current value.

Handle NURBS Errors

Since there are 37 different errors specific to NURBS functions, it's a good idea to register an error
callback to let you know if you've stumbled into one of them. In Example 1f2e-Ballback function
was registered with

gluNurbsCallback(theNurb, GLU_ERROR, (GLvoid (*)()) nurbsError);

void gluNurbsCallback (GLUnurbsObj *nobj, GLenum which,
void (*fn)(GLenum errorCode));

which is the type of callback; it must be GLU_ERROR. When a NURBS function detects an error
condition, fn is invoked with the error code as its only argument. errorCode is one of 37 error
conditions, named GLU_NURBS_ERROR1 through GLU_NURBS_ERROR37. Use gluErrorString
to describe the meaning of those error codes.

In Example 12-3henurbsError()routine was registered as the error callback function:

void nurbsError(GLenum errorCode)

{

const GLubyte *estring;

estring = gluErrorString(errorCode);
fprintf (stderr, "Nurbs Error: %s\n", estring);
exit (0);

}

Create a NURBS Curve or Surface

To render a NURBS surfacgluNurbsSurface(js bracketed bgluBeginSurface(andgluEndSurface()

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 21

The bracketing routines save and restore the evaluator state.

void gluBeginSurface (GLUnurbsObj *nobj);
void gluEndSurface (GLUnurbsObj *nobj);

After gluBeginSurface(), one or more calls to gluNurbsSurface() defines the attributes of the surfa
Exactly one of these calls must have a surface type of GL_MAP2_VERTEX_3 or
GL_MAP2_VERTEX_4 to generate vertices. Use gluEndSurface() to end the definition of a surfac
Trimming of NURBS surfaces is also supported between gluBeginSurface() and gluEndSurface().
(See "Trim a NURBS Surface".)

void gluNurbsSurface (GLUnurbsODbj *nobj, GLint uknot_count,
GLfloat *uknot, GLint vknot_count, GLfloat *vknot,

GLint u_stride, GLintv_stride, GLfloat *ctlarray,

GLint uorder, GLint vorder, GLenum type);

Describes the vertices (or surface normals or texture coordinates) of a NURBS surface, nobj.
Several of the values must be specified for both u and v parametric directions, such as the knot
sequences (uknot and vknot), knot counts (uknot_count and vknot_count), and order of the
polynomial (uorder and vorder) for the NURBS surface. Note that the number of control points isn
specified. Instead, it's derived by determining the number of control points along each parameter .
the number of knots minus the order. Then, the number of control points for the surface is equal tc
the number of control points in each parametric direction, multiplied by one another. The ctlarray
argument points to an array of control points.

The last parameter, type, is one of the two—dimensional evaluator types. Commonly, you might us
GL_MAP2_VERTEX_3 for nonrational or GL_MAP2_VERTEX_4 for rational control points,
respectively. You might also use other types, such as GL_MAP2_TEXTURE_COORD_* or
GL_MAP2_ NORMAL to calculate and assign texture coordinates or surface normals. For example
to create a lighted (with surface normals) and textured NURBS surface, you may need to call this
seguence:

gluBeginSurface(nobyj);
gluNurbsSurface(nobj, ..., GL_MAP2_TEXTURE_COORD_2);
gluNurbsSurface(nobj, ..., GL_MAP2_NORMAL);
gluNurbsSurface(nobj, ..., GL_MAP2_VERTEX 3);
gluEndSurface(nobj);
The u_stride and v_stride arguments represent the number of floating—point values between cont
points in each parametric direction. The evaluator type, as well as its order, affects the u_stride ar
v_stride values. In Example 125 stride is 12 (4 * 3) because there are three coordinates for each
vertex (set by GL_MAP2_VERTEX_3) and four control points in the parametric v direction; v_strid
is 3 because each vertex had three coordinates, and v control points are adjacent to one another.

Drawing a NURBS curve is similar to drawing a surface, except that all calculations are done with one
parametery, rather than two. Also, for curvegluBeginCurve(andgluEndCurve(jare the bracketing
routines.
void gluBeginCurve (GLUnurbsObj *nobj);
void gluEndCurve (GLUnurbsObj *nobj);

After gluBeginCurve(), one or more calls to gluNurbsCurve() define the attributes of the surface.

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 22

Exactly one of these calls must have a surface type of GL_MAP1 VERTEX_3 or
GL_MAP1_VERTEX_4 to generate vertices. Use gluEndCurve() to end the definition of a surface

void gluNurbsCurve (GLUnurbsObj *nobj, GLint uknot_count,
GLfloat *uknot, GLint u_stride, GLfloat *ctlarray,
GLint uorder, GLenum type);

Defines a NURBS curve for the object nobj. The arguments have the same meaning as those for
gluNurbsSurface(). Note that this routine requires only one knot sequence and one declaration of
order of the NURBS object. If this curve is defined within a gluBeginCurve()/gluEndCurve() pair,
then the type can be any of the valid one—dimensional evaluator types (such as
GL_MAP1_VERTEX_3 or GL_MAP1_VERTEX_4).

Trim a NURBS Surface

To create a trimmed NURBS surface with OpenGL, start as if you were creating an untrimmed surface
After callinggluBeginSurface(andgluNurbsSurface(put before callingluEndSurface()start a trim by
calling gluBeginTrim()
void gluBeginTrim (GLUnurbsObj *nobj);
void gluEndTrim (GLUnurbsObj *nobj);
Marks the beginning and end of the definition of a trimming loop. A trimming loop is a set of
oriented, trimming curve segments (forming a closed curve) that defines the boundaries of a NUR
surface.

You can create two kinds of trimming curves, a piecewise linear curvghRwlCurve(Jor a NURBS
curve withgluNurbsCurve()A piecewise linear curve doesn’t look like what's conventionally called a
curve, because it's a series of straight lines. A NURBS curve for trimming must lie within the unit squa
of parametricy, v) space. The type for a NURBS trimming curve is usually GLU_MAP1_TRIM2. Less
often, the type is GLU_MAP1_TRIM3, where the curve is described in a two—dimensional homogenec
space(’, v', W) by (u, Y = (U'/w, v'iw).
void gluPwICurve (GLUnurbsObj *nobj, GLint count, GLfloat *array,
GLint stride, GLenum type);
Describes a piecewise linear trimming curve for the NURBS object nobj. There are count points o
the curve, and they're given by array. The type can be either GLU_MAP1_TRIM_2 (the most
common) or GLU_MAP1_TRIM_3 ((u, v, w) homogeneous parameter space). The type affects
whether stride, the number of floating—point values to the next vertex, is 2 or 3.

You need to consider the orientation of trimming cultvésat is, whether they’re counterclockwise or
clockwisé] to make sure you include the desired part of the surface. If you imagine walking along a
curve, everything to the left is included and everything to the right is timmed away. For example, if yo
trim consists of a single counterclockwise loop, everything inside the loop is included. If the trim consi:
of two nonintersecting counterclockwise loops with nonintersecting interiors, everything inside either @
them is included. If it consists of a counterclockwise loop with two clockwise loops inside it, the
trimming region has two holes in it. The outermost trimming curve must be counterclockwise. Often, y
run a trimming curve around the entire unit square to include everything within it, which is what you ge
by default by not specifying any trimming curves.

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 23

Trimming curves must be closed and nonintersecting. You can combine trimming curves, so long as tl
endpoints of the trimming curves meet to form a closed curve. You can nest curves, creating islands t
float in space. Be sure to get the curve orientations right. For example, an error results if you specify ¢
trimming region with two counterclockwise curves, one enclosed within another: The region between t
curves is to the left of one and to the right of the other, so it must be both included and excluded, whic
is impossible. Figure 12#kistrates a few valid possibilities.

Figure 12-5 Parametric Trimming Curves

Figure 12-6shows the same small hill as in Figure 12-4 this time with a trimming curve that's a
combination of a piecewise linear curve and a NURBS curve. The program that creates this figure is
similar to that shown in Example 12+##%e differences are in the routines shown in Example 12-6

Figure 12-6 Trimmed NURBS Surface

Example 12-6 Trimming a NURBS Surface: trim.c

void display(void)
{

OpenGL Programming Guide — Chapter 12, Evaluators and NURBS - 24

GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
GLfloat edgePt[5][2] = /* counter clockwise */

{{0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0},

{0.0, 0.0}};
GLfloat curvePt[4][2] = /* clockwise */

{{0.25, 0.5}, {0.25, 0.75}, {0.75, 0.75}, {0.75, 0.5}};
GLfloat curveKnots[8] =

{0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
GLfloat pwlIPt[4][2] = /* clockwise */

{{0.75, 0.5}, {0.5, 0.25}, {0.25, 0.5}};

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();

glRotatef(330.0, 1.,0.,0.);

glScalef (0.5, 0.5, 0.5);

gluBeginSurface(theNurb);
gluNurbsSurface(theNurb, 8, knots, 8, knots,
4 * 3, 3, &ctlpoints[0][0][0],
4,4, GL_MAP2_VERTEX_3);
gluBeginTrim (theNurb);
gluPwICurve (theNurb, 5, &edgePt[0][0], 2,
GLU_MAP1_TRIM_2);
gluEndTrim (theNurb);
gluBeginTrim (theNurb);
gluNurbsCurve (theNurb, 8, curveKnots, 2,
&curvePt[0][0], 4, GLU_MAP1_TRIM_2);
gluPwICurve (theNurb, 3, &pwlPt[0][0], 2,
GLU_MAP1_TRIM_2);
gluEndTrim (theNurb);
gluEndSurface(theNurb);

glPopMatrix();
glFlush();
}

In Example 12-@luBeginTrim()andgluEndTrim()bracket each trimming curve. The first trim, with
vertices defined by the arragigePt[][], goes counterclockwise around the entire unit square of
parametric space. This ensures that everything is drawn, provided it isn’t removed by a clockwise
trimming curve inside of it. The second trim is a combination of a NURBS trimming curve and a
piecewise linear trimming curve. The NURBS curve ends at the points (0.9, 0.5) and (0.1, 0.5), where
is met by the piecewise linear curve, forming a closed clockwise curve.

OpenGL Programming Guide — Chapter 13, Selection and Feedback - 26

Chapter 13
Selection and Feedback

Chapter Objectives
After reading this chapter, you'll be able to do the following:

Create applications that allow the user to select a region of the screen or pick an object drawn on
screen

Use the OpenGL feedback mode to obtain the results of rendering calculations

Some graphics applications simply draw static images of two— and three—dimensional objects. Other
applications allow the user to identify objects on the screen and then to move, modify, delete, or
otherwise manipulate those objects. OpenGL is designed to support exactly such interactive applicatic
Since objects drawn on the screen typically undergo multiple rotations, translations, and perspective
transformations, it can be difficult for you to determine which object a user is selecting in a
three—dimensional scene. To help you, OpenGL provides a selection mechanism that automatically te
you which objects are drawn inside a specified region of the window. You can use this mechanism
together with a special utility routine to determine which object within the region the user is specifying,
or picking with the cursor.

Selection is actually a mode of operation for OpenGL; feedback is another such mode. In feedback m
you use your graphics hardware and OpenGL to perform the usual rendering calculations. Instead of
using the calculated results to draw an image on the screen, however, OpenGL returns (or feeds back
drawing information to you. For example, if you want to draw three—dimensional objects on a plotter
rather than the screen, you would draw the items in feedback mode, collect the drawing instructions, ¢
then convert them to commands the plotter can understand.

In both selection and feedback modes, drawing information is returned to the application rather than
being sent to the framebuffer, as it is in rendering mode. Thus, the screen remains fmzeawing
occur$] while OpenGL is in selection or feedback mode. In these modes, the contents of the color,
depth, stencil, and accumulation buffers are not affected. This chapter explains each of these modes |
own section:

"Selection” discusses how to use selection mode and related routines to allow a user of your
application to pick an object drawn on the screen.

"Feedback" describes how to obtain information about what would be drawn on the screen and hc
that information is formatted.

Selection

Typically, when you're planning to use OpenGL'’s selection mechanism, you first draw your scene into
the framebuffer, and then you enter selection mode and redraw the scene. However, once you're in

selection mode, the contents of the framebuffer don’'t change until you exit selection mode. When you
exit selection mode, OpenGL returns a list of the primitives that intersect the viewing volume (rememk

OpenGL Programming Guide — Chapter 13, Selection and Feedback - 1

that the viewing volume is defined by the current modelview and projection matrices and any addition:
clipping planes, as explained in Chapter 3.) Each primitive that intersects the viewing volume causes i
selectionhit. The list of primitives is actually returned as an array of integer—vzdumaeisand related

data] thehit recordg] that correspond to the current contents ofrthime stackyou construct the name
stack by loading names onto it as you issue primitive drawing commands while in selection mode. Tht
when the list of names is returned, you can use it to determine which primitives might have been sele«
on the screen by the user.

In addition to this selection mechanism, OpenGL provides a utility routine designed to simplify selectic
in some cases by restricting drawing to a small region of the viewport. Typically, you use this routine t
determine which objects are drawn near the cursor, so that you can identify which object the user is
picking. (You can also delimit a selection region by specifying additional clipping planes. Remember
that these planes act in world space, not in screen space.) Since picking is a special case of selection
selection is described first in this chapter, and then picking.

The Basic Steps
To use the selection mechanism, you need to perform the following steps.
1. Specify the array to be used for the returned hit recordsgitiectBuffer()

2. Enter selection mode by specifying GL_SELECT witRenderMode()

Initialize the name stack usigfnitNames()andglPushName()

W

Define the viewing volume you want to use for selection. Usually this is different from the viewing
volume you originally used to draw the scene, so you probably want to save and then restore the
current transformation state wigtPushMatrix()andglPopMatrix().

5. Alternately issue primitive drawing commands and commands to manipulate the name stack so tt
each primitive of interest has an appropriate name assigned.

6. Exit selection mode and process the returned selection data (the hit records).

The following paragraphs descrigtselectBuffer(andglRenderMode()In the next section, the
commands to manipulate the name stack are described.

void glSelectBuffer(GLsizei size, GLuint *buffer);
Specifies the array to be used for the returned selection data. The buffer argument is a pointer to
array of unsigned integers into which the data is put, and size indicates the maximum number of
values that can be stored in the array. You need to call glSelectBuffer() before entering selection
mode.

GLint gIRenderMode(GLenum mode);
Controls whether the application is in rendering, selection, or feedback mode. The mode argumer
can be one of GL_RENDER (the default), GL_SELECT, or GL_FEEDBACK. The application
remains in a given mode until glIRenderMode() is called again with a different argument. Before
entering selection mode, glSelectBuffer() must be called to specify the selection array. Similarly,
before entering feedback mode, glFeedbackBuffer() must be called to specify the feedback array.

OpenGL Programming Guide — Chapter 13, Selection and Feedback - 2

The return value for gIRenderMode() has meaning if the current render mode (that is, not the mod
parameter) is either GL_SELECT or GL_FEEDBACK. The return value is the number of selection
hits or the number of values placed in the feedback array when either mode is exited; a negative
value means that the selection or feedback array has overflowed. You can use GL_RENDER_MC
with glGetintegerv() to obtain the current mode.

Creating the Name Stack

As mentioned in the previous section, the name stack forms the basis for the selection information the
returned to you. To create the name stack, first initialize it ghititNames() which simply clears the

stack, and then add integer names to it while issuing corresponding drawing commands. As you migh
expect, the commands to manipulate the stack allow you to push a namegiRusiiflame() pop a

name off of it gIPopName() and replace the name on the top of the stack with a different one
(glLoadName(). Example 13—-8¢hows what your name-stack manipulation code might look like with
these commands.

Example 13-1 Creating a Name Stack

glinitNames();
glPushName(0);

glPushMatrix(); /* save the current transformation state */
[* create your desired viewing volume here */

glLoadName(1);
drawSomeObiject();
glLoadName(2);
drawAnotherObject();
glLoadName(3);
drawYetAnotherObject();
drawJustOneMoreObject();

glPopMatrix (); /* restore the previous transformation state*/

In this example, the first two objects to be drawn have their own names, and the third and fourth objec
share a single name. With this setup, if either or both of the third and fourth objects causes a selectior
only one hit record is returned to you. You can have multiple objects share the same name if you don’
need to differentiate between them when processing the hit records.

void glinitNames(void);
Clears the name stack so that it's empty.

void glPushName(GLuint name);
Pushes name onto the name stack. Pushing a name beyond the capacity of the stack generates t
error GL_STACK_OVERFLOW. The name stack’s depth can vary among different OpenGL

OpenGL Programming Guide — Chapter 13, Selection and Feedback - 3

implementations, but it must be able to contain at least sixty—four names. You can use the param:
GL_NAME_STACK_DEPTH with glGetintegerv() to obtain the depth of the name stack.

void glPopName(void);
Pops one name off the top of the name stack. Popping an empty stack generates the error
GL_STACK_UNDERFLOW.

void glLoadName(GLuint name);
Replaces the value on the top of the name stack with name. If the stack is empty, which it is right
after glinitNames() is called, glLoadName() generates the error GL_INVALID_OPERATION. To
avoid this, if the stack is initially empty, call glPushName() at least once to put something on the
name stack before calling glLoadName().

Calls toglPushName()glPopName()andglLoadName(are ignored if you're not in selection mode.
You might find that it simplifies your code to use these calls throughout your drawing code, and then
the same drawing code for both selection and normal rendering modes.

The Hit Record

In selection mode, a primitive that intersects the viewing volume causes a selection hit. Whenever a
name-stack manipulation command is executgtRenderMode(Js called, OpenGL writes a hit record
into the selection array if there’s been a hit since the last time the stack was manipulated or
glRenderMode(vas called. With this process, objects that share the samélrfanmexample, an object
that's composed of more than one primifivdon’t generate multiple hit records. Also, hit records aren’t
guaranteed to be written into the array ugifitenderMode(js called.

Note: In addition to primitives, valid coordinates producedgtifasterPos(fan cause a selection hit.
Also, in the case of polygons, no hit occurs if the polygon would have been culled.

Each hit record consists of four items, in order.
The number of names on the name stack when the hit occurred.

Both the minimum and maximum window—coordiretalues of all vertices of the primitives that
intersected the viewing volume since the last recorded hit. These two values, which lie in the ranc

[0,1], are each multiplied by?'f—l and rounded to the nearest unsigned integer.

The contents of the name stack at the time of the hit, with the bottommost element first.

When you enter selection mode, OpenGL initializes a pointer to the beginning of the selection array.
Each time a hit record is written into the array, the pointer is updated accordingly. If writing a hit recort
would cause the number of values in the array to exceaizerrgument specified with
glSelectBuffer()OpenGL writes as much of the record as fits in the array and sets an overflow flag.
When you exit selection mode wigtRenderMode()this command returns the number of hit records

that were written (including a partial record if there was one), clears the name stack, resets the overflc
flag, and resets the stack pointer. If the overflow flag had been set, the return value is —1.

A Selection Example

OpenGL Programming Guide — Chapter 13, Selection and Feedback - 4

In Example 135Zour triangles (green, red, and two yellow triangles, created by cdliavgTriangle()

and a wireframe box representing the viewing voludnavfViewVolume})are drawn to the screen.

Then the triangles are rendered agagéigctObjects())but this time in selection mode. The

corresponding hit records are processegratessHits()and the selection array is printed out. The first
triangle generates a hit, the second one doesn’t, and the third and fourth ones together generate a sir
hit.

Example 13-2 Selection Example: select.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

void drawTriangle (GLfloat x1, GLfloat y1, GLfloat x2,
GLfloat y2, GLfloat x3, GLfloat y3, GLfloat z)

glBegin (GL_TRIANGLES);
glVertex3f (x1, y1, z);
glVertex3f (x2, y2, z);
glVertex3f (x3, y3, 2);
glEnd ();

void drawViewVolume (GLfloat x1, GLfloat x2, GLfloat y1,
GLfloat y2, GLfloat z1, GLfloat z2)

glColor3f (1.0, 1.0, 1.0);
giBegin (GL_LINE_LOOP);
glVertex3f (x1, y1, -z1);
glVertex3f (x2, y1, -z1);
glVertex3f (x2, y2, -z1);
glVertex3f (x1, y2, -z1);
glEnd ();

glBegin (GL_LINE_LOOP);
glVertex3f (x1, y1, -z2);
glVertex3f (x2, y1, -z2);
glVertex3f (x2, y2, -z2);
glVertex3f (x1, y2, -z2);
glEnd ();

giBegin (GL_LINES); /* 4lines */

OpenGL Programming Guide — Chapter 13, Selection and Feedback - 5

glVertex3f (x1, y1, -z1);
glVertex3f (x1, y1, -z2);
glVertex3f (x1, y2, -z1);
glVertex3f (x1, y2, -z2);
glVertex3f (x2, y1, -z1);
glVertex3f (x2, y1, -z2);
glVertex3f (x2, y2, -z1);
glVertex3f (x2, y2, -z2);
glEnd ();

void drawScene (void)

{
glMatrixMode (GL_PROJECTION);
glLoadldentity ();
gluPerspective (40.0, 4.0/3.0, 1.0, 100.0);

gIMatrixMode (GL_MODELVIEW);
glLoadldentity ();

gluLookAt (7.5, 7.5, 12.5, 2.5, 2.5, -5.0, 0.0, 1.0, 0.0);
glColor3f (0.0, 1.0, 0.0); /* greentriangle */
drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -5.0);
glColor3f (1.0, 0.0, 0.0); /* red triangle */
drawTriangle (2.0, 7.0, 3.0, 7.0, 2.5, 8.0, -5.0);
glColor3f (1.0, 1.0, 0.0); /* yellow triangles */
drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, 0.0);
drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, —10.0);
drawViewVolume (0.0, 5.0, 0.0, 5.0, 0.0, 10.0);

void processHits (GLint hits, GLuint buffer[])
{

unsigned int i, j;

GLuint names, *ptr;

printf ("hits = %d\n", hits);
ptr = (GLuint *) buffer;
for (i = 0; i < hits; i++) { /* for each hit */
names = *ptr,;
printf (" number of names for hit = %d\n", names); ptr++;
printf(" z1 is %g;", (float) *ptr/Ox7fffffff); ptr++;
printf(" z2 is %g\n", (float) *ptr/Ox7fffffff); ptr++;
printf (" the name is");

OpenGL Programming Guide — Chapter 13, Selection and Feedback - 6

for (j = 0; j <names; j++){ /* for each name */
printf ("%d ", *ptr); ptr++;
}
printf ("\n");
}
}

#define BUFSIZE 512

void selectObjects(void)

{
GLuint selectBuf[BUFSIZE];
GLint hits;

glSelectBuffer (BUFSIZE, selectBuf);
(void) glRenderMode (GL_SELECT);

glinitNames();
glPushName(0);

glPushMatrix ();

gIMatrixMode (GL_PROJECTION);
glLoadldentity ();

glOrtho (0.0, 5.0, 0.0, 5.0, 0.0, 10.0);
gIMatrixMode (GL_MODELVIEW);
glLoadldentity ();

glLoadName(1);

drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -5.0);
glLoadName(2);

drawTriangle (2.0, 7.0, 3.0, 7.0, 2.5, 8.0, -5.0);
glLoadName(3);

drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, 0.0);
drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, —10.0);
glPopMatrix ();

glFlush ();

hits = gIRenderMode (GL_RENDER);

processHits (hits, selectBuf);

void init (void)

{
glEnable(GL_DEPTH_TEST);

OpenGL Programming Guide — Chapter 13, Selection and Feedback - 7

glShadeModel(GL_FLAT);
}

void display(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
drawScene ();
selectObjects ();
glFlush();

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutinitWindowsSize (200, 200);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init();
glutDisplayFunc(display);
glutMainLoop();
return O;

Picking

As an extension of the process described in the previous section, you can use selection mode to
determine if objects are picked. To do this, you use a special picking matrix in conjunction with the
projection matrix to restrict drawing to a small region of the viewport, typically near the cursor. Then yt
allow some form of input, such as clicking a mouse button, to initiate selection mode. With selection
mode established and with the special picking matrix used, objects that are drawn near the cursor cat
selection hits. Thus, during picking you’re typically determining which objects are drawn near the curs

Picking is set up almost exactly like regular selection mode is, with the following major differences.

Picking is usually triggered by an input device. In the following code examples, pressing the left
mouse button invokes a function that performs picking.

You use the utility routingluPickMatrix()to multiply a special picking matrix onto the current
projection matrix. This routine should be called prior to multiplying a standard projection matrix
(such agyluPerspective(prglOrtho()). You'll probably want to save the contents of the projection
matrix first, so the sequence of operations may look like this:

glMatrixMode (GL_PROJECTION);
glPushMatrix ();

OpenGL Programming Guide — Chapter 13, Selection and Feedback - 8

glLoadldentity ();

gluPickMatrix (...);

gluPerspective, glOrtho, gluOrtho2D, or glFrustum
[* ... draw scene for picking ; perform picking ... */

glPopMatrix();

Another completely different way to perform picking is described in "Object Selection Using the Back
Buffer" in Chapter 14. This technique uses color values to identify different components of an object.

void gluPickMatrix(GLdouble x, GLdouble y, GLdouble width,
GLdouble height, GLint viewport[4]);

Creates a projection matrix that restricts drawing to a small region of the viewport and multiplies
that matrix onto the current matrix stack. The center of the picking region is (X, y) in window
coordinates, typically the cursor location. width and height define the size of the picking region in
screen coordinates. (You can think of the width and height as the sensitivity of the picking device.
viewport[] indicates the current viewport boundaries, which can be obtained by calling

glGetintegerv(GL_VIEWPORT, GLint *viewport);
Advanced

The net result of the matrix created dgiyPickMatrix()is to transform

the clipping region into the unit cube=1, y, 2) < 1 (or w< (wx, wy, wz) <w). The picking matrix
effectively performs an orthogonal transformation that maps a subregion of this unit cube to the unit
cube. Since the transformation is arbitrary, you can make picking work for different sorts

of region$] for example, for rotated rectangular portions of the window. In certain situations, you might
find it easier to specify additional clipping planes to define the picking region.

Example 13-Blustrates simple picking. It also demonstrates how to use multiple names to identify
different components of a primitive, in this case the row and column of a selected objegtgrdf
squares is drawn, with each square a different color. The board[3][3] array maintains the current amot
of blue for each square. When the left mouse button is presseickBeguares(youtine is called to

identify which squares were picked by the mouse. Two names identify each square iftlongrid

identifies the row, and the other the column. Also, when the left mouse button is pressed, the color o
squares under the cursor position changes.

Example 13-3 Picking Example: picksquare.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <stdlib.h>
#include <stdio.h>
#include <GL/glut.h>

int board[3][3]; /* amount of color for each square */

[* Clear color value for every square on the board */
void init(void)

OpenGL Programming Guide — Chapter 13, Selection and Feedback - 9

{
inti, j;
for(i=0;i<3;i++)
for(=0;j<3;j++)
board][i][j] = O;
glClearColor (0.0, 0.0, 0.0, 0.0);
}

void drawSquares(GLenum mode)
{
GLuint i, j;
for(i=0;i<3;i++) {
if (mode == GL_SELECT)
glLoadName (i);
for =0;j<3;j++){
if (mode == GL_SELECT)
glPushName (j);
glColor3f ((GLfloat) i/3.0, (GLfloat) j/3.0,
(GLfloat) board][i][j]/3.0);
glRecti (i, j, i+1, j+1);
if (mode == GL_SELECT)
glPopName ();

[* processHits prints out the contents of the
* selection array.
*
void processHits (GLint hits, GLuint buffer[])
{

unsigned int i, j;

GLuint ii, jj, names, *ptr;

printf ("hits = %d\n", hits);
ptr = (GLuint *) buffer;
for (i=0; i < hits; i++) { /* for each hit */
names = *ptr;
printf (" number of names for this hit = %d\n", names);
ptr++;
printf(" z1 is %g;", (float) *ptr/Ox7fffffff); ptr++;
printf(" z2 is %g\n", (float) *ptr/Ox7fffffff); ptr++;
printf (" names are ");

OpenGL Programming Guide — Chapter 13, Selection and Feedback — 10

for (j = 0; j < names; j++) { /* for each name */
printf ("%d ", *ptr);
if ==0) /* set row and column */
ii = *ptr;
elseif j==1)
Jj = *ptr;
ptr++;
}
printf ("\n");
boardlii][jj] = (board[ii][jj] + 1) % 3;
}
}

#define BUFSIZE 512

void pickSquares(int button, int state, int x, int y)
{

GLuint selectBuf[BUFSIZE];

GLint hits;

GLint viewport[4];

if (button '= GLUT_LEFT_BUTTON || state != GLUT_DOWN)
return;

glGetintegerv (GL_VIEWPORT, viewport);

glSelectBuffer (BUFSIZE, selectBuf);
(void) glRenderMode (GL_SELECT);

glinitNames();
glPushName(0);

glMatrixMode (GL_PROJECTION);
glPushMatrix ();
glLoadldentity ();
[* create 5x5 pixel picking region near cursor location */
gluPickMatrix ((GLdouble) x, (GLdouble) (viewport[3] - y),
5.0, 5.0, viewport);
gluOrtho2D (0.0, 3.0, 0.0, 3.0);
drawSquares (GL_SELECT);

gIMatrixMode (GL_PROJECTION);
glPopMatrix ();

OpenGL Programming Guide — Chapter 13, Selection and Feedback — 11

glFlush ();

hits = gIRenderMode (GL_RENDER);
processHits (hits, selectBuf);
glutPostRedisplay();

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT);
drawSquares (GL_RENDER);
glFlush();

}

void reshape(int w, int h)

{
glViewport(0, 0, w, h);
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
gluOrtho2D (0.0, 3.0, 0.0, 3.0);
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutinitWindowsSize (100, 100);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutMouseFunc (pickSquares);
glutReshapeFunc (reshape);
glutDisplayFunc(display);
glutMainLoop();
return O;

Picking with Multiple Names and a Hierarchical Model

Multiple names can also be used to choose parts of a hierarchical object in a scene. For example, if y
were rendering an assembly line of automobiles, you might want the user to move the mouse to pick t
third bolt on the left front tire of the third car in line. A different name can be used to identify each leve

OpenGL Programming Guide — Chapter 13, Selection and Feedback — 12

of hierarchy: which car, which tire, and finally which bolt. As another example, one name can be used
describe a single molecule among other molecules, and additional names can differentiate individual
atoms within that molecule.

Example 13- a modification of Example 3-4, which draws an automobile with four identical wheels,
each of which has five identical bolts. Code has been added to manipulate the name stack with the ok
hierarchy.

Example 13-4 Creating Multiple Names

draw_wheel_and_bolts()

{

long i;

draw_wheel_body();
for (i=0;i<5;i++) {
glPushMatrix();
glRotate(72.0%, 0.0, 0.0, 1.0);
glTranslatef(3.0, 0.0, 0.0);
glPushName(i);
draw_bolt_body();
glPopName();
glPopMatrix();

draw_body_and_wheel_and_bolts()
{
draw_car_body();
glPushMatrix();
glTranslate(40, 0, 20); /* first wheel position*/
glPushName(1); /* name of wheel number 1 */
draw_wheel_and_bolts();
glPopName();
glPopMatrix();
glPushMatrix();
glTranslate(40, 0, —20); /* second wheel position */
glPushName(2); /* name of wheel number 2 */
draw_wheel_and_bolts();
glPopName();
glPopMatrix();

[* draw last two wheels similarly */

}

OpenGL Programming Guide — Chapter 13, Selection and Feedback — 13

Example 13-Bses the routines in Example 13-4to draw three different cars, numbered 1, 2, and 3.

Example 13-5 Using Multiple Names

draw_three_cars()
{
glinitNames();
glPushMatrix();
translate_to_first_car_position();
glPushName(1);
draw_body_and_wheel_and_bolts();
glPopName();
glPopMatrix();

glPushMatrix();
translate_to_second_car_position();
glPushName(2);
draw_body_and_wheel_and_bolts();
glPopName();
glPopMatrix();

glPushMatrix();
translate_to_third_car_position();
glPushName(3);
draw_body_and_wheel_and_bolts();
glPopName();
glPopMatrix();
}

Assuming that picking is performed, the following are some possible name-stack return values and th
interpretations. In these examples, at most one hit record is returnedlasod?2 are depth values.

2d1d22 1 Car 2, wheel 1

1d1d23 Car 3 body

3d1d21 1 0 Bolt 0 on wheel 1 on car 1
empty The pick was outside all cars

The last interpretation assumes that the bolt and wheel don’t occupy the same picking region. A user
might well pick both the wheel and the bolt, yielding two hits. If you receive multiple hits, you have to
decide which hit to process, perhaps by using the depth values to determine which picked object is
closest to the viewpoint. The use of depth values is explored further in the next section.

Picking and Depth Values

Example 13—-8emonstrates how to use depth values when picking to determine which object is picked

OpenGL Programming Guide — Chapter 13, Selection and Feedback — 14

This program draws three overlapping rectangles in normal rendering mode. When the left mouse but
is pressed, thpickRects(youtine is called. This routine returns the cursor position, enters selection
mode, initializes the name stack, and multiplies the picking matrix onto the stack before the orthograp
projection matrix. A selection hit occurs for each rectangle the cursor is over when the left mouse butt
is clicked. Finally, the contents of the selection buffer are examined to identify which named objects
were within the picking region near the cursor.

The rectangles in this program are drawn at different depthyatues. Since only one name is used to
identify all three rectangles, only one hit can be recorded. However, if more than one rectangle is pick
that single hit has different minimum and maximamalues.

Example 13-6 Picking with Depth Values: pickdepth.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

void init(void)

{
glClearColor(0.0, 0.0, 0.0, 0.0);
glEnable(GL_DEPTH_TEST);
glShadeModel(GL_FLAT);
glDepthRange(0.0, 1.0); /* The default z mapping */

}

void drawRects(GLenum mode)
{
if (mode == GL_SELECT)
glLoadName(1);
glBegin(GL_QUADS);
glColor3f(1.0, 1.0, 0.0);
glVertex3i(2, 0, 0);
glVertex3i(2, 6, 0);
glVertex3i(6, 6, 0);
glVertex3i(6, 0, 0);
glEnd();
if (mode == GL_SELECT)
glLoadName(2);
glBegin(GL_QUADYS);
glColor3f(0.0, 1.0, 1.0);
glVertex3i(3, 2, —-1);
glVertex3i(3, 8, —1);
glVertex3i(8, 8, —1);

OpenGL Programming Guide — Chapter 13, Selection and Feedback — 15

glVertex3i(8, 2, —-1);
glEnd();
if (mode == GL_SELECT)
glLoadName(3);
glBegin(GL_QUADS);
glColor3f(1.0, 0.0, 1.0);
glVertex3i(0, 2, —-2);
glVertex3i(0, 7, —2);
glVertex3i(5, 7, —2);
glVertex3i(5, 2, —2);
glEnd();

void processHits(GLint hits, GLuint buffer[])
{

unsigned int i, j;

GLuint names, *ptr;

printf("hits = %d\n", hits);

ptr = (GLuint *) buffer;

for (i=0; i < hits; i++) { /* for each hit */
names = *ptr;
printf(" number of names for hit = %d\n", names); ptr++;
printf(" z1 is %g;", (float) *ptr/Ox7fffffff); ptr++;
printf(" z2 is %g\n", (float) *ptr/Ox7fffffff); ptr++;
printf(" the name is ");
for (j = 0; j < names; j++) { /* for each name */

printf("%d ", *ptr); ptr++;

}
printf("\n");

#define BUFSIZE 512

void pickRects(int button, int state, int X, int y)

{
GLuint selectBuf[BUFSIZE];

GLint hits;
GLint viewport[4];

if (button != GLUT_LEFT_BUTTON || state != GLUT_DOWN)
return;

OpenGL Programming Guide — Chapter 13, Selection and Feedback — 16

glGetintegerv(GL_VIEWPORT, viewport);

glSelectBuffer(BUFSIZE, selectBuf);
(void) glRenderMode(GL_SELECT);

glinitNames();
glPushName(0);

glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadldentity();
[* create 5x5 pixel picking region near cursor location */
gluPickMatrix((GLdouble) x, (GLdouble) (viewport[3] - y),
5.0, 5.0, viewport);
glOrtho(0.0, 8.0, 0.0, 8.0, —0.5, 2.5);
drawRects(GL_SELECT);
glPopMatrix();
glFlush();

hits = glIRenderMode(GL_RENDER);
processHits(hits, selectBuf);

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
drawRects(GL_RENDER);
glFlush();

}

void reshape(int w, int h)

{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
glOrtho(0.0, 8.0, 0.0, 8.0, -0.5, 2.5);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

int main(int argc, char **argv)

{
glutinit(&argc, argv);

OpenGL Programming Guide — Chapter 13, Selection and Feedback — 17

glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutlnitWindowsSize (200, 200);

glutinitWindowPosition (100, 100);

glutCreateWindow(argv[0]);

init();

glutMouseFunc(pickRects);

glutReshapeFunc(reshape);

glutDisplayFunc(display);

glutMainLoop();

return O;

Try This

Modify Example 13-6 add additional calls giPushName(¥o that multiple names are on the
stack when the selection hit occurs. What will the contents of the selection buffer be?

By default,gIDepthRange(3ets the mapping of ttrevalues to [0.0,1.0]. Try modifying the
glDepthRange(Yalues and see how it affects thealues that are returned in the selection array.

Hints for Writing a Program That Uses Selection

Most programs that allow a user to interactively edit some geometry provide a mechanism for the use
pick items or groups of items for editing. For two—dimensional drawing programs (for example, text
editors, page-layout programs, and circuit—design programs), it might be easier to do your own pickin
calculations instead of using the OpenGL picking mechanism. Often, it's easy to find bounding boxes
two—-dimensional objects and to organize them in some hierarchical data structure to speed up searct
For example, picking that uses the OpenGL style in a VLSI layout program containing millions of
rectangles can be relatively slow. However, using simple bounding—-box information when rectangles i
typically aligned with the screen could make picking in such a program extremely fast. The code is
probably simpler to write, too.

As another example, since only geometric objects cause hits, you might want to create your own mett
for picking text. Setting the current raster position is a geometric operation, but it effectively creates or
a single pickable point at the current raster position, which is typically at the lower-left corner of the te
If your editor needs to manipulate individual characters within a text string, some other picking
mechanism must be used. You could draw little rectangles around each character during picking mod
but it's almost certainly easier to handle text as a special case.

If you decide to use OpenGL picking, organize your program and its data structures so that it's easy t
draw appropriate lists of objects in either selection or normal drawing mode. This way, when the user
picks something, you can use the same data structures for the pick operation that you use to display t
items on the screen. Also, consider whether you want to allow the user to select multiple objects. One
way to do this is to store a bit for each item indicating whether it's selected (however, this method
requires traversing your entire list of items to find the selected items). You might find it useful to
maintain a list of pointers to selected items to speed up this search. It's probably a good idea to keep-

OpenGL Programming Guide — Chapter 13, Selection and Feedback — 18

selection bit for each item as well, since when you’re drawing the entire picture, you might want to dra
selected items differently (for example, in a different color or with a selection box around them). Finall
consider the selection user interface. You might want to allow the user to do the following:

Select an item

Sweep-—select a group of items (see the next paragraphs for a description of this behavior)
Add an item to the selection

Add a sweep selection to the current selections

Delete an item from a selection

Choose a single item from a group of overlapping items

A typical solution for a two—dimensional drawing program might work as follows.

1.

All selection is done by pointing with the mouse cursor and using the left mouse button. In what
follows, cursormeans the cursor tied to the mouse, launttbn means the left mouse button.

Clicking on an item selects it and deselects all other currently selected items. If the cursor is on tc
of multiple items, the smallest is selected. (In three dimensions, many other strategies work to
disambiguate a selection.)

Clicking down where there is no item, holding the button down while dragging the cursor, and thel
releasing the button selects all the items in a screen—aligned rectangle whose corners are determ
by the cursor positions when the button went down and where it came up. This is saléspa
selection All items not in the swept—out region are deselected. (You must decide whether an item
selected only if it's completely within the sweep region, or if any part of it falls within the region.
The completely within strategy usually works best.)

If the Shift key is held down and the user clicks on an item that isn’t currently selected, that item is
added to the selected list. If the clicked—upon item is selected, it's deleted from the selection list.

If a sweep selection is performed with the Shift key pressed, the items swept out are added to the
current selection.

In an extremely cluttered region, it's often hard to do a sweep selection. When the button goes dc
the cursor might lie on top of some item, and normally that item would be selected. You can make
any operation a sweep selection, but a typical user interface interprets a button—down on an item
a mouse motion as a select—plus—drag operation. To solve this problem, you can have an enforce
sweep selection by holding down, say, the Alt key. With this, the following set of operations
constitutes a sweep selection: Alt-button down, sweep, button up. Items under the cursor when tt
button goes down are ignored.

If the Shift key is held during this sweep selection, the items enclosed in the sweep region are adt
to the current selection.

Finally, if the user clicks on multiple items, select just one of them. If the cursor isn't moved (or
maybe not moved more than a pixel), and the user clicks again in the same place, deselect the ite

OpenGL Programming Guide — Chapter 13, Selection and Feedback — 19

originally selected, and select a different item under the cursor. Use repeated clicks at the same ¢
to cycle through all the possibilities.

Different rules can apply in particular situations. In a text editor, you probably don’t have to worry abot
characters on top of each other, and selections of multiple characters are always contiguous characte
the document. Thus, you need to mark only the first and last selected characters to identify the compls
selection. With text, often the best way to handle selection is to identify the positions between charact
rather than the characters themselves. This allows you to have an empty selection when the beginnin
and end of the selection are between the same pair of characters; it also allows you to put the cursor
before the first character in the document or after the final one with no special-case code.

In three—dimensional editors, you might provide ways to rotate and zoom between selections, so
sophisticated schemes for cycling through the possible selections might be unnecessary. On the othe
hand, selection in three dimensions is difficult because the cursor’s position on the screen usually give
no indication of its depth.

Feedback

Feedback is similar to selection in that once you're in either mode, no pixels are produced and the scr
is frozen. Drawing does not occur; instead, information about primitives that would have been rendere
is sent back to the application. The key difference between selection and feedback modes is what
information is sent back. In selection mode, assigned names are returned to an array of integer value:
feedback mode, information about transformed primitives is sent back to an array of floating—point
values. The values sent back to the feedback array consist of tokens that specify what type of primitiv
(point, line, polygon, image, or bitmap) has been processed and transformed, followed by vertex, colo
or other data for that primitive. The values returned are fully transformed by lighting and viewing
operations. Feedback mode is initiated by calljiRenderMode(yvith GL_FEEDBACK as the

argument.

Here’s how you enter and exit feedback mode.

1. CallglFeedbackBuffer(fo specify the array to hold the feedback information. The arguments to this
command describe what type of data and how much of it gets written into the array.

2. CallglRenderMode(jvith GL_FEEDBACK as the argument to enter feedback mode. (For this step,
you can ignore the value returneddiRenderMode() After this point, primitives aren’t rasterized
to produce pixels until you exit feedback mode, and the contents of the framebuffer don’t change.

3. Draw your primitives. While issuing drawing commands, you can make several calls to
glPassThrough(o insert markers into the returned feedback data and thus facilitate parsing.

4. Exit feedback mode by calligjRenderMode(vith GL_RENDER as the argument if you want to
return to normal drawing mode. The integer value returnegignderMode(js the number of
values stored in the feedback array.

5. Parse the data in the feedback array.

void glFeedbackBuffer(GLsizei size, GLenum type, GLfloat *buffer);

OpenGL Programming Guide — Chapter 13, Selection and Feedback - 20

Establishes a buffer for the feedback data: buffer is a pointer to an array where the data is stored.
The size argument indicates the maximum number of values that can be stored in the array. The 1
argument describes the information fed back for each vertex in the feedback array; its possible
values and their meaning are shown in Table 18FeedbackBuffer() must be called before
feedback mode is entered. In the table, k is 1 in color-index mode and 4 in RGBA mode.

typeArgument Coordinates Color Texture Total Values
GL_2D X,y - - 2
GL_3D X, Y, 2 - - 3
GL_3D_COLOR X, Y, Z k - 3+Kk
GL_3D_COLOR_TEXTURE XY, Z k 4 7+k
GL_4D_COLOR_TEXTURE XY, Z, W k 4 8 +k

Table 13-1 glFeedbackBuffer@ype Values

The Feedback Array

In feedback mode, each primitive that would be rasterized (or each giBitroap() glDrawPixels() or
glCopyPixels()if the raster position is valid) generates a block of values that's copied into the feedbacl
array. The number of values is determined bytyhe argument tglFeedbackBuffer(Jas listed in Table
13-1Use the appropriate value for the type of primitives you're drawing: GL_2D or GL_3D for unlit
two— or three—dimensional primitives, GL_3D_COLOR for lit, three—dimensional primitives, and
GL_3D_COLOR_TEXTURE or GL_4D_COLOR_TEXTURE for lit, textured, three— or
four-dimensional primitives.

Each block of feedback values begins with a code indicating the primitive type, followed by values tha
describe the primitive’s vertices and associated data. Entries are also written for pixel rectangles. In
addition, pass—through markers that you've explicitly created can be returned in the array; the next
section explains these markers in more detail. Table 13-2shows the syntax for the feedback array;
remember that the data associated with each returned vertex is as described in Taktee St a
polygon can hava vertices returned. Also, the y, zcoordinates returned by feedback are window
coordinates; ifv is returned, it's in clip coordinates. For bitmaps and pixel rectangles, the coordinates
returned are those of the current raster position. In the table, note that GL_LINE_RESET_TOKEN is
returned only when the line stipple is reset for that line segment.

Primitive Type Code Associated Data

Point GL_POINT_TOKEN vertex

Line GL_LINE_TOKEN or vertex vertex
GL_LINE_RESET_TOKEN

Polygon GL_POLYGON_TOKEN n vertex vertex ... vertex

Bitmap GL_BITMAP_TOKEN vertex

Pixel Rectangle GL_DRAW_PIXEL_TOKEN or vertex
GL_COPY_PIXEL_TOKEN
Pass—-through GL_PASS_THROUGH_TOKEN a floating—point number

Table 13-2 Feedback Array Syntax

Using Markers in Feedback Mode

OpenGL Programming Guide — Chapter 13, Selection and Feedback - 21

Feedback occurs after transformations, lighting, polygon culling, and interpretation of polygons by
glPolygonMode() It might also occur after polygons with more than three edges are broken up into
triangles (if your particular OpenGL implementation renders polygons by performing this
decomposition). Thus, it might be hard for you to recognize the primitives you drew in the feedback de
you receive. To help parse the feedback datagteissThrough(as needed in your sequence of

drawing commands to insert a marker. You might use the markers to separate the feedback values
returned from different primitives, for example. This command causes GL_PASS THROUGH_TOKEM!
to be written into the feedback array, followed by the floating—point value you pass in as an argument.

void glPassThrough(GLfloat token);
Inserts a marker into the stream of values written into the feedback array, if called in feedback
mode. The marker consists of the code GL_PASS THROUGH_TOKEN followed by a single
floating—point valuapken. This command has no effect when called outside of feedback mode.
Calling glPassThrough() between glBegin() and glEnd() generates a GL_INVALID_OPERATION
error.

A Feedback Example

Example 13-@demonstrates the use of feedback mode. This program draws a lit, three—dimensional sc
in normal rendering mode. Then, feedback mode is entered, and the scene is redrawn. Since the proc
draws lit, untextured, three—dimensional objects, the type of feedback data is GL_3D_COLOR. Since
RGBA mode is used, each unclipped vertex generates seven values for the feedbaok uffer; g, b,
anda.

In feedback mode, the program draws two lines as part of a line strip and then inserts a pass—through
marker. Next, a point is drawn at (-100.0, —100.0, —100.0), which falls outside the orthographic viewir
volume and thus doesn’t put any values into the feedback array. Finally, another pass—through marke
inserted, and another point is drawn.

Example 13-7 Feedback Mode: feedback.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

void init(void)

{
glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);

}

void drawGeometry (GLenum mode)

{
glBegin (GL_LINE_STRIP);

OpenGL Programming Guide — Chapter 13, Selection and Feedback — 22

glNormal3f (0.0, 0.0, 1.0);
glVertex3f (30.0, 30.0, 0.0);
glVertex3f (50.0, 60.0, 0.0);
glVertex3f (70.0, 40.0, 0.0);
glEnd ();
if (mode == GL_FEEDBACK)
glPassThrough (1.0);
glBegin (GL_POINTS);
glVertex3f (-100.0, —100.0, —100.0); /* will be clipped */
glEnd ();
if (mode == GL_FEEDBACK)
glPassThrough (2.0);
glBegin (GL_POINTS);
glNormal3f (0.0, 0.0, 1.0);
glVertex3f (50.0, 50.0, 0.0);

glEnd ();
}
void print3DcolorVertex (GLint size, GLint *count,
GLfloat *buffer)
{
int i
printf (" ");

for(i=0;i<7;i++){
printf ("%4.2f ", buffer[size—(*count)]);
*count = *count — 1,
}
printf ("\n");
}

void printBuffer(GLint size, GLfloat *buffer)
{

GLint count;

GLfloat token;

count = size;
while (count) {
token = buffer[size—count]; count—-;
if (token == GL_PASS_THROUGH_TOKEN) {
printf ("GL_PASS_THROUGH_TOKEN\n");
printf (" %4.2\n", buffer[size—count));
count——;

OpenGL Programming Guide — Chapter 13, Selection and Feedback — 23

}
else if (token == GL_POINT_TOKEN) {

printf ("GL_POINT_TOKEN\n");
print3DcolorVertex (size, &count, buffer);

}

else if (token == GL_LINE_TOKEN) {
printf ("GL_LINE_TOKEN\n");
print3DcolorVertex (size, &count, buffer);
print3DcolorVertex (size, &count, buffer);

}

else if (token == GL_LINE_RESET_TOKEN) {
printf ("GL_LINE_RESET_TOKEN\n");
print3DcolorVertex (size, &count, buffer);
print3DcolorVertex (size, &count, buffer);

}

}
}

void display(void)

{
GLfloat feedBuffer[1024];
GLint size;

gIMatrixMode (GL_PROJECTION);
glLoadldentity ();
glOrtho (0.0, 100.0, 0.0, 100.0, 0.0, 1.0);

glClearColor (0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
drawGeometry (GL_RENDER);

glFeedbackBuffer (1024, GL_3D_COLOR, feedBuffer);
(void) glRenderMode (GL_FEEDBACK);
drawGeometry (GL_FEEDBACK);

size = glRenderMode (GL_RENDER);
printBuffer (size, feedBuffer);

}

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB);

OpenGL Programming Guide — Chapter 13, Selection and Feedback - 24

glutinitWindowsSize (100, 100);
glutinitWindowPosition (100, 100);
glutCreateWindow(argv[0]);

init();

glutDisplayFunc(display);
glutMainLoop();

return O;

}

Running this program generates the following output:

GL_LINE_RESET_TOKEN
30.00 30.00 0.00 0.84 0.84 0.84 1.00
50.00 60.00 0.00 0.84 0.84 0.84 1.00
GL_LINE_TOKEN

50.00 60.00 0.00 0.84 0.84 0.84 1.00
70.00 40.00 0.00 0.84 0.84 0.84 1.00
GL_PASS_THROUGH_TOKEN

1.00

GL_PASS_THROUGH_TOKEN

2.00

GL_POINT_TOKEN

50.00 50.00 0.00 0.84 0.84 0.84 1.00

Thus, the line strip drawn with these commands results in two primitives:

gIBegin(GL_LINE_STRIP);
gINormal3f (0.0, 0.0, 1.0);
glVertex3f (30.0, 30.0, 0.0);
glvertex3f (50.0, 60.0, 0.0);
glVertex3f (70.0, 40.0, 0.0);
glEnd();

The first primitive begins with GL_LINE_RESET_TOKEN, which indicates that the primitive is a line
segment and that the line stipple is reset. The second primitive begins with GL_LINE_TOKEN, so it's
also a line segment, but the line stipple isn’t reset and hence continues from where the previous line
segment left off. Each of the two vertices for these lines generates seven values for the feedback arra
Note that the RGBA values for all four vertices in these two lines are (0.84, 0.84, 0.84, 1.0), which is a
very light gray color with the maximum alpha value. These color values are a result of the interaction ¢
the surface normal and lighting parameters.

Since no feedback data is generated between the first and second pass—through markers, you can de
that any primitives drawn between the first two callgleassThrough(vere clipped out of the viewing
volume. Finally, the point at (50.0, 50.0, 0.0) is drawn, and its associated data is copied into the feedb
array.

Note: In both feedback and selection modes, information on objects is returned prior to any fragment

OpenGL Programming Guide — Chapter 13, Selection and Feedback — 25

tests. Thus, objects that would not be drawn due to failure of the scissor, alpha, depth, or stencil tests
still have their data processed and returned in both feedback and selection modes.

Try This

Make changes to Example 13-7and see how they affect the feedback values that are returned. For
example, change the coordinate valueglOftho(). Change the lighting variables, or eliminate lighting
altogether and change the feedback type to GL_3D. Or add more primitives to see what other geomei
(such as filled polygons) contributes to the feedback array.

OpenGL Programming Guide — Chapter 14, Now That You Know — 26

Chapter 14
Now That You Know

Chapter Objectives

This chapter doesn’t have objectives in the same way that previous chapters do. It's simply a collectio
of topics that describe ideas you might find useful for your application. Some topics, such as error
handling, don't fit into other categories, but are too short for an entire chapter.

OpenGL is kind of a bag of low-level tools; now that you know about those tools, you can use them tc
implement higher—level functions. This chapter presents several examples of such higher-level
capabilities.

This chapter discusses a variety of techniques based on OpenGL commands that illustrate some of tF
not—-so—-obvious uses to which you can put these commands. The examples are in no particular order
aren't related to each other. The idea is to read the section headings and skip to the examples that yo
find interesting. For your convenience, the headings are listed and explained briefly here.

Note: Most of the examples in the rest of this guide are complete and can be compiled and run as is.
this chapter, however, there are no complete programs, and you have to do a bit of work on your own
make them run.

"Error Handling" tells you how to check for OpenGL error conditions.

"Which Version Am | Using?" describes how to find out details about the implementation, includin
the version number. This can be useful for writing applications that are backward compatible with
earlier versions of OpenGL.

"Extensions to the Standard" presents techniques to identify and use vendor-specific extensions
the OpenGL standard.

"Cheesy Translucency" explains how to use polygon stippling to achieve translucency; this is
particularly useful when you don’t have blending hardware available.

"An Easy Fade Effect" shows how to use polygon stippling to create the effect of a fade into the
background.

"Object Selection Using the Back Buffer" describes how to use the back buffer in a double—buffer:
system to handle simple object picking.

"Cheap Image Transformation" discusses how to draw a distorted version of a bitmapped image |
drawing each pixel as a quadrilateral.

"Displaying Layers" explains how to display multiple different layers of materials and indicate
where the materials overlap.

"Antialiased Characters" describes how to draw smoother fonts.
"Drawing Round Points" describes how to draw near-round points.

"Interpolating Images" shows how to smoothly blend from one image to the another.

OpenGL Programming Guide — Chapter 14, Now That You Know - 1

"Making Decals" explains how to draw two images, where one is a sort of decal that should alway
appear on top of the other.

"Drawing Filled, Concave Polygons Using the Stencil Buffer" tells you how to draw concave
polygons, nonsimple polygons, and polygons with holes by using the stencil buffer.

"Finding Interference Regions" describes how to determine where three—dimensional pieces over
"Shadows" describes how to draw shadows of it objects.

"Hidden-Line Removal"discusses how to draw a wireframe object with hidden lines removed by
using the stencil buffer.

"Texture—Mapping Applicationglescribes several clever uses for texture mapping, such as rotatinc
and warping images.

"Drawing Depth—Buffered Imaget&lls you how to combine images in a depth—buffered
environment.

"Dirichlet Domains" explains how to find the Dirichlet domain of a set of points using the depth
buffer.

“Life in the Stencil Buffer" explains how to implement the Game of Life using the stencil buffer.

"Alternative Uses for glDrawPixels() and glCopyPixels()" describes how to use these two
commands for such effects as fake video, airbrushing, and transposed images.

Error Handling

The truth is, your program will make mistakes. Use of error—handling routines are essential during
development and are highly recommended for commercially released applications. (Unless you can g
a 100% guarantee your program will never generate an OpenGL error condition. Get real!) OpenGL h
simple error—handling routines for the base GL and GLU libraries.

When OpenGL detects an error (in either the base GL or GLU), it records a current error code. The
command that caused the error is ignored, so it has no effect on OpenGL state or on the framebuffer
contents. (If the error recorded was GL_OUT_OF_MEMORY, however, the results of the command ai
undefined.) Once recorded, the current error code isn't cl@dtet is, additional errors aren't

recorded until you call the query commargiGetError(), which returns the current error code. After
you've queried and cleared the current error code, or if there’s no error to begigl@étError()

returns GL_NO_ERROR.

GLenum glGetError(void);
Returns the value of the error flag. When an error occurs in either the GL or GLU, the error flag is
set to the appropriate error code value. If GL_NO_ERROR is returned, there has been no detecta
error since the last call to glGetError(), or since the GL was initialized. No other errors are
recorded until glGetError() is called, the error code is returned, and the flag is reset to
GL_NO_ERROR.

OpenGL Programming Guide — Chapter 14, Now That You Know - 2

It is strongly recommended that you agliGetError() at least once in eadisplay() routine. Table 14-1
lists the basic defined OpenGL error codes.

Error Code Description

GL_INVALID_ENUM GLenum argument out of range
GL_INVALID_VALUE Numeric argument out of range
GL_INVALID_OPERATION Operation illegal in current state
GL_STACK_OVERFLOW Command would cause a stack overflow
GL_STACK_UNDERFLOW Command would cause a stack underflow
GL_OUT_OF_MEMORY Not enough memory left to execute command

Table 14-1 OpenGL Error Codes

There are also thirty—seven GLU NURBS errors (with non—descriptive constant names,
GLU_NURBS_ERROR1, GLU_NURBS_ERRORZ2, and so on), fourteen tessellator errors
(GLU_TESS_MISSING_BEGIN_POLYGON, GLU_TESS_MISSING_END_POLYGON,
GLU_TESS_MISSING_BEGIN_CONTOUR, GLU_TESS_MISSING_END_CONTOUR,
GLU_TESS_COORD_TOO_LARGE, GLU_TESS_NEED_COMBINE_CALLBACK, and eight
generically named GLU_TESS ERROR?*), and GLU_INCOMPATIBLE_GL_VERSION. Also, the
GLU defines the error codes GLU_INVALID_ENUM, GLU_INVALID_VALUE, and
GLU_OUT_OF_MEMORY, which have the same meaning as the related OpenGL codes.

To obtain a printable, descriptive string corresponding to either a GL or GLU error code, use the GLU
routinegluErrorString().

const GLubyte* gluErrorString(GLenum errorCode);
Returns a pointer to a descriptive string that corresponds to the OpenGL or GLU error number
passed in errorCode.

In Example 141 simple error handling routine is shown.

Example 14-1 Querying and Printing an Error

GLenum errCode;
const GLubyte *errString;

if ((errCode = glGetError()) I= GL_NO_ERROR) {
errString = gluErrorString(errCode);
fprintf (stderr, "OpenGL Error: %s\n", errString);

}

Note: The string returned bgluErrorString() must not be altered or freed by the application.

Which Version Am | Using?

The portability of OpenGL applications is one of OpenGL's attractive features. However, new versions
of OpenGL introduce new features, which may introduce backward compatibility problems. In addition
you may want your application to perform equally well on a variety of implementations. For example,

you might make texture mapping the default rendering mode on one machine, but only have flat shadi

OpenGL Programming Guide — Chapter 14, Now That You Know - 3

on another. You can ugéGetString()to obtain release information about your OpenGL implementation.

const GLubyte* glGetString(GLenum name);
Returns a pointer to a string that describes an aspect of the OpenGL implementation. name can k
one of the following: GL_VENDOR, GL_RENDERER, GL_VERSION, or GL_EXTENSIONS.

GL_VENDOR returns the name of the company responsible for the OpenGL implementation.
GL_RENDERER returns an identifier of the renderer, which is usually the hardware platform. For mor
about GL_EXTENSIONS, see the next section, "Extensions to the Standard."

GL_VERSION returns a string that identifies the version number of this implementation of OpenGL.
The version string is laid out as follows:

<version number><space><vendor-specific information>
The version number is either of the form
major_number.minor_number

or

major_number.minor_number.release_number

where the numbers all have one or more digits. The vendor-specific information is optional. For exam
if this OpenGL implementation is from the fictitious XYZ Corporation, the string returned might be

1.1.4 XYZ-0S 3.2

which means that this implementation is XYZ's fourth release of an OpenGL library that conforms to tt
specification for OpenGL Version 1.1. It probably also means this is release 3.2 of XYZ's proprietary
operating system.

Another way to query the version number for OpenGL is to look for the symbolic constant (use the
preprocessor statement #ifdef) named GL_VERSION_1 1. The absence of the constant
GL_VERSION_1 1 means that you have OpenGL Version 1.0.

Note: If running from client to server, such as when performing indirect rendering with the OpenGL
extension to the X Window System, the client and server may be different versions. If your client versi
is ahead of your server, your client might request an operation that is not supported on your server.

Utility Library Version

gluGetString()is a query function for the Utility Library (GLU) and is similargi&etString()

const GLubyte* gluGetString(GLenum name);
Returns a pointer to a string that describes an aspect of the OpenGL implementation. name can kt
one of the following: GLU_VERSION, or GLU_EXTENSIONS.

Note thagluGetString()was not available in GLU 1.0. Another way to query the version number for
GLU is to look for the symbolic constant GLU_VERSION_1_1. The absence of the constant
GLU_VERSION_1 1 means that you have GLU 1.0.

OpenGL Programming Guide — Chapter 14, Now That You Know - 4

Extensions to the Standard

OpenGL has a formal written specification that describes what operations comprise the library. An
individual vendor or a group of vendors may decide to include additional functionality to their released
implementation.

New routine and symbolic constant names clearly indicate whether a feature is part of the OpenGL
standard or a vendor—specific extension. To make a vendor—specific name, the vendor appends a cot
identifier (in uppercase) and, if needed, additional information, such as a machine name. For example
XYZ Corporation wants to add a new routine and symbolic constant, they might be of the form
glCommandXYZ@nd GL_DEFINITION_XYZ. If XYZ Corporation wants to have an extension that is
available only on its FooBar graphics board, then the names migl€emandXYZfb@nd
GL_DEFINITION_XYZ FB.

If two of more vendors agree to implement the same extension, then the procedures and constants ar
suffixed with the more generic EXBICommandEXT@nd GL_DEFINITION_EXT).

If you want to know if a particular extension is supported on your implementation, use
glGetStrindGL_EXTENSIONS). This returns a list of all the extensions in the implementation,
separated by spaces. If you want to find out if a specific extension is supported, use the code in Exam
14-2o search through the list and match the extension name. Return GL_TRUE, if it is; GL_FALSE, if
itisn’t.

Example 14-2 Find Out If An Extension Is Supported

static GLboolean QueryExtension(char *extName)
{
char *p = (char *) glGetString(GL_EXTENSIONS);
char *end = p + strlen(p);
while (p < end) {
int n = strespn(p, " ");
if ((strlen(extName)==n) && (strncmp(extName,p,n)==0)) {
return GL_TRUE;

}

p+=(n+ 1)

}

return GL_FALSE;
}

Cheesy Translucency

You can use polygon stippling to simulate a translucent material. This is an especially good solution fc
systems that don’t have blending hardware. Since polygon stipple patterns are 32x32 bits, or 1024 bit
you can go from opaque to transparent in 1023 steps. (In practice, that's many more steps than you
need!) For example, if you want a surface that lets through 29 percent of the light, simply make up a
stipple pattern where 29 percent (roughly 297) of the pixels in the mask are zero and the rest are one.

OpenGL Programming Guide — Chapter 14, Now That You Know - 5

Even if your surfaces have the same translucency, don't use the same stipple pattern for each one, as
cover exactly the same bits on the screen. Make up a different pattern for each by randomly selecting
appropriate number of pixels to be zero. (See "Displaying Points, Lines, and Polygons" in Chapter 2 fc
more information about polygon stippling.)

If you don't like the effect with random pixels turned on, you can use regular patterns, but they don’t
work as well when transparent surfaces are stacked. This is often not a problem because most scene
have relatively few translucent regions that overlap. In a picture of an automobile with translucent
windows, your line of sight can go through at most two windows, and usually it's only one.

An Easy Fade Effect

Suppose you have an image that you want to fade gradually to some background color. Define a serie
polygon stipple patterns, each of which has more bits turned on so that they represent denser and del
patterns. Then use these patterns repeatedly with a polygon large enough to cover the region over wt
you want to fade. For example, suppose you want to fade to black in 16 steps. First define 16 differen
pattern arrays:

GLubyte stips[16][4*32];

Then load them in such a way that each has one-sixteenth of the pixelg 32 at§#hle pattern turned
on and that the bitwise OR of all the stipple patterns is all ones. After that, the following code does the
trick:

draw_the_picture();

glColor3f(0.0, 0.0, 0.0); /* set color to black */

for (i=0; i< 16; i++) {
glPolygonStipple(&stipsli][0]);
draw_a_polygon_large_enough_to_cover_the_whole_region();

}

In some OpenGL implementations, you might get better performance by first compiling the stipple
patterns into display lists. During your initialization, do something like this:

#define STIP_OFFSET 100

for i1=0;i<16;i++){
gINewList(i+STIP_OFFSET, GL_COMPILE);
glPolygonStipple(&stips[i][0]);
glEndList();

}

Then, replace this line in the first code fragment
glPolygonStipple(&stips[i][0]);

with

glCallList(i);

By compiling the command to set the stipple into a display list, OpenGL might be able to rearrange tht

OpenGL Programming Guide — Chapter 14, Now That You Know - 6

data in thestips[][] array into the hardware—specific form required for maximum stipple—setting speed

Another application for this technique is if you're drawing a changing picture and want to leave some
blur behind that gradually fades out to give some indication of past motion. For example, suppose yoL
simulating a planetary system and you want to leave trails on the planets to show a recent portion of t
path. Again, assuming you want to fade in sixteen steps, set up the stipple patterns as before (using tl
display-list version, say), and have the main simulation loop look something like this:

current_stipple = 0;
while (1) { /* loop forever */
draw_the next_frame();
glCallList(current_stipple++);
if (current_stipple == 16) current_stipple = 0;
glColor3f(0.0, 0.0, 0.0); /* set color to black */
draw_a_polygon_large_enough_to _cover_the_whole_region();

}

Each time through the loop, you clear one-sixteenth of the pixels. Any pixel that hasn’t had a planet o
for sixteen frames is certain to be cleared to black. Of course, if your system supports blending in
hardware, it's easier to blend in a certain amount of background color with each frame. (See "Displayi
Points, Lines, and Polygons" in Chapter 2 for polygon stippling details, Chapter 7 for more information
about display lists, and "Blending" in Chapter 6 for information about blending.)

Object Selection Using the Back Buffer

Although the OpenGL selection mechanism (see "Selection” in Chapter 13) is powerful and flexible, it
can be cumbersome to use. Often, the situation is simple: Your application draws a scene composed
substantial number of objects; the user points to an object with the mouse, and the application needs
find the item under the tip of the cursor.

One way to do this requires your application to be running in double-buffer mode. When the user pick
an object, the application redraws the entire scene in the back buffer, but instead of using the normal
colors for objects, it encodes some kind of object identifier for each object’s color. The application thel
simply reads back the pixel under the cursor, and the value of that pixel encodes the number of the
picked object. If many picks are expected for a single, static picture, you can read the entire color buff
once and look in your copy for each attempted pick, rather than read back each pixel individually.

Note that this scheme has an advantage over standard selection in that it picks the object that’s in frol
multiple objects appear at the same pixel, one behind the other. Since the image with false colors is
drawn in the back buffer, the user never sees it; you can redraw the back buffer (or copy it from the frc
buffer) before swapping the buffers. In color-index mode, the encoding isSiegyid the object

identifier as the index. In RGBA mode, encode the bits of the identifier into the R, G, and B componen

Be aware that you can run out of identifiers if there are too many objects in the scene. For example,
suppose you're running in color-index mode on a system that has 4-bit buffers for color-index
information (16 possible different indices) in each of the color buffers, but the scene has thousands of
pickable items. To address this issue, the picking can be done in a few passes. To think about this in

OpenGL Programming Guide — Chapter 14, Now That You Know - 7

concrete terms, assume there are fewer than 4096 items, so all the object identifiers can be encoded
bits. In the first pass, draw the scene using indices composed of the 4 high—order bits, then use the s¢
and third passes to draw the middle 4 bits and the 4 low-order bits. After each pass, read the pixel un
the cursor, extract the bits, and pack them together at the end to get the object identifier.

With this method, the picking takes three times as long, but that's often acceptable. Note that after you
have the high—order 4 bits, you eliminate 15/16 of all objects, so you really need to draw only 1/16 of
them for the second pass. Similarly, after the second pass, 255 of the 256 possible items have been
eliminated. The first pass thus takes about as long as drawing a single frame does, but the second an
third passes can be up to 16 and 256 times as fast.

If you're trying to write portable code that works on different systems, break up your object identifiers
into chunks that fit on the lowest common denominator of those systems. Also, keep in mind that your
system might perform automatic dithering in RGB mode. If this is the case, turn off dithering.

Cheap Image Transformation

If you want to draw a distorted version of a bitmapped image (perhaps simply stretched or rotated, or
perhaps drastically modified by some mathematical function), there are many possibilities. You can us
the image as a texture map, which allows you to scale, rotate, or otherwise distort the image. If you ju
want to scale the image, you can gteixelZoom()

In many cases, you can achieve good results by drawing the image of each pixel as a quadrilateral.
Although this scheme doesn’t produce images that are as nice as those you would get by applying a
sophisticated filtering algorithm (and it might not be sufficient for sophisticated users), it's a lot quicker

To make the problem more concrete, assume that the original immagexisls byn pixels, with
coordinates chosen from [B1-1] x [0, n—1]. Let the distortion functions &ém,n)andy(m,n) For
example, if the distortion is simply a zooming by a factor of 3.2, Xflenn)= 3.2*m andy(m,n)= 3.2*.
The following code draws the distorted image:

glShadeModel(GL_FLAT);
glScale(3.2, 3.2, 1.0);
for (j=0; j < n; j++) {
glBegin(GL_QUAD_STRIP);
for (i=0; i <= m; i++) {
glVertex2i(i,j);
glVertex2i(i, j+1);
set_color(i,));
}
glEnd();

}

This code draws each transformed pixel in a solid color equal to that pixel’s color and scales the imag
size by 3.2. The routinget_color()stands for whatever the appropriate OpenGL command is to set the
color of the image pixel.

OpenGL Programming Guide — Chapter 14, Now That You Know - 8

The following is a slightly more complex version that distorts the image using the fundtjpnsnd
y(i.j):
glShadeModel(GL_FLAT);
for (j=0; j < n; j++) {
glBegin(GL_QUAD_STRIP);
for (i=0; i <= m; i++) {
glVertex2i(x(i,)), y(i,));
glVertex2i(x(i,j+1), y(i,j+1));
set_color(i,));
}
glEnd();
}

An even better distorted image can be drawn with the following code:

glShadeModel(GL_SMOOTH);
for (j=0; j < (n-1); j++) {
glBegin(GL_QUAD_STRIP);
for (i=0; i <m; i++) {
set_color(i,j);
glVertex2i(x(i,)), y(i,));
set_color(i,j+1);
glVertex2i(x(i,j+1), y(i,j+1));
}
glEnd();

}

This code smoothly interpolates color across each quadrilateral. Note that this version produces one
fewer quadrilateral in each dimension than do the flat-shaded versions, because the color image is bt
used to specify colors at the quadrilateral vertices. In addition, you can antialias the polygons with the
appropriate blending function (GL_SRC_ALPHA, GL_ONE) to get an even nicer image.

Displaying Layers

In some applications such as semiconductor layout programs, you want to display multiple different
layers of materials and indicate where the materials overlap each other.

As a simple example, suppose you have three different substances that can be layered. At any point,
possible combinations of layers can occur, as shown in Table 14-2

Layer 1 Layer 2 Layer 3 Color
0 absent absent absent black
1 present absent absent red
2 absent present absent green
3 present present absent blue
4 absent absent present pink
5 present absent present yellow

OpenGL Programming Guide — Chapter 14, Now That You Know - 9

6 absent present present white
7 present present present gray

Table 14-2 Eight Combinations of Layers

You want your program to display eight different colors, depending on the layers present. One arbitrat
possibility is shown in the last column of the table. To use this method, use color-index mode and loa
your color map so that entry 0 is black, entry 1 is red, entry 2 is green, and so on. Note that if the
numbers from 0 through 7 are written in binary, the 4 bit is turned on whenever layer 3 appears, the 2
whenever layer 2 appears, and the 1 bit whenever layer 1 appears.

To clear the window, set the writemask to 7 (all three layers) and set the clearing color to 0. To draw
your image, set the color to 7, and then when you want to draw something in, lsgethe writemask to

n. In other types of applications, it might be necessary to selectively erase in a layer, in which case yo
would use the writemasks just discussed, but set the color to 0 instead of 7. (See "Masking Buffers" ir
Chapter 10 for more information about writemasks.)

Antialiased Characters

Using the standard technique for drawing charactersgigtmap() drawing each pixel of a character is
an all-or—nothing affairthe pixel is either turned on or not. If you're drawing black characters on a
white background, for example, the resulting pixels are either black or white, never a shade of gray.
Much smoother, higher—quality images can be achieved if intermediate colors are used when renderir
characters (grays, in this example).

Assuming that you're drawing black characters on a white background, imagine a highly magnified
picture of the pixels on the screen, with a high-resolution character outline superimposed on it, as shc
in the left side of Figure 14-1

Figure 14-1 Antialiased Characters

Notice that some of the pixels are completely enclosed by the character’s outline and should be painte

OpenGL Programming Guide — Chapter 14, Now That You Know — 10

black; some pixels are completely outside the outline and should be painted white; but many pixels
should ideally be painted some shade of gray, where the darkness of the gray corresponds to the amc
of black in the pixel. If this technique is used, the resulting image on the screen looks better.

If speed and memory usage are of no concern, each character can be drawn as a small image insteau
a bitmap. If you're using RGBA mode, however, this method might require up to 32 bits per pixel of th
character to be stored and drawn, instead of the 1 bit per pixel in a standard character. Alternatively, y
could use one 8-bit index per pixel and convert these indices to RGBA by table lookup during transfel
many cases, a compromise is possible that allows you to draw the character with a few gray levels
between black and white (say, two or three), and the resulting font description requires only 2 or 3 bits
per pixel of storage.

The numbers in the right side of Figure 14-1indicate the approximate percentage coverage of each p
0 means approximately empty, 1 means approximately one-third coverage, 2 means two-thirds, and
means completely covered. If pixels labeled 0 are painted white, pixels labeled 3 are painted black, ar
pixels labeled 1 and 2 are painted one-third and two-thirds black, respectively, the resulting characte
looks quite good. Only 2 bits are required to store the numbers 0, 1, 2, and 3, so for 2 bits per pixel, fc
levels of gray can be saved.

There are basically two methods to implement antialiased characters, depending on whether you're in
RGBA or color-index mode.

In RGBA mode, define three different character bitmaps, corresponding to where 1, 2, and 3 appear ir
Figure 14-1 Set the color to white, and clear for the background. Set the color to one-third gray (RGE
(0.666, 0.666, 0.666)), and draw all the pixels with a 1 in them. Then set RGB = (0.333, 0.333, 0.333),
draw with the 2 bitmap, and use RGB = (0.0, 0.0, 0.0) for the 3 bitmap. What you’re doing is defining
three different fonts and redrawing the string three times, where each pass fills in the bits of the
appropriate color densities.

In color-index mode, you can do exactly the same thing, but if you're willing to set up the color map
correctly and use writemasks, you can get away with only two bitmaps per character and two passes |
string. In the preceding example, set up one bitmap that has a 1 wherever 1 or 3 appears in the chara
Set up a second bitmap that has a 1 wherever a 2 or a 3 appears. Load the color map so that 0 gives
white, 1 gives light gray, 2 gives dark gray, and 3 gives black. Set the color to 3 (11 in binary) and the
writemask to 1, and draw the first bitmap. Then change the writemask to 2, and draw the second. Wh
0 appears in Figure 14-1, nothing is drawn in the framebuffer. Where 1, 2, and 3 appear, 1, 2, and 3
appear in the framebuffer.

For this example with only four gray levels, the savings is sitalb passes instead of three. If eight

gray levels were used instead, the RGBA method would require seven passes, and the color-map mz
technique would require only three. With sixteen gray levels, the comparison is fifteen passes to four
passes. (See "Masking Buffers" in Chapter 10 for more information about writemasks and "Bitmaps ai
Fonts" in Chapter 8 for more information about drawing bitmaps.)

Try This

Can you see how to do RGBA rendering using no more images than the optimized color-index ce

OpenGL Programming Guide — Chapter 14, Now That You Know — 11

Hint: How are RGB fragments normally merged into the color buffer when antialiasing is desired?

Drawing Round Points

Draw near-round, aliased points by enabling point antialiasing, turning blending off, and using an alpt
function that passes only fragments with alpha greater than 0.5. (See "Antialiasing" and "Blending" in
Chapter 6 for more information about these topics.)

Interpolating Images

Suppose you have a pair of images (whei@gecan mean a bitmap image, or a picture generated using
geometry in the usual way), and you want to smoothly blend from one to the other. This can be done
easily using the alpha component and appropriate blending operations. Let’s say you want to accomp
the blending in ten steps, where image A is shown in frame 0 and image B is shown in frame 9. The
obvious approach is to draw image A with alpha equal t¢/@and image B with an alpha i in

framei.

The problem with this method is that both images must be drawn in each frame. A faster approach is 1
draw image A in frame 0. To get frame 1, blend in 1/9 of image B and 8/9 of what'’s there. For frame 2
blend in 1/8 of image B with 7/8 of what's there. For frame 3, blend in 1/7 of image B with 6/7 of what”
there, and so on. For the last step, you're just drawing 1/1 of image B blended with 0/1 of what'’s left,
yielding image B exactly.

To see that this works, if for franngrou have

and you blend in B/(9)-with (8+)/(9+) of what's there, you get

(See "Blending" in Chapter 6.)

Making Decals

Suppose you're drawing a complex three—dimensional picture using depth—buffering to eliminate the
hidden surfaces. Suppose further that one part of your picture is composed of coplanar figures A and
where B is a sort of decal that should always appear on top of figure A.

Your first approach might be to draw B after you've drawn A, setting the depth-buffering function to

OpenGL Programming Guide — Chapter 14, Now That You Know — 12

replace on greater or equal. Due to the finite precision of the floating—point representations of the
vertices, however, round-off error can cause polygon B to be sometimes a bit in front and sometimes
bit behind figure A. Here’s one solution to this problem.

1. Disable the depth buffer for writing, and render A.

2. Enable the depth buffer for writing, and render B.

3. Disable the color buffer for writing, and render A again.

4. Enable the color buffer for writing.

Note that during the entire process, the depth—buffer test is enabled. In step 1, A is rendered whereve
should be, but none of the depth—buffer values are changed; thus, in step 2, wherever B appears ovel
is guaranteed to be drawn. Step 3 simply makes sure that all of the depth values under A are updated

correctly, but since RGBA writes are disabled, the color pixels are unaffected. Finally, step 4 returns tl
system to the default state (writing is enabled both in the depth buffer and in the color buffer).

If a stencil buffer is available, the following simpler technique works.
1. Configure the stencil buffer to write one if the depth test passes, and zero otherwise. Render A.
2. Configure the stencil buffer to make no stencil value change, but to render only where stencil valt

are one. Disable the depth—buffer test and its update. Render B.

With this method, it's not necessary to initialize the contents of the stencil buffer at any time, because
stencil value of all pixels of interest (that is, those rendered by A) are set when A is rendered. Be sure
reenable the depth test and disable the stencil test before additional polygons are drawn. (See "Selec
Color Buffers for Writing and Reading,™Depth Test," and "Stencil Test" in Chapter 10.)

Drawing Filled, Concave Polygons Using the Stencil Buffer

Consider the concave polygon 1234567 shown in Figure 14-2 Imagine that it's drawn as a series of
triangles: 123, 134, 145, 156, 167, all of which are shown in the figure. The heavier line represents the
original polygon boundary. Drawing all these triangles divides the buffer into nine regions A, B, C, ..., |
where region | is outside all the triangles.

OpenGL Programming Guide — Chapter 14, Now That You Know — 13

Figure 14-2 Concave Polygon

In the text of the figure, each of the region names is followed by a list of the triangles that cover it.
Regions A, D, and F make up the original polygon; note that these three regions are covered by an oc
number of triangles. Every other region is covered by an even number of triangles (possibly zero). Thi
to render the inside of the concave polygon, you just need to render regions that are enclosed by an c
number of triangles. This can be done using the stencil buffer, with a two—pass algorithm.

First, clear the stencil buffer and disable writing into the color buffer. Next, draw each of the triangles i
turn, using the GL_INVERT function in the stencil buffer. (For best performance, use triangle fans.) Tt
flips the value between zero and a nonzero value every time a triangle is drawn that covers a pixel. Af
all the triangles are drawn, if a pixel is covered an even number of times, the value in the stencil buffe
is zero; otherwise, it's nonzero. Finally, draw a large polygon over the whole region (or redraw the
triangles), but allow drawing only where the stencil buffer is honzero.

Note: There’s a slight generalization of the preceding technique, where you don’t need to start with a
polygon vertex. In the 1234567 example, let P be any point on or off the polygon. Draw the triangles:

P12, P23, P34, P45, P56, P67, and P71. Regions covered by an odd number of triangles are inside; ¢
regions are outside. This is a generalization in that if P happens to be one of the polygon’s edges, one

the triangles is empty.

This technique can be used to fill both nonsimple polygons (polygons whose edges cross each other)
polygons with holes. The following example illustrates how to handle a complicated polygon with two

regions, one four—sided and one five—sided. Assume further that there’s a triangular and a four-sided
(it doesn’t matter in which regions the holes lie). Let the two regions be abcd and efghi, and the holes
and mnop. Let z be any point on the plane. Draw the following triangles:

zab zbc zcd zda zef zfg zgh zhi zie zjk zkl zlj zmn zno zop zpm

OpenGL Programming Guide — Chapter 14, Now That You Know — 14

Mark regions covered by an odd number of triangldn,zand those covered by an even numbeuas
(See "Stencil Test" in Chapter 10 for more information about the stencil buffer.)

Finding Interference Regions

If you're designing a mechanical part made from smaller three—dimensional pieces, you often want to
display regions where the pieces overlap. In many cases, such regions indicate design errors where [
of a machine interfere with each other. In the case of moving parts, it can be even more valuable, sinc
search for interfering regions can be done through a complete mechanical cycle of the design. The
method for doing this is complicated, and the description here might be too brief. Complete details car
be found in the papénteractive Inspection of Solids: Cross—sections and Interferebgesrek

Rossignac, Abe Megahed, and Bengt-Olaf Schneider (SIGGRAPH 1992 Proceedings).

The method is related to the capping algorithm described in "Stencil Test" in Chapter 10. The ideais t
pass an arbitrary clipping plane through the objects that you want to test for interference, and then
determine when a portion of the clipping plane is inside more than one object at a time. For a static
image, the clipping plane can be moved manually to highlight interfering regions; for a dynamic image
might be easier to use a grid of clipping planes to search for all possible interferences.

Draw each of the objects you want to check and clip them against the clipping plane. Note which pixel
are inside the object at that clipping plane using an odd—even count in the stencil buffer, as explained
the preceding section. (For properly formed objects, a point is inside the object if a ray drawn from tha
point to the eye intersects an odd number of surfaces of the object.) To find interferences, you need tc
find pixels in the framebuffer where the clipping plane is in the interior of two or more regions at once;
in other words, in the intersection of the interiors of any pair of objects.

If multiple objects need to be tested for mutual intersection, store 1 bit every time some intersection
appears, and another bit wherever the clipping buffer is inside any of the objects (the union of the
objects’ interiors). For each new object, determine its interior, find the intersection of that interior with
the union of the interiors of the objects so far tested, and keep track of the intersection points. Then a
the interior points of the new object to the union of the other objects’ interiors.

You can perform the operations described in the preceding paragraph by using different bits in the ste
buffer together with various masking operations. Three bits of stencil buffer are required pi¢opixel

for the toggling to determine the interior of each object, one for the union of all interiors discovered so
far, and one for the regions where interference has occurred so far. To make this discussion more
concrete, assume the 1 bit of the stencil buffer is for toggling interior/exterior, the 2 bit is the running
union, and the 4 bit is for interferences so far. For each object that you're going to render, clear the 1|
(using a stencil mask of one and clearing to zero), then toggle the 1 bit by keeping the stencil mask as
one and using the GL_INVERT stencil operation.

You can find intersections and unions of the bits in the stencil buffers using the stenciling operations. |
example, to make bits in buffer 2 be the union of the bits in buffers 1 and 2, mask the stencil to those :
bits, and draw something over the entire object with the stencil function set to pass if anything nonzer:
occurs. This happens if the bits in buffer 1, buffer 2, or both are turned on. If the comparison succeed:
write a 1 in buffer 2. Also, make sure that drawing in the color buffer is disabled. An intersection

OpenGL Programming Guide — Chapter 14, Now That You Know — 15

calculation is simildd set the function to pass only if the value in the two buffers is equal to 3 (bits
turned on in both buffers 1 and 2). Write the result into the correct buffer. (See "Stencil Test" in Chapt
10.)

Shadows

Every possible projection of three—dimensional space to three—dimensional space can be achieved w
suitable &4 invertible matrix and homogeneous coordinates. If the matrix isn’t invertible but has rank &
it projects three—dimensional space onto a two—dimensional plane. Every such possible projection cai
achieved with a suitable rank-844matrix. To find the shadow of an arbitrary object on an arbitrary
plane from an arbitrary light source (possibly at infinity), you need to find a matrix representing that
projection, multiply it on the matrix stack, and draw the object in the shadow color. Keep in mind that
you need to project onto each plane that you're calling the "ground."

As a simple illustration, assume the light is at the origin, and the equation of the ground plane is
axtby+c+d=0. Given a vertex Ssk,sy,sd), the line from the light through S includes all pom&
wherea is an arbitrary real number. The point where this line intersects the plane occurs when

a(a*szb*sy+c*s2) +d =0,

o)

o = -d/(a*sx+b*sy+c*s2).

Plugging this back into the line, we get
d(a¢,.0y,00)/(a* o€+ B* o+ X*al)

for the point of intersection.

The matrix that maps S to this point for every S is

This matrix can be used if you first translate the world so that the light is at the origin.

If the light is from an infinite source, all you have is a point S and a directiord®,dy(d2. Points along
the line are given by

S +aD
Proceeding as before, the intersection of this line with the plane is given by
a(sxtadx)+b(syady)+c(szeedz)+d = 0

Solving fora, plugging that back into the equation for a line, and then determining a projection matrix

OpenGL Programming Guide — Chapter 14, Now That You Know — 16

gives

This matrix works given the plane and an arbitrary direction vector. There’s no need to translate anyth
first. (See Chapter 3 and Appendix F.)

Hidden-Line Removal

If you want to draw a wireframe object with hidden lines removed, one approach is to draw the outline
using lines and then fill the interiors of the polygons making up the surface with polygons having the
background color. With depth—-buffering enabled, this interior fill covers any outlines that would be
obscured by faces closer to the eye. This method would work, except that there’s no guarantee that tt
interior of the object falls entirely inside the polygon’s outline; in fact, it might overlap it in various
places.

There’s an easy, two—pass solution using either polygon offset or the stencil buffer. Polygon offset is
usually the preferred technique, since polygon offset is almost always faster than stencil buffer. Both
methods are described here, so you can see how both approaches to the problem work.

Hidden-Line Removal with Polygon Offset

To use polygon offset to accomplish hidden-line removal, the object is drawn twice. The highlighted
edges are drawn in the foreground color, using filled polygons but with the polygon mode GL_LINE to
rasterize it as a wireframe. Then the filled polygons are drawn with the default polygon mode, which fi
the interior of the wireframe, and with enough polygon offset to nudge the filled polygons a little farthe
from the eye. With the polygon offset, the interior recedes just enough that the highlighted edges are
drawn without unpleasant visual artifacts.

glEnable(GL_DEPTH_TEST);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
set_color(foreground);
draw_object_with_filled_polygons();

glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glEnable(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(1.0, 1.0);

set_color(background);
draw_object_with_filled_polygons();
glDisable(GL_POLYGON_OFFSET_FILL);

OpenGL Programming Guide — Chapter 14, Now That You Know — 17

You may need to adjust the amount of offset needed (for wider lines, for example). (See "Polygon
Offset" in Chapter 6 for more information.)

Hidden—-Line Removal with the Stencil Buffer

Using the stencil buffer for hidden-line removal is a more complicated procedure. For each polygon,
you'll need to clear the stencil buffer, and then draw the outline both in the framebuffer and in the sten
buffer. Then when you fill the interior, enable drawing only where the stencil buffer is still clear. To
avoid doing an entire stencil-buffer clear for each polygon, an easy way to clear it is simply to draw 0’
into the buffer using the same polygon outline. In this way, you need to clear the entire stencil buffer
only once.

For example, the following code represents the inner loop you might use to perform such hidden-line
removal. Each polygon is outlined in the foreground color, filled with the background color, and then
outlined again in the foreground color. The stencil buffer is used to keep the fill color of each polygon
from overwriting its outline. To optimize performance, the stencil and color parameters are changed ol
twice per loop by using the same values both times the polygon outline is drawn.

glEnable(GL_STENCIL_TEST);
glEnable(GL_DEPTH_TEST);
glClear(GL_STENCIL_BUFFER_BIT);
glStencilFunc(GL_ALWAYS, 0, 1);
glStencilOp(GL_INVERT, GL_INVERT, GL_INVERT);
set_color(foreground);
for (i=0; i < max; i++) {
outline_polygon(i);
set_color(background);
glStencilFunc(GL_EQUAL, 0, 1);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
fill_polygon(i);
set_color(foreground);
glStencilFunc(GL_ALWAYS, 0, 1);
gIStencilOp(GL_INVERT, GL_INVERT, GL_INVERT);
outline_polygon(i);

}
(See "Stencil Test" in Chapter 10.)

Texture—Mapping Applications

Texture mapping is quite powerful, and it can be used in some interesting ways. Here are a few advar
applications of texture mapping.

Antialiased texi] Define a texture map for each character at a relatively high resolution, and then
map them onto smaller areas using the filtering provided by texturing. This also makes text appec
correctly on surfaces that aren’t aligned with the screen, but are tilted and have some perspective

OpenGL Programming Guide — Chapter 14, Now That You Know — 18

distortion.

Antialiased line8 These can be done like antialiased text: Make the line in the texture several
pixels wide, and use the texture filtering to antialias the lines.

Image scaling and rotatidhlf you put an image into a texture map and use that texture to map ontc
a polygon, rotating and scaling the polygon effectively rotates and scales the image.

Image warpin@ As in the preceding example, store the image as a texture map, but map it to som
spline—defined surface (use evaluators). As you warp the surface, the image follows the warping.

Projecting imagéds Put the image in a texture map, and project it as a spotlight, creating a slide
projector effect. (See "The q Coordinate" in Chapter 9 for more information about how to model a
spotlight using textures.)

(See Chapter 3 for information about rotating and scaling, Chapter 9 for more information about creati
textures, and Chapter 12 for details on evaluators.)

Drawing Depth—Buffered Images

For complex static backgrounds, the rendering time for the geometric description of the background c:
be greater than the time it takes to draw a pixel image of the rendered background. If there’s a fixed

background and a relatively simple changing foreground, you may want to draw the background and i
associated depth—buffered version as an image rather than render it geometrically. The foreground m
also consist of items that are time—consuming to render, but whose framebuffer images and depth bui
are available. You can render these items into a depth—buffered environment using a two—pass algori

For example, if you're drawing a model of a molecule made of spheres, you might have an image of a
beautifully rendered sphere and its associated depth—buffer values that were calculated using Phong
shading or ray—tracing or by using some other scheme that isn't directly available through OpenGL. T:
draw a complex model, you might be required to draw hundreds of such spheres, which should be
depth-buffered together.

To add a depth—buffered image to the scene, first draw the image’s depth—buffer values into the deptt
buffer usingglDrawPixels() Then enable depth—buffering, set the writemask to zero so that no drawing
occurs, and enable stenciling such that the stencil buffers get drawn whenever a write to the depth bu
occurs.

Then draw the image into the color buffer, masked by the stencil buffer you've just written so that
writing occurs only when there’s a 1 in the stencil buffer. During this write, set the stenciling function tc
zero out the stencil buffer so that it's automatically cleared when it's time to add the next image to the
scene. If the objects are to be moved nearer to or farther from the viewer, you need to use an
orthographic projection; in these cases, you use GL_DEPTH_BIASIMibkelTransfer*()to move the
depth image. (See "Coordinate System Survival Kit" in Chapter 2, "Depth Test" and "Stencil Test" in
Chapter 10, and Chapter 8 for detailsgtbrawPixels()andglPixelTransfer*())

Dirichlet Domains

OpenGL Programming Guide — Chapter 14, Now That You Know — 19

Given a set S of points on a plane, the Dirichlet domain or Voronoi polygon of one of the points is the
of all points in the plane closer to that point than to any other point in the set S. These points provide t
solution to many problems in computational geometry. Figure 14-3shows outlines of the Dirichlet
domains for a set of points.

Figure 14-3 Dirichlet Domains

If you draw a depth-buffered cone with its apex at the point in a different color than each of the points
S, the Dirichlet domain for each point is drawn in that color. The easiest way to do this is to precompu
a cone’s depth in an image and use the image as the depth-buffer values as described in the precedi
section. You don’t need an image to draw in the framebuffer as in the case of shaded spheres, howev
While you're drawing into the depth buffer, use the stencil buffer to record the pixels where drawing
should occur by first clearing it and then writing nonzero values wherever the depth test succeeds. To
draw the Dirichlet region, draw a polygon over the entire window, but enable drawing only where the
stencil buffers are nonzero.

You can do this perhaps more easily by rendering cones of uniform color with a simple depth buffer, b
a good cone might require thousands of polygons. The technique described in this section can render
much higher—quality cones much more quickly. (8edidden—-Surface Removal Survival Kit" in

Chapter 5 and "Depth Test" in Chapter 10.)

Life in the Stencil Buffer

OpenGL Programming Guide — Chapter 14, Now That You Know — 20

The Game of Life, invented by John Conway, is played on a rectangular grid where each grid location
"alive" or "dead." To calculate the next generation from the current one, count the number of live
neighbors for each grid location (the eight adjacent grid locations are neighbors). A grid location is ali
in generatiom+1 if it was alive in generationand has exactly two or three live neighbors, or if it was
dead in generatiomand has exactly three live neighbors. In all other cases, it is dead in genefadtion
This game generates some incredibly interesting patterns given different initial configurations. (See
Martin Gardner, "Mathematical GameS§¢ientific Americanvol. 223, no. 4, October 1970, p. 120-123.)
Figure 14-4shows six generations from a game.

Figure 14-4 Six Generations from the Game of Life

One way to create this game using OpenGL is to use a multipass algorithm. Keep the data in the colo
buffer, one pixel for each grid point. Assume that black (all zeros) is the background color, and the col
of a live pixel is nonzero. Initialize by clearing the depth and stencil buffers to zero, set the depth-buff
writemask to zero, and set the depth comparison function so that it passes on not-equal. To iterate, re
the image off the screen, enable drawing into the depth buffer, and set the stencil function so that it
increments whenever a depth comparison succeeds but leaves the stencil buffer unchanged otherwis
Disable drawing into the color buffer.

Next, draw the image eight times, offset one pixel in each vertical, horizontal, and diagonal direction.
When you're done, the stencil buffer contains a count of the number of live neighbors for each pixel.
Enable drawing to the color buffer, set the color to the color for live cells, and set the stencil function t
draw only if the value in the stencil buffer is 3 (three live neighbors). In addition, if this drawing occurs,
decrement the value in the stencil buffer. Then draw a rectangle covering the image; this paints each
that has exactly three live neighbors with the "alive" color.

At this point, the stencil buffers contain 0, 1, 2, 4, 5, 6, 7, 8, and the values under the 2's are correct. 1

OpenGL Programming Guide — Chapter 14, Now That You Know — 21

values under 0, 1, 4, 5, 6, 7, and 8 must be cleared to the "dead" color. Set the stencil function to drav
whenever the value is not 2, and to zero the stencil values in all cases. Then draw a large polygon of 1
"dead" color across the entire image. You're done.

For a usable demonstration program, you might want to zoom the grid up to a size larger than a single
pixel; it's hard to see detailed patterns with a single pixel per grid point. (See "Coordinate System
Survival Kit" in Chapter 2, and "Depth Test" and "Stencil Test" in Chapter 10.)

Alternative Uses for glDrawPixels() and glCopyPixels()

You might think ofglDrawPixels()as a way to draw a rectangular region of pixels to the screen.
Although this is often what it's used for, some other interesting uses are outlined here.

Vided Even if your machine doesn’t have special video hardware, you can display short movie
clips by repeatedly drawing frames wiflbrawPixels()in the same region of the back buffer and
then swapping the buffers. The size of the frames you can display with reasonable performance
using this method depends on your hardware’s drawing speed, so you might be limitedl@®100
pixel movies (or smaller) if you want smooth fake video.

Airbrush(] In a paint program, your airbrush (or paintbrush) shape can be simulated using alpha
values. The color of the paint is represented as the color values. To paint with a circular brush in
blue, repeatedly draw a blue square gitbrawPixels()where the alpha values are largest in the
center and taper to zero at the edges of a circle centered in the square. Draw using a blending
function that uses alpha of the incoming color and (1-alpha) of the color already at the pixel. If the
alpha values in the brush are all much less than one, you have to paint over an area repeatedly tc
a solid color. If the alpha values are near one, each brush stroke pretty much obliterates the color
underneath.

Filtered Zoom# If you zoom a pixel image by a nonintegral amount, OpenGL effectively uses a
box filter, which can lead to rather severe aliasing effects. To improve the filtering, jitter the
resulting image by amounts less than a pixel and redraw it multiple times, using alpha blending to
average the resulting pixels. The result is a filtered zoom.

Transposing ImagésYou can swap same-size images in placegl@bpyPixels(using the XOR
operation. With this method, you can avoid having to read the images back into processor memot
If A and B represent the two images, the operation looks like this:

1. A=AXORB
2. B=AXORB

3. A=AXORB

OpenGL Programming Guide — Appendix A, Order of Operations — 22

Appendix A
Order of Operations

This book describes all the operations performed between when vertices are initially specified and
fragments are finally written into the framebuffer. The chapters of this book are arranged in an order tt
facilitates learning rather than in the exact order in which these operations are actually performed.
Sometimes the exact order of operations doesn’t mbfterexample, surfaces can be converted to
polygons and then transformed, or transformed first and then converted to polygons, with identical
result§] and different implementations of OpenGL might do things differently.

This appendix describes a possible order; any implementation is required to give equivalent results. If
you want more details than are presented here, s&gpimeGL Reference Manual

This appendix has the following major sections:
"Overview"
"Geometric Operations"
"Pixel Operations"
"Fragment Operations"

"Odds and Ends"

Overview

This section gives an overview of the order of operations, as shown in Figure A-1 Geometric data
(vertices, lines, and polygons) follows the path through the row of boxes that include evaluators and
per—-vertex operations, while pixel data (pixels, images, and bitmaps) is treated differently for part of tt
process. Both types of data undergo the rasterization and per—fragment operations before the final pi»
data is written into the framebuffer.

Figure A-1 Order of Operations

All data, whether it describes geometry or pixels, can be saved in a display list or processed immediai

OpenGL Programming Guide — Appendix A, Order of Operations — 1

When a display list is executed, the data is sent from the display list just as if it were sent by the
application.

All geometric primitives are eventually described by vertices. If evaluators are used, that data is
converted to vertices and treated as vertices from then on. Vertex data may also be stored in and use
from specialized vertex arrays. Per—vertex calculations are performed on each vertex, followed by
rasterization to fragments. For pixel data, pixel operations are performed, and the results are either st
in the texture memory, used for polygon stippling, or rasterized to fragments.

Finally, the fragments are subjected to a series of per—fragment operations, after which the final pixel
values are drawn into the framebuffer.

Geometric Operations

Geometric data, whether it comes from a display list, an evaluator, the vertices of a rectangle, or as re
data, consists of a set of vertices and the type of primitive it describes (a vertex, line, or polygon). Ver
data includes not only the,(y, z, Wwcoordinates, but also a normal vector, texture coordinates, a RGBA
color, a color index, material properties, and edge—flag data. All these elements except the vertex’'s
coordinates can be specified in any order, and default values exist as well. As soon as the vertex
commandylVertex*()is issued, the components are padded, if necessary, to four dimensiong é6ing
andw = 1), and the current values of all the elements are associated with the vertex. The complete se
vertex data is then processed. (If vertex arrays are used, vertex data may be batch processed and
processed vertices may be reused.)

Per—Vertex Operations

In the per—vertex operations stage of processing, each vertex’s spatial coordinates are transformed b
modelview matrix, while the normal vector is transformed by that matrix’s inverse transpose and
renormalized if specified. If automatic texture generation is enabled, new texture coordinates are
generated from the transformed vertex coordinates, and they replace the vertex’s old texture coordina
The texture coordinates are then transformed by the current texture matrix and passed on to the primi
assembly step.

Meanwhile, the lighting calculations, if enabled, are performed using the transformed vertex and norm
vector coordinates, and the current material, lights, and lighting model. These calculations generate n
colors or indices that are clamped or masked to the appropriate range and passed on to the primitive
assembly step.

Primitive Assembly

Primitive assembly differs, depending on whether the primitive is a point, a line, or a polygon. If flat

shading is enabled, the colors or indices of all the vertices in a line or polygon are set to the same val
If special clipping planes are defined and enabled, they're used to clip primitives of all three types. (Tt
clipping—plane equations are transformed by the inverse transpose of the modelview matrix when the
specified.) Point clipping simply passes or rejects vertices; line or polygon clipping can add additional
vertices depending on how the line or polygon is clipped. After this clipping, the spatial coordinates of

OpenGL Programming Guide — Appendix A, Order of Operations — 2

each vertex are transformed by the projection matrix, and the results are clipped against the standard
viewing planex = +w, y =+w, andz=+w

If selection is enabled, any primitive not eliminated by clipping generates a selection—hit report, and ni
further processing is performed. Without selection, perspective divisiandzgurs and the viewport

and depth-range operations are applied. Also, if the primitive is a polygon, it's then subjected to a cull
test (if culling is enabled). A polygon might convert to vertices or lines, depending on the polygon mod

Finally, points, lines, and polygons are rasterized to fragments, taking into account polygon or line
stipples, line width, and point size. Rasterization involves determining which squares of an integer gric
window coordinates are occupied by the primitive. If antialiasing is enabled, coverage (the portion of tl
square that is occupied by the primitive) is also computed. Color and depth values are also assigned 1
each such square. If polygon offset is enabled, depth values are slightly modified by a calculated offse
value.

Pixel Operations

Pixels from host memory are first unpacked into the proper number of components. The OpenGL
unpacking facility handles a number of different formats. Next, the data is scaled, biased, and process
using a pixel map. The results are clamped to an appropriate range depending on the data type and tl
either written in the texture memory for use in texture mapping or rasterized to fragments.

If pixel data is read from the framebuffer, pixel-transfer operations (scale, bias, mapping, and clampir
are performed. The results are packed into an appropriate format and then returned to processor men

The pixel copy operation is similar to a combination of the unpacking and transfer operations, except 1
packing and unpacking is unnecessary, and only a single pass is made through the transfer operation
before the data is written back into the framebuffer.

Texture Memory

OpenGL Version 1.1 provides additional control over texture memory. Texture image data can be
specified from framebuffer memory, as well as processor memory. All or a portion of a texture image
may be replaced. Texture data may be stored in texture objects, which can be loaded into texture
memory. If there are too many texture objects to fit into texture memory at the same time, the textures
that have the highest priorities remain in the texture memory.

Fragment Operations

If texturing is enabled, a texel is generated from texture memory for each fragment and applied to the
fragment. Then fog calculations are performed, if they're enabled, followed by the application of
coverage (antialiasing) values, if antialiasing is enabled.

Next comes scissoring, followed by the alpha test (in RGBA mode only), the stencil test, and the
depth-buffer test. If in RGBA mode, blending is performed. Blending is followed by dithering and
logical operation. All these operations may be disabled.

The fragment is then masked by a color mask or an index mask, depending on the mode, and drawn i

OpenGL Programming Guide — Appendix A, Order of Operations — 3

the appropriate buffer. If fragments are being written into the stencil or depth buffer, masking occurs
after the stencil and depth tests, and the results are drawn into the framebuffer without performing the
blending, dithering, or logical operation.

Odds and Ends

Matrix operations deal with the current matrix stack, which can be the modelview, the projection, or th
texture matrix stack. The commargiMultMatrix*() , glLoadMatrix*(), andglLoadldentity()are applied

to the top matrix on the stack, wh@élranslate*() glRotate*(), glScale*() glOrtho(), andglFrustum()

are used to create a matrix that's multiplied by the top matrix. When the modelview matrix is modified,
its inverse transpose is also generated for normal vector transformation.

The commands that set the current raster position are treated exactly like a vertex command up until
when rasterization would occur. At this point, the value is saved and is used in the rasterization of pixe
data.

The variougIClear() commands bypass all operations except scissoring, dithering, and writemasking.

OpenGL Programming Guide — Appendix B, State Variables — 4

Appendix B
State Variables

This appendix lists the queryable OpenGL state variables, their default values, and the commands for
obtaining the values of these variables. OpenGL Reference Manuabntains detailed information on
all the commands and constants discussed in this appendix. This appendix has these major sections:

"The Query Commands"

"OpenGL State Variables"

The Query Commands

In addition to the basic commands to obtain the values of simple state variables (commands such as
glGetintegerv(andglisEnabled() which are described in "Basic State Management" in Chapter 2), ther
are other specialized commands to return more complex state variables. The prototypes for these
specialized commands are listed here. Some of these routines, gl@kt&sror() andglGetString()

have been discussed in more detail elsewhere in the book.

To find out when you need to use these commands and their corresponding symbolic constants, use 1
tables in the next section, "OpenGL State Variables." Also s€egbrGL Reference Manual

void glGetClipPlan¢GLenumplane, GLdouble *quation);
GLenumglGetError(void);

void glGetLigh{{if} v(GLenumlight, GLenumpnameTYPE*paramg;
void glGetMagifd} (GLenumtarget, GLenumquery, TYPE*V);

void glGetMaterialif} v(GLenumface GLenumpnameTYPE*paramy;
void glGetPixelMagf ui us} (GLenummap TYPE*values;

void glGetPolygonStipplg Lubyte *mask;

const GLubyte glGetStrindGLenumnams;

void glGetTexEnfif} v(GLenumtarget GLenumpname TYPE*paramy;
void glGetTexGefifd} v(GLenumcoord GLenumpnameTYPE*paramg;

void glGetTexlmagésLenumtarget, GLint leve| GLenumformat
GLenumtype GLvoid *pixels);

void glGetTexLevelParametgt v(GLenumtarget, GLintlevel
GLenumpname TYPE* paramg;

void glGetTexParamet¢gif} v(GLenumtarget GLenumpname
TYPE*paramg;

void gluGetNurbsPropertyGLUnurbsObj hobj, GLenumproperty
GLfloat *value);

const GLubyte gluGetStringGLenumnams;

OpenGL Programming Guide — Appendix B, State Variables — 1

void gluGetTessProper{LUtesselator tess GLenumwhich,
GLdouble data);

OpenGL State Variables

The following pages contain tables that list the names of queryable state variables. For each variable,
tables list a description of it, its attribute group, its initial or minimum value, and the suggj€s&y)
command to use for obtaining it. State variables that can be obtainedji@&atBooleanv()
glGetintegerv()glGetFloatv() or glGetDoublev(jare listed with just one of these commadndikse one

that’'s most appropriate given the type of data to be returned. (Some vertex array variables can be que
only with glGetPointerv()) These state variables can't be obtained ugilsiEnabled() However, state
variables for whichglisEnabled()is listed as the query command can also be obtained using
glGetBooleanv()glGetintegerv()glGetFloatv() andglGetDoublev() State variables for which any

other command is listed as the query command can be obtained only by using that command.

If one or more attribute groups are listed, the state variable belongs to the listed group or groups. If nc
attribute group is listed, the variable doesn’t belong to any gghapshAttrib() glPushClientAttrib()
glPopAttrib(), andglPopClientAttrib()may be used to save and restore all state values that belong to an
attribute group. (See "Attribute Groups" in Chapter 2 for more information.)

All queryable state variables, except the implementation—dependent ones, have initial values. If no ini
value is listed, you need to consult either the section where that variable is discuss€pentbe
Reference Manudb determine its initial value.

Current Values and Associated Data

State Variable Description Attribute Initial Value Get Command
Group
GL_CURRENT_COLOR Current color current 1,1,1,1 glGetintegerv(),
glGetFloatv()
GL_CURRENT_INDEX Current color index current 1 glGetintegerv(),
glGetFloatv()
GL_CURRENT_TEXTURE_COORDS Current texture coordinates current 0,0,0,1 glGetFloatv()
GL_CURRENT_NORMAL Current normal current 0,0,1 glGetFloatv()
GL_CURRENT_RASTER_POSITION Current raster position current 0,0,0,1 glGetFloatv()
GL_CURRENT_RASTER_DISTANCE Current raster distance current 0 glGetFloatv()
GL_CURRENT_RASTER_COLOR Color associated with raster current 1,1,1,1 glGetintegerv(),
position glGetFloatv()
GL_CURRENT_RASTER_INDEX Color index associated with rasteurrent 1 glGetintegerv(),
position glGetFloatv()
GL_CURRENT_RASTER_TEXTURE_COORDS Texture coordinates associatecturrent 0,0,0,1 glGetFloatv()
with raster position
GL_CURRENT_RASTER_POSITION_VALID Raster position valid bit current GL_TRUE glGetBooleanv()
GL_EDGE_FLAG Edge flag current GL_TRUE glGetBooleanv()

Table B—1 State Variables for Current Values and Associated Data

Vertex Array

OpenGL Programming Guide — Appendix B, State Variables — 2

State Variable Description Attribute Initial Value Get Command

Group
GL_VERTEX_ARRAY Vertex array enable vertex-array GL_FALSE gllsEnabled()
GL_VERTEX_ARRAY_SIZE Coordinates per vertex vertex—array 4 glGetintegerv()
GL_VERTEX_ARRAY_TYPE Type of vertex coordinates vertex—array GL_FLOAT glGetintegerv()

GL_VERTEX_ARRAY_STRIDE Stride between vertices vertex—array 0 glGetintegerv()
GL_VERTEX_ARRAY_POINTER Pointer to the vertex array vertex—array NULL glGetPointerv()
GL_NORMAL_ARRAY Normal array enable vertex—array GL_FALSE glisEnabled()
GL_NORMAL_ARRAY_TYPE Type of normal coordinates vertex—array GL_FLOAT glGetintegerv()
GL_NORMAL_ARRAY_STRIDE Stride between normals vertex—array 0 glGetintegerv()
GL_NORMAL_ARRAY_POINTER Pointer to the normal array vertex—array NULL glGetPointerv()
GL_COLOR_ARRAY RGBA color array enable vertex—array GL_FALSE glisEnabled()
GL_COLOR_ARRAY_SIZE Colors per vertex vertex—array 4 glGetintegerv()
GL_COLOR_ARRAY_TYPE Type of color components vertex—array GL_FLOAT glGetintegerv()
GL_COLOR_ARRAY_STRIDE Stride between colors vertex—array 0 glGetintegerv()
GL_COLOR_ARRAY_POINTER Pointer to the color array vertex—array NULL glGetPointerv()
GL_INDEX_ARRAY Color-index array enable vertex—array GL_FALSE glisEnabled()
GL_INDEX_ARRAY_TYPE Type of color indices vertex—array GL_FLOAT glGetintegerv()
GL_INDEX_ARRAY_STRIDE Stride between color indices vertex—array 0 glGetintegerv()
GL_INDEX_ARRAY_POINTER Pointer to the index array vertex—array NULL glGetPointerv()
GL_TEXTURE_COORD_ARRAY Texture coordinate array enable vertex—array GL_FALSE glisEnabled()
GL_TEXTURE_COORD_ARRAY_SIZE Texture coordinates per element vertex—array 4 glGetintegerv()
GL_TEXTURE_COORD_ARRAY_TYPE Type of texture coordinates vertex—array GL_FLOAT glGetintegerv()
GL_TEXTURE_COORD_ARRAY_STRIDE Stride between texture vertex—array 0 glGetintegerv()
coordinates
GL_TEXTURE_COORD_ARRAY_POINTE Pointer to the texture coordinateertex—array NULL glGetPointerv()
R array
GL_EDGE_FLAG_ARRAY Edge flag array enable vertex—array GL_FALSE glisEnabled()
GL_EDGE_FLAG_ARRAY_STRIDE Stride between edge flags vertex—array 0 glGetintegerv()
GL_EDGE_FLAG_ARRAY_POINTER Pointer to the edge flag array vertex—array NULL glGetPointerv()
Table B-2 (continued) Vertex Array State Variables
Transformation
State Variable Description Attribute Initial Value Get Command
Group
GL_MODELVIEW_MATRIX Modelview matrix stack 0 Identity glGetFloatv()
GL_PROJECTION_MATRIX Projection matrix stack O Identity glGetFloatv()
GL_TEXTURE_MATRIX Texture matrix stack O Identity glGetFloatv()
GL_VIEWPORT Viewport origin and extent viewport [glGetintegerv()
GL_DEPTH_RANGE Depth range near and far viewport 0,1 glGetFloatv()
GL_MODELVIEW_STACK_DEPTH Modelview matrix stack pointer] glGetintegerv()
GL_PROJECTION_STACK_DEPTH Projection matrix stack pointer] glGetlintegerv()
GL_TEXTURE_STACK_ DEPTH Texture matrix stack pointer O 1 glGetintegerv()
GL_MATRIX_MODE Current matrix mode transform GL_MODELVIEW glGetintegerv()

GL_NORMALIZE

GL_CLIP_PLANE

Current normal normalization on/off

transform/ GL_FALSE

enable

User clipping plane coefficients

transform 0,0,0,0

OpenGL Programming Guide — Appendix B, State Variables — 3

glisEnabled()

glGetClipPlane()

GL_CLIP_PLANE

i th user clipping plane enabled

transform/ GL_FALSE

glisEnabled()

enable
Table B—-3 Transformation State Variables
Coloring
State Variable Description Attribute Initial Value Get Command
Group
GL_FOG_COLOR Fog color fog 0,0,0,0 glGetFloatv()
GL_FOG_INDEX Fog index fog 0 glGetFloatv()
GL_FOG_DENSITY Exponential fog density fog 1.0 glGetFloatv()
GL_FOG_START Linear fog start fog 0.0 glGetFloatv()
GL_FOG_END Linear fog end fog 1.0 glGetFloatv()
GL_FOG_MODE Fog mode fog GL_EXP glGetintegerv()
GL_FOG True if fog enabled fog/enable GL_FALSE glisEnabled()
GL_SHADE_MODEL glShadeModel() setting lighting GL_SMOOTH glGetintegerv()

Table B—4 Coloring State Variables

Lighting

See also Table 5-ahd Table 5-r initial values.

State Variable Description Attribute Initial Value Get Command
Group
GL_LIGHTING True if lighting is enabled lighting/e GL_FALSE glisEnabled()
nable
GL_COLOR_MATERIAL True if color tracking is enabled lighting GL_FALSE glisEnabled()
GL_COLOR_MATERIAL_PARAMETER Material properties tracking currenfghting GL_AMBIENT_ glGetintegerv()
color AND_DIFFU

SE
GL_COLOR_MATERIAL_FACE Face(s) affected by color tracking lighting GL_FRONT_ glGetintegerv()

AND_BACK
GL_AMBIENT Ambient material color lighting (0.2,0.2,0.2,1.0) glGetMaterialfv()
GL_DIFFUSE Diffuse material color lighting (0.8,0.8,0.8, 1.0) glGetMaterialfv()
GL_SPECULAR Specular material color lighting (0.0, 0.0, 0.0, 1.0) glGetMaterialfv()
GL_EMISSION Emissive material color lighting (0.0,0.0,0.0,1.0) glGetMaterialfv()
GL_SHININESS Specular exponent of material lighting 0.0 glGetMaterialfv()
GL_LIGHT_MODEL_AMBIENT Ambient scene color lighting (0.2,0.2,0.2,1.0) glGetFloatv()
GL_LIGHT_MODEL_LOCAL_VIEWER Viewer is local lighting GL_FALSE glGetBooleanv()
GL_LIGHT_MODEL_TWO_SIDE Use two-sided lighting lighting GL_FALSE glGetBooleanv()
GL_AMBIENT Ambient intensity of light lighting (0.0,0.0,0.0,1.0) glGetLightfv()
GL_DIFFUSE Diffuse intensity of light lighting O glGetLightfv()
GL_SPECULAR Specular intensity of light lighting O glGetLightfv()
GL_POSITION Position of light lighting (0.0, 0.0, 1.0, 0.0) glGetLightfv()
GL_CONSTANT_ATTENUATION Constant attenuation factor lighting 1.0 glGetLightfv()
GL_LINEAR_ATTENUATION Linear attenuation factor lighting 0.0 glGetLightfv()
GL_QUADRATIC_ATTENUATION Quadratic attenuation factor lighting 0.0 glGetLightfv()
GL_SPOT_DIRECTION Spotlight direction of light lighting (0.0, 0.0, glGetLightfv()

-1.0)

OpenGL Programming Guide — Appendix B, State Variables — 4

GL_SPOT_EXPONENT
GL_SPOT_CUTOFF
GL_LIGHTI

Spotlight exponent of light
Spotlight angle of light
True if lighti enabled

GL_COLOR_INDEXES ca, cd, and cs for color-index

lighting

lighting 0.0 glGetLightfv()
lighting 180.0 glGetLightfv()
lighting/le GL_FALSE glisEnabled()
nable

lighting/le 0,1,1 glGetMaterialfv()
nable

Table B-5 (continued) Lighting State Variables

Rasterization

State Variable Description Attribute Group Initial Value Get Command
GL_POINT_SIZE Point size point 1.0 glGetFloatv()
GL_POINT_SMOOTH Point antialiasing on point/enable GL_FALSE glisEnabled()
GL_LINE_WIDTH Line width line 1.0 glGetFloatv()
GL_LINE_SMOOTH Line antialiasing on line/enable GL_FALSE glisEnabled()
GL_LINE_STIPPLE_PATTERN Line stipple line 1's glGetintegerv()
GL_LINE_STIPPLE_REPEAT Line stipple repeat line 1 glGetintegerv()
GL_LINE_STIPPLE Line stipple enable line/enable GL_FALSE (glisEnabled()
GL_CULL_FACE Polygon culling enabled polygon/enable GL_FALSE glisEnabled()
GL_CULL_FACE_MODE Cull front—/back-facing polygons polygon GL_BACK glGetintegerv()
GL_FRONT_FACE Polygon front-face CW/CCW polygon GL_CCW glGetintegerv()

GL_POLYGON_SMOOTH
GL_POLYGON_MODE

GL_POLYGON_OFFSET_FACTOR
GL_POLYGON_OFFSET BIAS
GL_POLYGON_OFFSET_POINT
GL_POLYGON_OFFSET_LINE

GL_POLYGON_OFFSET_FILL

GL_POLYGON_STIPPLE
g

indicator

Polygon antialiasing on polygon/enable GL_FALSE glisEnabled()

Polygon rasterization mode (front and polygon GL_FILL glGetintegerv()
back)
Polygon offset factor polygon 0 glGetFloatv()
Polygon offset bias polygon 0 glGetFloatv()

Polygon offset enable for GL_POINT polygon/enable
mode rasterization

Polygon offset enable for GL_LINE mog®lygon/enable
rasterization

Polygon offset enable for GL_FILL modeolygon/enable
rasterization

Polygon stipple enable
Polygon stipple pattern

GL_FALSE glisEnabled()
GL_FALSE glisEnabled()
GL_FALSE glisEnabled()

polygon/enable
polygon-stipple

GL_FALSE glisEnabled()

1's glGetPolygon-
Stipple()

Table B-6 (continued) Rasterization State Variables

Texturing
State Variable Description Attribute Initial Value Get Command
Group

GL_TEXTURE x True ifx-D texturing enablec {s 1D texture/e GL_FALSE glisEnabled()

or 2D) nable
GL_TEXTURE_BINDING x Texture object bound to texture GL_FALSE glGetintegerv()

GL_TEXTURE x (x is 1D or 2D)
GL_TEXTURE x-D texture image at level of defail [0 glGetTeximage()
GL_TEXTURE_WIDTH x-D texture images width O 0 glGetTexLevelParameter*()
GL_TEXTURE_HEIGHT x—D texture images height O 0 glGetTexLevelParameter*()

OpenGL Programming

Guide — Appendix B, State Variables — 5

GL_TEXTURE_BORDER

GL_TEXTURE_INTERNAL
_FORMAT

GL_TEXTURE_RED_SIZE
GL_TEXTURE_GREEN_SIZE
GL_TEXTURE_BLUE_SIZE

GL_TEXTURE_ALPHA_SIZE

GL_TEXTURE_LUMINANCE_SIZ
E

GL_TEXTURE_INTENSITY_SIZE

GL_TEXTURE_BORDER_COLOR
GL_TEXTURE_MIN_FILTER

GL_TEXTURE_MAG_FILTER
GL_TEXTURE_WRAPX
GL_TEXTURE_PRIORITY
GL_TEXTURE_RESIDENCY
GL_TEXTURE_ENV_MODE

GL_TEXTURE_ENV_COLOR
GL_TEXTURE_GENX

GL_EYE_PLANE
GL_OBJECT_PLANE
GL_TEXTURE_GEN_MODE

x-D texture imagis border width O 0

glGetTexLevelParameter*()

x-D texture imagies internal image O glGetTexLevelParameter*()
format
x-D texture images red resolution O 0 glGetTexLevelParameter*()
x-D texture images green resolution [J 0 glGetTexLevelParameter*()
x-D texture images blue resolution [0 glGetTexLevelParameter*()
x—D texture images alpha resolution [0 glGetTexLevelParameter*()
x-D texture images luminance O 0 glGetTexLevelParameter*()
resolution
x-D texture images intensity O 0 glGetTexLevelParameter*()
resolution
Texture border color texture 0,0,0,0 glGetTexParameter*()

Texture minification function texture GL_ glGetTexParameter*()

NEAR

EST_

MIPM

AP_

LINEA

R
Texture magnification function texture GL_LINEAR glGetTexParameter*()
Texture wrap modex(is S or T) texture GL_REPEAT glGetTexParameter*()
Texture object priority texture 1 glGetTexParameter*()

Texture residency texture GL_FALSE glGetTexParameteriv()
Texture application function texture GL_ glGetTexEnviv()

MODU

LATE
Texture environment color texture 0,0,0,0 glGetTexEnviv()

Texgen enabled(s S, T, R, or Q)

nable
Texgen plane equation coefficients texture]
Texgen object linear coefficients texture J
Function used for texgen texture GL_|
LINEA

R

texture/e GL_FALSE

glisEnabled()

glGetTexGenfv()
glGetTexGenfv()
EYE_ glGetTexGeniv()

Table B-7 (continued) Texturing State Variables

Pixel Operations

State Variable Description Attribute Group Initial Value Get Command

GL_SCISSOR_TEST Scissoring enabled scissor/enable GL_FALSE glisEnabled()

GL_SCISSOR_BOX Scissor box scissor O glGetintegerv()

GL_ALPHA_TEST Alpha test enabled color-buffer/ GL_FALSE glisEnabled()
enable

GL_ALPHA_TEST_FUNC Alpha test function color—buffer GL_ALWAYS glGetintegerv()

GL_ALPHA_TEST_REF Alpha test reference value color-buffer 0 glGetintegerv()

GL_STENCIL_TEST

GL_STENCIL_FUNC
GL_STENCIL_VALUE_MASK
GL_STENCIL_REF
GL_STENCIL_FAIL

Stenciling enabled
able
stencil-buffer
stencil-buffer
stencil-buffer
stencil-buffer

Stencil function

Stencil mask

Stencil reference value
Stencil fail action

OpenGL Programming Guide — Appendix B, State Variables — 6

stencil-buffer/eGL_FALSE

glisEnabled()

GL_ALWAYS glGetintegerv()

1's glGetintegerv()
0 glGetintegerv()

GL_KEEP glGetintegerv()

GL_STENCIL_PASS_DEPTH_FAIL
GL_STENCIL_PASS_DEPTH_PASS
GL_DEPTH_TEST

GL_DEPTH_FUNC

GL_BLEND

GL_BLEND_SRC
GL_BLEND_DST
GL_DITHER

GL_INDEX_LOGIC_OP
GL_COLOR_LOGIC_OP

GL_LOGIC_OP_MODE

Stencil depth buffer fail action stencil-buffer
Stencil depth buffer pass action

Depth buffer enabled

stencil-buffer
depth—buffer/e@L_FALSE

GL_KEEP
GL_KEEP

ble

Depth buffer test function depth—buffer GL_LESS

Blending enabled color-buffer/ GL_FALSE
enable

Blending source function color-buffer GL_ONE

Blending destination function color—buffer GL_ZERO

Dithering enabled color-buffer/ GL_TRUE
enable

Color index logical operation enabled color-buffer/ GL_FALSE
enable

RGBA color logical operation enabled color-buffer/ GL_FALSE
enable

Logical operation function color-buffer GL_COPY

glGetintegerv()

glGetintegerv()

glisEnabled()

glGetintegerv()
glisEnabled()

glGetintegerv()
glGetlintegerv()
glisEnabled()

gllsEnabled()
glisEnabled()

glGetintegerv()

Table B-8 (continued) Pixel Operations

Framebuffer Control

State Variable

Value

Get Command

GL_DRAW_BUFFER

GL_INDEX_WRITEMASK
GL_COLOR_WRITEMASK
GL_DEPTH_WRITEMASK
GL_STENCIL_WRITEMASK
GL_COLOR_CLEAR_VALUE
GL_INDEX_CLEAR_VALUE
GL_DEPTH_CLEAR_VALUE
GL_STENCIL_CLEAR_VALUE
GL_ACCUM_CLEAR_VALUE

Description Attribute Group Initial
Buffers selected for drawing color—buffer
Color-index writemask color—buffer
Color write enables; R, G, B, or A color—buffer

Depth buffer enabled for writing
Stencil-buffer writemask stencil-buffer
Color-buffer clear value (RGBA mode) color-buffer
Color-buffer clear value (color-index mode) color-buffer
Depth-buffer clear value depth—buffer
Stencil-buffer clear value stencil-buffer
Accumulation-buffer clear value accum-buffer

depth-buffer

ad

1's
GL_TRUE
GL_TRUE

1's
0,0,0,0
0

1
0
0

glGetintegerv()
glGetintegerv()

glGetBooleanv()
glGetBooleanv()
glGetintegerv()
glGetFloatv()
glGetFloatv()
glGetintegerv()
glGetintegerv()
glGetFloatv()

Table B—-9 Framebuffer Control State Variables

State Variable

Initial Value

Get Command

GL_UNPACK_SWAP_BYTES
GL_UNPACK_LSB_FIRST
GL_UNPACK_ROW_LENGTH
GL_UNPACK_SKIP_ROWS
GL_UNPACK_SKIP_PIXELS
GL_UNPACK_ALIGNMENT
GL_PACK_SWAP_BYTES
GL_PACK_LSB_FIRST
GL_PACK_ROW_LENGTH
GL_PACK_SKIP_ROWS
GL_PACK_SKIP_PIXELS

Description Attribute
Group
Value of GL_UNPACK_SWAP_BYTES pixel-store
Value of GL_UNPACK_LSB_FIRST pixel-store
Value of GL_UNPACK_ROW_LENGTH pixel-store
Value of GL_UNPACK_SKIP_ROWS pixel-store
Value of GL_UNPACK_SKIP_PIXELS pixel-store
Value of GL_UNPACK_ALIGNMENT pixel-store
Value of GL_PACK_SWAP_BYTES pixel-store
Value of GL_PACK_LSB_FIRST pixel-store
Value of GL_PACK_ROW_LENGTH pixel-store
Value of GL_PACK_SKIP_ROWS pixel-store
Value of GL_PACK_SKIP_PIXELS pixel-store

OpenGL Programming Guide — Appendix B, State Variables — 7

GL_FALSE
GL_FALSE
0

0
0

4
GL_FALSE
GL_FALSE
0

0
0

glGetBooleanv()
glGetBooleanv()
glGetintegerv()
glGetintegerv()
glGetintegerv()

glGetintegerv()

glGetBooleanv()
glGetBooleanv()
glGetintegerv()
glGetintegerv()
glGetintegerv()

GL_PACK_ALIGNMENT Value of GL_PACK_ALIGNMENT pixel-store 4 glGetintegerv()

GL_MAP_COLOR True if colors are mapped pixel GL_FALSE glGetBooleanv()
GL_MAP_STENCIL True if stencil values are mapped pixel GL_FALSE ¢lGetBooleanv()
GL_INDEX_SHIFT Value of GL_INDEX_SHIFT pixel 0 glGetintegerv()
GL_INDEX_OFFSET Value of GL_INDEX_OFFSET pixel 0 glGetintegerv()
GL_x_SCALE Value of GLx SCALE;xis GL_RED, pixel 1 glGetFloatv()

GL_GREEN, GL_BLUE, GL_ALPHA, or

GL_DEPTH
GL_x_BIAS Value of GLx_BIAS; x is one of GL_RED, pixel 0 glGetFloatv()

GL_GREEN, GL_BLUE, GL_ALPHA, or

GL_DEPTH
GL_ZOOM_X x zoom factor pixel 1.0 glGetFloatv()
GL_ZOOM_Y y zoom factor pixel 1.0 glGetFloatv()
GL_x glPixelMap() translation tablesjs a map name [0's glGetPixelMap*()

from Table 8-1
GL_x_SIZE Size of table O 1 glGetintegerv()
GL_READ_BUFFER Read source buffer pixel O glGetintegerv()
Table B-10 (continued) Pixel State Variables

Evaluators
State Variable Description Attribute Group Initial Value Get Command
GL_ORDER 1D map order O 1 glGetMapiv()
GL_ORDER 2D map orders O 1,1 glGetMapiv()
GL_COEFF 1D control points O 0 glGetMapfv()
GL_COEFF 2D control points O | glGetMapfv()
GL_DOMAIN 1D domain endpoints O 0 glGetMapfv()
GL_DOMAIN 2D domain endpoints 0 0 glGetMapfv()
GL_MAP1 x 1D map enablescis map type eval/enable GL_FALSE glisEnabled()
GL_MAP2_x 2D map enables is map type eval/enable GL_FALSE glisEnabled()
GL_MAP1_GRID_DOMAIN 1D grid endpoints eval 0,1 glGetFloatv()
GL_MAP2_GRID_DOMAIN 2D grid endpoints eval 0,101 glGetFloatv()
GL_MAP1_GRID_SEGMENTS 1D grid divisions eval 1 glGetFloatv()
GL_MAP2_GRID_SEGMENTS 2D grid divisions eval 11 glGetFloatv()
GL_AUTO_NORMAL True if automatic normal generationeval GL_FALSE glisEnabled()
enabled
Table B—11 Evaluator State Variables
Hints
State Variable Description Attribute Initial Value Get Command
Group

GL_PERSPECTIVE_CORRECTION_HINT Perspective correction hint hint GL_DONT_CARE glGetintegerv()
GL_POINT_SMOOTH_HINT Point smooth hint hint GL_DONT_CARE glGetintegerv()
GL_LINE_SMOOTH_HINT Line smooth hint hint GL_DONT_CARE glGetintegerv()
GL_POLYGON_SMOOTH_HINT Polygon smooth hint hint GL_DONT_CARE glGetintegerv()
GL_FOG_HINT Fog hint hint GL_DONT_CARE glGetintegerv()

OpenGL Programming Guide — Appendix B, State Variables — 8

Table B—-12 Hint State Variables

Implementation—Dependent Values

State Variable Description Attribute Minimum Get Command
Group Value

GL_MAX_LIGHTS Maximum number of lights 0 8 glGetintegerv()

GL_MAX_CLIP_PLANES Maximum number of user clipping planes] 6 glGetintegerv()

GL_MAX_MODELVIEW_STACK_DEPTH Maximum modelview—matrix stack depth O 32 glGetintegerv()

GL_MAX_PROJECTION_STACK_DEPTH Maximum projection—matrix stack depth[] glGetintegerv()

GL_MAX_TEXTURE_STACK_DEPTH Maximum depth of texture matrix stack [glGetintegerv()

GL_SUBPIXEL_BITS Number of bits of subpixel precision in x 0 glGetintegerv()
and y

GL_MAX_TEXTURE_SIZE See discussion in "Texture Proxy" in O 64 glGetintegerv()
Chapter 9

GL_MAX_PIXEL_MAP_TABLE Maximum size of a glPixelMap() O 32 glGetintegerv()
translation table

GL_MAX_NAME_STACK_DEPTH Maximum selection—name stack depth [64 glGetintegerv()

GL_MAX_LIST_NESTING Maximum display-list call nesting O 64 glGetintegerv()

GL_MAX_EVAL_ORDER Maximum evaluator polynomial order O glGetintegerv()

GL_MAX_VIEWPORT_DIMS Maximum viewport dimensions O O glGetintegerv()

GL_MAX_ATTRIB_STACK_DEPTH Maximum depth of the attribute stack O 16 glGetintegerv()

GL_MAX_CLIENT_ATTRIB_STACK_DEPT Maximum depth of the client attribute stack 16 glGetintegerv()

H

GL_AUX_BUFFERS Number of auxiliary buffers O 0 glGetBooleanv()

GL_RGBA_MODE True if color buffers store RGBA O O glGetBooleanv()

GL_INDEX_MODE True if color buffers store indices O O glGetBooleanv()

GL_DOUBLEBUFFER True if front and back buffers exist O ad glGetBooleanv()

GL_STEREO True if left and right buffers exist 0 O glGetBooleanv()

GL_POINT_SIZE_RANGE Range (low to high) of antialiased point [J 1,1 glGetFloatv()
sizes

GL_POINT_SIZE_GRANULARITY Antialiased point-size granularity O O glGetFloatv()

GL_LINE_WIDTH_RANGE Range (low to high) of antialiased line [1,1 glGetFloatv()
widths

GL_LINE_WIDTH_GRANULARITY Antialiased line—width granularity O O glGetFloatv()

Table B-13 (continued) Implementation—Dependent State Variables

Implementation—Dependent Pixel Depths
State Variable Description Attribute Minimu Get Command
Group m Value

GL_RED_BITS Number of bits per red component in color buffers [O glGetintegerv()

GL_GREEN_BITS Number of bits per green component in color buffers] O glGetintegerv()

GL_BLUE_BITS Number of bits per blue component in color buffers O glGetintegerv()

GL_ALPHA_BITS Number of bits per alpha component in color buffers 0O glGetintegerv()

GL_INDEX_BITS Number of bits per index in color buffers O O glGetintegerv()

GL_DEPTH_BITS Number of depth—buffer bitplanes O O glGetintegerv()

OpenGL

Programming Guide — Appendix B, State Variables -9

GL_STENCIL_BITS Number of stencil bitplanes O O glGetintegerv()

GL_ACCUM_RED_BITS Number of bits per red component in the accumulatipn O glGetintegerv()
buffer

GL_ACCUM_GREEN_BITS Number of bits per green component in the O O glGetintegerv()
accumulation buffer

GL_ACCUM_BLUE_BITS Number of bits per blue component in the accumulation O glGetintegerv()
buffer

GL_ACCUM_ALPHA_BITS Number of bits per alpha component in the O O glGetintegerv()

accumulation buffer

Table B-14 Implementation—Dependent Pixel-Depth State Variables (continued)

Miscellaneous

State Variable Description Attribute Initial Value Get Command
Group

GL_LIST_BASE Setting of glListBase() list 0 glGetintegerv()
GL_LIST_INDEX Number of display list under construction; Q7 0 glGetintegerv()

if none
GL_LIST_MODE Mode of display list under construction; [0 glGetintegerv()

undefined if none
GL_ATTRIB_STACK_DEPTH Attribute stack pointer O 0 glGetintegerv()
GL_CLIENT_ATTRIB_STACK_DEPT Client attribute stack pointer O 0 glGetintegerv()
H
GL_NAME_STACK_DEPTH Name stack depth O 0 glGetintegerv()
GL_RENDER_MODE glRenderMode() setting O GL_RENDER glGetintegerv()
GL_SELECTION_BUFFER_POINTER Pointer to selection buffer select 0 glGetPointerv()
GL_SELECTION_BUFFER_SIZE Size of selection buffer select 0 glGetintegerv()
GL_FEEDBACK_BUFFER_POINTER Pointer to feedback buffer feedback 0 glGetPointerv()
GL_FEEDBACK_BUFFER_SIZE Size of feedback buffer feedback 0 glGetintegerv()
GL_FEEDBACK_BUFFER_TYPE Type of feedback buffer feedback GL_2D glGetintegerv()
O Current error code(s) O 0 glGetError()

Table B-15 Miscellaneous State Variables

OpenGL Programming Guide — Appendix C, OpenGL and Window Systems — 10

Appendix C
OpenGL and Window Systems

OpenGL is available on many different platforms and works with many different window systems.
OpenGL is designed to complement window systems, not duplicate their functionality. Therefore,
OpenGL performs geometric and image rendering in two and three dimensions, but it does not manac
windows or handle input events.

However, the basic definitions of most window systems don’t support a library as sophisticated as
OpenGL, with its complex and diverse pixel formats, including depth, stencil, and accumulation buffer:
as well as double—buffering. For most window systems, some routines are added to extend the windo
system to support OpenGL.

This appendix introduces the extensions defined for several window and operating systems: the X
Window System, the Apple Mac OS, 0OS/2 Warp from IBM, and Microsoft Windows NT and Windows
95. You need to have some knowledge of the window systems to fully understand this appendix.

This appendix has the following major sections:
"GLX: OpenGL Extension for the X Window System"
"AGL: OpenGL Extension to the Apple Macintosh"
"PGL: OpenGL Extension for IBM OS/2 Warp"

"WGL: OpenGL Extension for Microsoft Windows NT and Windows 95"

GLX: OpenGL Extension for the X Window System

In the X Window System, OpenGL rendering is made available as an extension to X in the formal X
sense. GLX is an extension to the X protocol (and its associated API) for communicating OpenGL
commands to an extended X server. Connection and authentication are accomplished with the norma
mechanisms.

As with other X extensions, there is a defined network protocol for OpenGL’s rendering commands
encapsulated within the X byte stream, so client-server OpenGL rendering is supported. Since
performance is critical in three—dimensional rendering, the OpenGL extension to X allows OpenGL to
bypass the X server’s involvement in data encoding, copying, and interpretation and instead render
directly to the graphics pipeline.

The X Visual is the key data structure to maintain pixel format information about the OpenGL window.
A variable of data type XVisuallnfo keeps track of pixel information, including pixel type (RGBA or
color index), single or double-buffering, resolution of colors, and presence of depth, stencil, and
accumulation buffers. The standard X Visuals (for example, PseudoColor, TrueColor) do not describe
pixel format details, so each implementation must extend the number of X Visuals supported.

The GLX routines are discussed in more detail imfdpenGL Reference Manuahtegrating OpenGL
applications with the X Window System and the Motif widget set is discussed in great defmhiGL
Programming for the X Window Systesn Mark Kilgard (Reading, MA: Addison—-Wesley Developers

OpenGL Programming Guide — Appendix C, OpenGL and Window Systems — 1

Press, 1996), which includes full source code examples. If you absolutely want to learn about the
internals of GLX, you may want to read the GLX specification, which can be found at

ftp://sgigate.sgi.com/pub/opengl/doc/

Initialization

UseglXQueryExtension@ndglXQueryVersion(}o determine whether the GLX extension is defined for
an X server and, if so, which version is presgiXQueryExtensionsString(gturns extension

information about the client—server connectgGetClientString(yeturns information about the client
library, including extensions and version numlgg€KQueryServerStringfeturns similar information
about the server.

gIXChooseVisual()eturns a pointer to an XVisuallnfo structure describing the visual that meets the
client’s specified attributes. You can query a visual about its support of a particular OpenGL attribute
with gIXGetConfig()

Controlling Rendering

Several GLX routines are provided for creating and managing an OpenGL rendering context. You can
use such a context to render off-screen if you want. Routines are also provided for such tasks as
synchronizing execution between the X and OpenGL streams, swapping front and back buffers, and
using an X font.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created wjtkCreateContext()One of the arguments to this routine
allows you to request a direct rendering context that bypasses the X server as described previously. (|
that to do direct rendering, the X server connection must be local, and the OpenGL implementation ne
to support direct renderinggJXCreateContext(also allows display-list and texture—object indices and
definitions to be shared by multiple rendering contexts. You can determine whether a GLX context is
direct withglXIsDirect()

To make a rendering context current, gb&MakeCurrent()gIXGetCurrentContext(jeturns the current
context. You can also obtain the current drawable gliX¥GetCurrentDrawable(@nd the current X

Display withgIXGetCurrentDisplay()Remember that only one context can be current for any thread at
any one time. If you have multiple contexts, you can copy selected groups of OpenGL state variables
from one context to another wighXCopyContext()When you're finished with a particular context,
destroy it withgIXDestroyContext()

Off-Screen Rendering

To render off-screen, first create an X Pixmap and then pass this as an argument to

glXCreateGLXPixmap()Once rendering is completed,
you can destroy the association between the X and GLX PixmapglXibestroyGLXPixmap()
(Off—screen rendering isn’'t guaranteed to be supported for direct renderers.)

Synchronizing Execution

OpenGL Programming Guide — Appendix C, OpenGL and Window Systems — 2

To prevent X requests from executing until any outstanding OpenGL rendering is completed, call
gIXWaitGL() Then, any previously issued OpenGL commands are guaranteed to be executed before i
X rendering calls made aftgiXWaitGL(). Although the same result can be achieved gifimish(),
gIXWaitGL()doesn't require a round trip to the server and thus is more efficient in cases where the clie
and server are on separate machines.

To prevent an OpenGL command sequence from executing until any outstanding X requests are
completed, usgIXWaitX() This routine guarantees that previously issued X rendering calls are execute
before any OpenGL calls made afigxWaitX()

Swapping Buffers

For drawables that are double-buffered, the front and back buffers can be exchanged by calling
gIXSwapBuffers()An implicit glFlush() is done as part of this routine.

Using an X Font

A shortcut for using X fonts in OpenGL is provided with the comn@KRtlseXFont() This routine
builds display lists, each of which cagiiBitmap() for each requested character from the specified font
and font size.

GLX Prototypes

Initialization

Determine whether the GLX extension is defined on the X server:
Bool gIXQueryExtensiof Display *dpy, int *errorBase int *eventBasg;
Query version and extension information for client and server:

Bool gIXQueryVersior(Display *dpy; int *major, int *minor);

const charglXGetClientString(Display tpy, int name);

const charglXQueryServerString Display *dpy, int screenint name);
const charglXQueryExtensionsStringDisplay *dpy, int screen);
Obtain the desired visual:

XVisuallnfo* gIXChooseVisua{ Display *dpy, int screen
int *attribList);

int gIXGetConfig(Display *dpy, XVisuallnfo *visual, int attrib,
int *value);

Controlling Rendering

Manage or query an OpenGL rendering context:

GLXContextglXCreateContext Display*dpy, XVisuallnfo *visual,

OpenGL Programming Guide — Appendix C, OpenGL and Window Systems — 3

GLXContextshareList Bool direct);
void gIXDestroyContex¢ Display*dpy, GLXContextcontex);

void gIXCopyContex{ Display *dpy, GLXContextsource
GLXContextdest unsigned longnask);

Bool gIXIsDirect (Display *dpy, GLXContextcontex{);

Bool giXMakeCurrent Display *dpy, GLXDrawabledraw,
GLXContextcontexd);

GLXContextgIXGetCurrentContextvoid);
Display* gIXGetCurrentDisplayvoid);
GLXDrawableglXGetCurrentDrawablévoid);
Perform off-screen rendering:

GLXPixmapgIXCreateGLXPixmap Display *dpy, XVisuallnfo *visual,
Pixmappixmap);

void gIXDestroyGLXPixmay Display *dpy, GLXPixmappix);
Synchronize execution:

void gIXWaitGL (void);

void gIXWaitX (void);

Exchange front and back buffers:

void gIXSwapBufferg Display *dpy, GLXDrawabledrawable);
Use an X font:

void gIXUseXFont(Fontfont int first, int count int listBase);

AGL: OpenGL Extension to the Apple Macintosh

This section covers the routines defined as the OpenGL extension to the Apple Macintosh (AGL), as
defined by Template Graphics Software. An understanding of the way the Macintosh handles graphic:
rendering (QuickDraw) is required. TMacintosh Toolbox Essentiaésdimaging With QuickDraw
manuals from thinside Macintostseries are also useful to have at hand.

For more information (including how to obtain the OpenGL software library for the Power Macintosh),
you may want to check out the web site for OpenGL information at Template Graphics Software:

http://www.sd.tgs.com/Products/opengl.htm

For the Macintosh, OpenGL rendering is made available as a library that is either compiled in or resid
as an extension for an application that wishes to make use of it. OpenGL is implemented in software f
systems that do not possess hardware acceleration. Where acceleration is available (through the
QuickDraw 3D Accelerator), those capabilities that match the OpenGL pipeline are used with the
remaining functionality being provided through software rendering.

OpenGL Programming Guide — Appendix C, OpenGL and Window Systems — 4

The data type AGLPixelFmtID (the AGL equivalent to XVisuallnfo) maintains pixel information,
including pixel type (RGBA or color index), single— or double-buffering, resolution of colors, and
presence of depth, stencil, and accumulation buffers.

In contrast to other OpenGL implementations on other systems (such as the X Window System), the
client/server model is not used. However, you may still need tgl€&lish() since some hardware
accelerators buffer the OpenGL pipeline and require a flush to empty it.

Initialization
UseaglQueryVersion(}o determine what version of OpenGL for the Macintosh is available.

The capabilities of underlying graphics devices and your requirements for rendering buffers are resolv
usingaglChoosePixelFmt(JUseaglListPixelFmts(}o find the particular formats supported by a

graphics device. Given a pixel format, you can determine which attributes are available by using
aglGetConfig()

Rendering and Contexts

Several AGL routines are provided for creating and managing an OpenGL rendering context. You can
use such a context to render into either a window or an off-screen graphics world. Routines are also
provided that allow you to swap front and back rendering buffers, adjust buffers in response to a move
resize or graphics device change event, and use Macintosh fonts. For software rendering (and in som
cases, hardware—accelerated rendering) the rendering buffers are created in your application memory
space. For the application to work properly you must provide sufficient memory for these buffers in yo
application’s SIZE resource.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created (at least one context per window being rendered into) with
aglCreateContext()This takes the pixel format you selected as a parameter and uses it to initialize the
context.

UseaglMakeCurrent(fo make a rendering context current. Only one context can be current for a threa
of control at any time. This indicates which drawable is to be rendered into and which context to use v
it. It's possible for more than one context to be used (not simultaneously) with a particular drawable.
Two routines allow you to determine which is the current rendering context and drawable being rende
into: aglGetCurrentContext@ndaglGetCurrentDrawable()

If you have multiple contexts, you can copy selected groups of OpenGL state variables from one cont
to another witraglCopyContext()When a particular context is finished with, it should be destroyed by
calling aglDestroyContext()

On-screen Rendering

With the OpenGL extensions for the Apple Macintosh you can choose whether window clipping is
performed when writing to the screen and whether the cursor is hidden during screen writing operatiol
This is important since these two items may affect how fast rendering can be performed. Call

OpenGL Programming Guide — Appendix C, OpenGL and Window Systems — 5

aglSetOptions(Yo select these options.

Off-screen Rendering

To render off-screen, first create an off-screen graphics world in the usual way, and pass the handle
aglCreateAGLPixmap()This routine returns a drawable that can be usedagifiakeCurrent()Once
rendering is completed, you can destroy the associatioraglifrestroyAGLPixmap()

Swapping Buffers

For drawables that are double-buffered (as per the pixel format of the current rendering context), call
aglSwapBuffers(do exchange the front and back buffers. An imptitilush()is performed as part of
this routine.

Updating the Rendering Buffers

The Apple Macintosh toolbox requires you to perform your own event handling and does not provide ¢
way for libraries to automatically hook in to the event stream. So that the drawables maintained by
OpenGL can adjust to changes in drawable size, position and pixel dgibthdateCurrent()s

provided.

This routine must be called by your event processing code whenever one of these events occurs in th
current drawable. Ideally the scene should be rerendered after a update call to take into account the
changes made to the rendering buffers.

Using an Apple Macintosh Font

A shortcut for using Macintosh fonts is provided vatiilUseFont() This routine builds display lists,

each of which callglBitmap(), for each requested character from the specified font and font size.
Error Handling

An error—handling mechanism is provided for the Apple Macintosh OpenGL extension. When an error
occurs you can cadlglGetError() to get a more precise description of what caused the error.

AGL Prototypes

Initialization

Determine AGL version:
GLboolearaglQueryVersior(int *major, int *minor);
Pixel format selection, availability, and capability:

AGLPixelFmtID aglChoosePixelFmt GDHandle tey, int ndey
int *attribs);

int aglListPixelFmty GDHandledey AGLPixelFmtID **fmts);

OpenGL Programming Guide — Appendix C, OpenGL and Window Systems — 6

GLboolearaglGetConfig{ AGLPixelFmtID pix, int attrib, int *value);

Controlling Rendering
Manage an OpenGL rendering context:

AGLContextaglCreateContext AGLPixelFmtID pix,
AGLContextshareList);

GLboolearaglDestroyContexf AGLContextcontext);

GLboolearaglCopyContex{ AGLContextsource AGLContextdest
GLuintmask);

GLboolearagIMakeCurrent(AGLDrawabledrawable
AGLContextcontext);

GLboolearaglSetOptiong int opts);
AGLContextaglGetCurrentContexoid);
AGLDrawableaglGetCurrentDrawablgvoid);
Perform off-screen rendering:

AGLPixmapaglCreateAGLPixmajp AGLPixelFmtID pix,
GWorldPtrpixmap);

GLboolearaglDestroyAGLPixmay AGLPixmappix);
Exchange front and back buffers:
GLboolearaglSwapBuffer¢ AGLDrawabledrawable);
Update the current rendering buffers:
GLboolearaglUpdateCurren{void);

Use a Macintosh font:

GLboolearaglUseFont(int familylD, int sizg intfirst, int count
int listBase);

Find the cause of an error:

GLenumaglGetError (void);

PGL: OpenGL Extension for IBM OS/2 Warp

OpenGL rendering for IBM OS/2 Warp is accomplished by using PGL routines added to integrate
OpenGL into the standard IBM Presentation Manager. OpenGL with PGL supports both a direct
OpenGL context (which is often faster) and an indirect context (which allows some integration of Gpi
and OpenGL rendering).

The data type VISUALCONFIG (the PGL equivalent to XVisuallnfo) maintains the visual configuration
including pixel type (RGBA or color index), single— or double-buffering, resolution of colors, and
presence of depth, stencil, and accumulation buffers.

OpenGL Programming Guide — Appendix C, OpenGL and Window Systems — 7

To get more information (including how to obtain the OpenGL software library for IBM OS/2 Warp,
Version 3.0), you may want to start at

http://www.austin.ibm.com/software/OpenGL/

Packaged along with the software is the docum@pénGL On OS/2 Wargvhich provides more
detailed information. OpenGL support is included with the base operating system with OS/2 Warp
Version 4.

Initialization

UsepglQueryCapability(JandpglQueryVersion(}o determine whether the OpenGL is supported on this
machine and, if so, how it is supported and which version is pregg@hooseConfig(jeturns a pointer

to an VISUALCONFIG structure describing the visual configuration that best meets the client’s specifi
attributes. A list of the particular visual configurations supported by a graphics device can be found us

pglQueryConfigs()

Controlling Rendering

Several PGL routines are provided for creating and managing an OpenGL rendering context, capturin
the contents of a bitmap, synchronizing execution between the Presentation Manager and OpenGL
streams, swapping front and back buffers, using a color palette, and using an OS/2 logical font.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created witfiCreateContext()One of the arguments to this routine
allows you to request a direct rendering context that bypasses the Gpi and render to a PM window, wl
is generally faster. You can determine whether a OpenGL context is direpgisimdirect().

To make a rendering context current, pgéMakeCurrent()pglGetCurrentContext(deturns the current
context. You can also obtain the current window wiglGetCurrentWindow()You can copy some
OpenGL state variables from one context to anotherpgt&opyContext()When you're finished with a
particular context, destroy it wighglDestroyContext()

Access the Bitmap of the Front Buffer

To lock access to the bitmap representation of the contents of the front buffer, use
palGrabFrontBitmap() An implicit glFlush()is performed, and you can read the bitmap, but its contents
are effectively read-only. Immediately after access is completed, you should call
pglReleaseFrontBitmap{p restore write access to the front buffer.

Synchronizing Execution

To prevent Gpi rendering requests from executing until any outstanding OpenGL rendering is complet
call pglWaitGL() Then, any previously issued OpenGL commands are guaranteed to be executed befc
any Gpi rendering calls made aftegiWaitGL()

To prevent an OpenGL command sequence from executing until any outstanding Gpi requests are

OpenGL Programming Guide — Appendix C, OpenGL and Window Systems — 8

completed, uspglWaitPM() This routine guarantees that previously issued Gpi rendering calls are
executed before any OpenGL calls made aigdVaitPM()

Note: OpenGL and Gpi rendering can be integrated in the same window only if the OpenGL context is
an indirect context.

Swapping Buffers

For windows that are double—buffered, the front and back buffers can be exchanged by calling
palSwapBuffers()An implicit gIFlush() is done as part of this routine.

Using a Color Index Palette

When you are running in 8-bit (256 color) mode, you have to worry about color palette
management. For windows with a color index Visual Configuration, call
pglSelectColorindexPalettefp tell OpenGL what color-index palette you want to use with
your context. A color palette must be selected before the context is initially bound to a
window. In RGBA mode, OpenGL sets up a palette automatically.

Using an OS/2 Logical Font

A shortcut for using OS/2 logical fonts in OpenGL is provided with the commgliutse Font() This
routine builds display lists, each of which calIBitmap() for each requested character from the
specified font and font size.

PGL Prototypes

Initialization

Determine whether OpenGL is supported and, if so, its version number:
long pglQueryCapabilit(HAB hab);

void pglQueryVersior(HAB hab, int *major, int *minor);

Visual configuration selection, availability and capability:
PVISUALCONFIG pglChooseConfigHAB hab, int *attribList);

PVISUALCONFIG *pglQueryConfiggHAB hab);

Controlling Rendering
Manage or query an OpenGL rendering context:

HGC pglCreateContextHAB hab, PVISUALCONFIGpVisualConfig
HGC shareList Bool isDrect);

Bool pglDestroyContex(HAB hab, HGC hgo);
Bool pglCopyContex{HAB hab, HGC source HGCdest GLuint mask;

OpenGL Programming Guide — Appendix C, OpenGL and Window Systems — 9

Bool pgIMakeCurrentf{HAB hab HGC hgg HWND hwng;

long pglisindirect(HAB hab, HGC hgg;

HGC pglGetCurrentContextHAB haby);

HWND pglGetCurrentWindoWHAB hab);

Access and release the bitmap of the front buffer:

Bool pglGrabFrontBitmap(HAB hab, HPS *hps HBITMAP *phbitmayp;
Bool pglReleaseFrontBitmafHAB hab);

Synchronize execution:

HPSpglWaitGL(HAB hab);

void pglWaitPM(HAB hab);

Exchange front and back buffers:

void pglSwapBuffergHAB hab, HWND hwnd;

Finding a color—index palette:

void pglSelectColorindexPaletiglAB hab, HPAL, hpal, HGC hgg;
Use an OS/2 logical font:

Bool pglUseFont(HAB hab, HPShps FATTRS*fontAttribs,

longlogicalld, intfirst, int count intlistBase);

WGL: OpenGL Extension for Microsoft Windows NT and
Windows 95

OpenGL rendering is supported on systems that run Microsoft Windows NT and Windows 95. The
functions and routines of the Win32 library are necessary to initialize the pixel format and control
rendering for OpenGL. Some routines, which are prefixaddlyextend Win32 so that OpenGL can be
fully supported.

For Win32/WGL, the PIXELFORMATDESCRIPTOR is the key data structure to maintain pixel format
information about the OpenGL window. A variable of data type PIXELFORMATDESCRIPTOR keeps
track of pixel information, including pixel type (RGBA or color index), single— or double- buffering,
resolution of colors, and presence of depth, stencil, and accumulation buffers.

To get more information about WGL, you may want to start with technical articles available through th
Microsoft Developer Network at

http://www.microsoft.com/msdn/

Initialization

UseGetVersion(or the neweGetVersionEx(Jo determine version informatioGhoosePixelFormat()
tries to find a PIXELFORMATDESCRIPTOR with specified attributes. If a good match for the

OpenGL Programming Guide — Appendix C, OpenGL and Window Systems — 10

requested pixel format is found, thEetPixelFormat(should be called to actually use the pixel format.
You should select a pixel format in the device context before calighgreateContext()

If you want to find out details about a given pixel format, DescribePixelFormat(pr, for overlays or
underlayswglDescribeLayerPlane()

Controlling Rendering

Several WGL routines are provided for creating and managing an OpenGL rendering context, renderil
to a bitmap, swapping front and back buffers, finding a color palette, and using either bitmap or outline
fonts.

Managing an OpenGL Rendering Context

wglCreateContext(@reates an OpenGL rendering context for drawing on the device in the selected pix:
format of the device context. (To create an OpenGL rendering context for overlay or underlay window:
usewglCreateLayerContext{pstead.) To make a rendering context currentyggilakeCurrent()
wglGetCurrentContext@eturns the current context. You can also obtain the current device context with
wglGetCurrentDC() You can copy some OpenGL state variables from one context to another with
wglCopyContext(pr make two contexts share the same display lists and texture objects with
wglShareLists()When you're finished with a particular context, destroy it witiiDestroyContext()

OpenGL Rendering to a Bitmap

Win32 has a few routines to allocate (and deallocate) bitmaps, to which you can render OpenGL direc
CreateDIBitmap(rreates a device—dependent bitmap (DDB) from a device—-independent bitmap (DIB)
CreateDIBSection(greates a device—independent bitmap (DIB) that applications can write to directly.
When finished with your bitmap, you can uBeleteObject(}o free it up.

Synchronizing Execution

If you want to combine GDI and OpenGL rendering, be aware there are no equivalents to functions lik
gIXWaitGL() gIXWaitX(), or pglWaitGL()in Win32. AlthoughgIXWaitGL()has no equivalent in Win32,
you can achieve the same effect by calfiifginish(), which waits until all pending OpenGL commands
are executed, or by callirgdiFlush(), which waits until all GDI drawing has completed.

Swapping Buffers

For windows that are double—buffered, the front and back buffers can be exchanged by calling
SwapBuffers(pr wglSwapLayerBuffers(jhe latter for overlays and underlays.

Finding a Color Palette

To access the color palette for the standard (non-layer) bitplanes, use the standard GDI functions to ¢
the palette entries. For overlay or underlay layersywtiRealizeLayerPalette(Wwhich maps palette

entries from a given color-index layer plane into the physical palette or initializes the palette of an RG
layer planewglGetLayerPaletteEntries{$ used to query the entries in palettes of layer planes.

OpenGL Programming Guide — Appendix C, OpenGL and Window Systems — 11

Using a Bitmap or Outline Font

WGL has two routinesyglUseFontBitmaps@ndwglUseFontOutlines(for converting system fonts to
use with OpenGL. Both routines build a display list for each requested character from the specified foi
and font size.

WGL Prototypes

Initialization

Determine version information:

BOOL GetVersion LPOSVERSIONINFQpVersioninformatior);
BOOL GetVersionEX LPOSVERSIONINFOpVersioninformation);
Pixel format availability, selection, and capability:

int ChoosePixelFormat HDC hdg
CONST PIXELFORMATDESCRIPTOR ppfd);

BOOL SetPixelFormat HDC hdg intiPixelFormat,
CONST PIXELFORMATDESCRIPTOR ppfd);

int DescribePixelFormaf HDC hdc, intiPixelFormat UINT nBytes
LPPIXELFORMATDESCRIPTORppfd);

BOOL wglDescribeLayerPlanéHDC hdg int iPixelFormat
intiLayerPlane UINT nBytes LPLAYERPLANEDESCRIPTORIpd);
Controlling Rendering

Manage or query an OpenGL rendering context:
HGLRCwglCreateContext HDC hdc);
HGLRCwglCreateLayerContextHDC hdg intiLayerPlane);

BOOL wglShareList§ HGLRC hglrcl, HGLRC hglrc2);

BOOL wglDeleteContext HGLRC hglrc);

BOOL wglCopyContext HGLRC hglrcSourceHGLRC hliglrcDest,
UINT maskK);

BOOL wglMakeCurren{ HDC hdc, HGLRC hglrc);
HGLRCwglGetCurrentContextvOID) ;

HDC wglGetCurrentDQVOID);

Access and release the bitmap of the front buffer:

HBITMAP CreateDIBitmapg HDC hdc,
CONST BITMAPINFOHEADER fpbmih, DWORDfdwInit,
CONST VOID *pblnit, CONST BITMAPINFO *pbmi, UINT fuUsage);

OpenGL Programming Guide — Appendix C, OpenGL and Window Systems — 12

HBITMAP CreateDIBSectioff HDC hdg CONST BITMAPINFO pbmi,
UINT iUsage VOID *ppvBits HANDLE hSectionDWORD dwOffsed;

BOOL DeleteObject HGDIOBJhObject);

Exchange front and back buffers:

BOOL SwapBuffer¢ HDC hdc);

BOOL wglSwapLayerBuffer§SHDC hdg UINT fuPlanes);
Finding a color palette for overlay or underlay layers:

int wglGetLayerPaletteEntrieEHDC hdg intiLayerPlang intiStart,
int cEntries CONST COLORREFicr);

BOOL wglRealizeLayerPaletieHDC hdg intiLayerPlang
BOOL bRealize);

Use a bitmap or an outline font:

BOOL wglUseFontBitmapé HDC hdc, DWORDfirst, DWORDcount,
DWORDlistBase);

BOOL wglUseFontOutlineg§ HDChdc, DWORDfirst, DWORD count
DWORDlistBase FLOAT deviation FLOAT extrusion int format,
LPGLYPHMETRICSFLOATIpgmf);

OpenGL Programming Guide — Appendix D, Basics of GLUT: The OpenGL Utility Toolkit — 13

Appendix D
Basics of GLUT: The OpenGL Utility Toolkit

This appendix describes a subset of Mark Kilgard’s OpenGL Utility Toolkit (GLUT), which is fully
documented in his bookgpenGL Programming for the X Window Sys{®eaading, MA:

Addison-Wesley Developers Press, 1996). GLUT has become a popular library for OpenGL
programmers, because it standardizes and simplifies window and event management. GLUT has bee
ported atop a variety of OpenGL implementations, including both the X Window System and Microsofi
Windows NT.

This appendix has the following major sections:
"Initializing and Creating a Window"
"Handling Window and Input Events"
"Loading the Color Map"
“Initializing and Drawing Three—Dimensional Objects"
"Managing a Background Process"

"Running the Program"

(See "How to Obtain the Sample Code" in the Preface for information about how to obtain the source
code for GLUT.)

With GLUT, your application structures its event handling to use callback functions. (This method is
similar to using the Xt Toolkit, also known as the X Intrinsics, with a widget set.) For example, first yot
open a window and register callback routines for specific events. Then, you create a main loop withou
an exit. In that loop, if an event occurs, its registered callback functions are executed. Upon completio
of the callback functions, flow of control is returned to the main loop.

Initializing and Creating a Window

Before you can open a window, you must specify its characteristics: Should it be single-buffered or
double-buffered? Should it store colors as RGBA values or as color indices? Where should it appear
your display? To specify the answers to these questionglagtiit(), glutinitDisplayMode()
glutinitWindowsSize()andglutinitWindowPosition(efore you calglutCreateWindow(do open the
window.

void glutinit(int argc, char **argv);
glutinit() should be called before any other GLUT routine, because it initializes the GLUT library.
glutinit() will also process command line options, but the specific options are window system
dependent. For the X Window System, —iconic, —geometry, and —display are examples of comma
line options, processed by glutinit(). (The parameters to the glutinit() should be the same as those
main().)

void glutinitDisplayMode(unsigned int mode);

OpenGL Programming Guide — Appendix D, Basics of GLUT: The OpenGL Utility Toolkit — 1

Specifies a display mode (such as RGBA or color-index, or single— or double—buffered) for winda
created when glutCreateWindow() is called. You can also specify that the window have an
associated depth, stencil, and/or accumulation buffer. The mask argument is a bitwise ORed
combination of GLUT_RGBA or GLUT_INDEX, GLUT_SINGLE or GLUT_DOUBLE, and any of
the buffer—enabling flags: GLUT_DEPTH, GLUT_STENCIL, or GLUT_ACCUM. For example, for
double-buffered, RGBA-mode window with a depth and stencil buffer, use GLUT_DOUBLE |
GLUT_RGBA | GLUT_DEPTH | GLUT_STENCIL. The default value is GLUT_RGBA |
GLUT_SINGLE (an RGBA, single—buffered window).

void glutinitWindowSize(int width, int height);

void glutinitWindowPosition(int x, int y);
Requests windows created by glutCreateWindow() to have an initial size and position. The
arguments (x, y) indicate the location of a corner of the window, relative to the entire display. The
width and height indicate the window’s size (in pixels). The initial window size and position are
hints and may be overridden by other requests.

int glutCreateWindow(char *name);
Opens a window with previously set characteristics (display mode, width, height, and so on). The
string name may appear in the title bar if your window system does that sort of thing. The window
not initially displayed until glutMainLoop() is entered, so do not render into the window until then.
The value returned is a unique integer identifier for the window. This identifier can be used for
controlling and rendering to multiple windows (each with an OpenGL rendering context) from the
same application.

Handling Window and Input Events

After the window is created, but before you enter the main loop, you should register callback functions
using the following routines.

void glutDisplayFunc(void (*func)(void));
Specifies the function that's called whenever the contents of the window need to be redrawn. The
contents of the window may need to be redrawn when the window is initially opened, when the
window is popped and window damage is exposed, and when glutPostRedisplay() is explicitly cal

void glutReshapeFunc(void (*func)(int width, int height));
Specifies the function that's called whenever the window is resized or moved. The argument func
pointer to a function that expects two arguments, the new width and height of the window. Typical
func calls glViewport(), so that the display is clipped to the new size, and it redefines the projectiol
matrix so that the aspect ratio of the projected image matches the viewport, avoiding aspect ratio
distortion. If glutReshapeFunc() isn’t called or is deregistered by passing NULL, a default reshape
function is called, which calls glViewport(0, 0, width, height).

void glutkKeyboardFunc(void (*func)(unsigned int key, int x, int y);
Specifies the function, func, that’s called when a key that generates an ASCII character is presset
The key callback parameter is the generated ASCII value. The x and y callback parameters indice
the location of the mouse (in window-relative coordinates) when the key was pressed.

OpenGL Programming Guide — Appendix D, Basics of GLUT: The OpenGL Utility Toolkit — 2

void glutMouseFunc(void (*func)(int button, int state, int x, int y));
Specifies the function, func, that’s called when a mouse button is pressed or released. The butto
callback parameter is one of GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON, or
GLUT_RIGHT_BUTTON. The state callback parameter is either GLUT_UP or GLUT_DOWN,
depending upon whether the mouse has been released or pressed. The x and y callback paramet
indicate the location (in window-relative coordinates) of the mouse when the event occurred.

void glutMotionFunc(void (*func)(int x, int y));
Specifies the function, func, that’s called when the mouse pointer moves within the window while
or more mouse buttons is pressed. The x and y callback parameters indicate the location (in
window-relative coordinates) of the mouse when the event occurred.

void glutPostRedisplay(void);
Marks the current window as needing to be redrawn. At the next opportunity, the callback function
registered by glutDisplayFunc() will be called.

Loading the Color Map

If you're using color-index mode, you might be surprised to discover there’s no OpenGL routine to loc
a color into a color lookup table. This is because the process of loading a color map depends entirely
the window system. GLUT provides a generalized routine to load a single color index with an RGB
value,glutSetColor()

void glutSetColor(GLint index, GLfloat red, GLfloat green, GLfloat blue);
Loads the index in the color map, index, with the given red, green, and blue values. These values
normalized to lie in the range [0.0,1.0].

Initializing and Drawing Three—Dimensional Objects

Many sample programs in this guide use three—dimensional models to illustrate various rendering
properties. The following drawing routines are included in GLUT to avoid having to reproduce the cod:
to draw these models in each program. The routines render all their graphics in immediate mode. Eac
three—dimensional model comes in two flavors: wireframe without surface normals, and solid with
shading and surface normals. Use the solid version when you're applying lighting. Only the teapot
generates texture coordinates.

void glutwWireSphere(GLdouble radius, GLint slices, GLint stacks);
void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);

void glutwWireCube(GLdouble size);
void glutSolidCube(GLdouble size);

void glutWireTorus(GLdouble innerRadius, GLdouble outerRadius,
GLint nsides, GLint rings);
void glutSolidTorus(GLdouble innerRadius, GLdouble outerRadius,
GLint nsides, GLint rings);

void glutWirelcosahedron(void);
void glutSolidlcosahedron(void);

OpenGL Programming Guide — Appendix D, Basics of GLUT: The OpenGL Utility Toolkit — 3

void glutWireOctahedron(void);
void glutSolidOctahedron(void);

void glutWireTetrahedron(void);
void glutSolidTetrahedron(void);

void glutwWireDodecahedron(GLdouble radius);
void glutSolidDodecahedron(GLdouble radius);

void glutwireCone(GLdouble radius, GLdouble height, GLint slices,
GLint stacks);
void glutSolidCone(GLdouble radius, GLdouble height, GLint slices,
GLint stacks);

void glutWireTeapot(GLdouble size);
void glutSolidTeapot(GLdouble size);

Managing a Background Process

You can specify a function that's to be executed if no other events are pefadirexample, when the
event loop would otherwise be idlevith glutldleFunc() This is particularly useful for continuous
animation or other background processing.

void glutldleFunc(void (*func)(void));
Specifies the function, func, to be executed if no other events are pending. If NULL (zero) is passt
in, execution of func is disabled.

Running the Program

After all the setup is completed, GLUT programs enter an event processinglidbfainLoop()

void glutMainLoop(void);
Enters the GLUT processing loop, never to return. Registered callback functions will be called wh
the corresponding events instigate them.

OpenGL Programming Guide — Appendix E, Calculating Normal Vectors — 4

Appendix E
Calculating Normal Vectors

This appendix describes how to calculate normal vectors for surfaces. You need to define normals to
the OpenGL lighting facility, which is described in Chapter 5. "Normal Vectors" in Chapter 2 introduce:
normals and the OpenGL command for specifying them. This appendix goes through the details of
calculating them. It has the following major sections:

"Finding Normals for Analytic Surfaces"

"Finding Normals from Polygonal Data"

Since normals are perpendicular to a surface, you can find the normal at a particular point on a surfac
first finding the flat plane that just touches the surface at that point. The normal is the vector that's

perpendicular to that plane. On a perfect sphere, for example, the normal at a point on the surface is i
the same direction as the vector from the center of the sphere to that point. For other types of surface
there are other, better means for determining the normals, depending on how the surface is specified.

Recall that smooth curved surfaces are approximated by a large number of small flat polygons. If the
vectors perpendicular to these polygons are used as the surface normals in such an approximation, tt
surface appears faceted, since the normal direction is discontinuous across the polygonal boundaries
many cases, however, an exact mathematical description exists for the surface, and true surface norn
can be calculated at every point. Using the true normals improves the rendering considerably, as sho
in Figure E-1 Even if you don’t have a mathematical description, you can do better than the faceted Ic
shown in the figure. The two major sections in this appendix describe how to calculate normal vectors
these two cases:

"Finding Normals for Analytic Surfaces" explains what to do when you have a mathematical
description of a surface.

"Finding Normals from Polygonal Data" covers the case when you have only the polygonal data ti
describe a surface.

Figure E-1 Rendering with Polygonal Normals vs. True Normals

Finding Normals for Analytic Surfaces

Analytic surfaces are smooth, differentiable surfaces that are described by a mathematical equation (¢
set of equations). In many cases, the easiest surfaces to find normals for are analytic surfaces for whi

OpenGL Programming Guide — Appendix E, Calculating Normal Vectors — 1

you have an explicit definition in the following form:

V(s = [X(s.) Y(s.9 ZsD]

wheres andt are constrained to be in some domain, dnd, andZ are differentiable functions of two
variables. To calculate the normal, find

which are vectors tangent to the surface irstaedt directions. The cross product

is perpendicular to both and, hence, to the surface. The following shows how to calculate the cross
product of two vectors. (Watch out for the degenerate cases where the cross product has zero length!

You should probably normalize the resulting vector. To normalize a vector [x y z], calculate its length

and divide each component of the vector by the length.
As an example of these calculations, consider the analytic surface
V(s,t) =[s2t3 3st]

From this we have

So, for example, whesr1 andt=2, the corresponding point on the surface is (1, 8, 1), and the vector
(-24, 2, 24) is perpendicular to the surface at that point. The length of this vector is 34, so the unit nor
vector is (—24/34, 2/34, 24/34) = (-0.70588, 0.058823, 0.70588).

For analytic surfaces that are described implicithf@sy, 2 = 0, the problem is harder. In some cases,
you can solve for one of the variables, sayG(x,), and put it in the explicit form given previously:

OpenGL Programming Guide — Appendix E, Calculating Normal Vectors — 2

Then continue as described earlier.

If you can’t get the surface equation in an explicit form, you might be able to make use of the fact that
the normal vector is given by the gradient

evaluated at a particular poing, {y, 2. Calculating the gradient might be easy, but finding a point that lies
on the surface can be difficult. As an example of an implicitly defined analytic function, consider the
equation of a sphere of radius 1 centered at the origin:

x2+y2+72-1=0)
This means that
Fx,y,z2)=®+y2+2-1

which can be solved farto yield

Thus, normals can be calculated from the explicit form

as described previously.

If you could not solve foz, you could have used the gradient

as long as you could find a point on the surface. In this case, it's not so hard to findJeqrogxample,
(213, 1/3, 2/3) lies on the surface. Using the gradient, the normal at this point is (4/3, 2/3, 4/3). The
unit-length normal is (2/3, 1/3, 2/3), which is the same as the point on the surface, as expected.

Finding Normals from Polygonal Data

As mentioned previously, you often want to find normals for surfaces that are described with polygone

OpenGL Programming Guide — Appendix E, Calculating Normal Vectors — 3

data such that the surfaces appear smooth rather than faceted. In most cases, the easiest way for yot
this (though it might not be the most efficient way) is to calculate the normal vectors for each of the
polygonal facets and then to average the normals for neighboring facets. Use the averaged normal foi
vertex that the neighboring facets have in common. Figure E-2shows a surface and its polygonal
approximation. (Of course, if the polygons represent the exact surface and aren’t merely an
approximatiofll if you're drawing a cube or a cut diamond, for exaripton’t do the averaging.

Calculate the normal for each facet as described in the following paragraphs, and use that same norrr
for each vertex of the facet.)

OpenGL Programming Guide — Appendix E, Calculating Normal Vectors — 4

Figure E-2 Averaging Normal Vectors

To find the normal for a flat polygon, take any three vertides2, andv3 of the polygon that do not lie
in a straight line. The cross product

[vi-v2] x [v2 -v3]

is perpendicular to the polygon. (Typically, you want to normalize the resulting vector.) Then you neec
to average the normals for adjoining facets to avoid giving too much weight to one of them. For instan
in the example shown in Figure E-2nif, n2, n3, andng are the normals for the four polygons meeting

at point P, calculate;+n2+n3+n4 and then normalize it. (You can get a better average if you weight the

normals by the size of the angles at the shared intersection.) The resulting vector can be used as the
normal for point P.

Sometimes, you need to vary this method for particular situations. For instance, at the boundary of a
surface (for example, point Q in Figure E-2), you might be able to choose a better normal based on yc
knowledge of what the surface should look like. Sometimes the best you can do is to average the poly
normals on the boundary as well. Similarly, some models have some smooth parts and some sharp
corners (point R is on such an edge in Figure E-2. In this case, the normals on either side of the crea
shouldn't be averaged. Instead, polygons on one side of the crease should be drawn with one normal
polygons on the other side with another.

OpenGL Programming Guide — Appendix F, Homogeneous Coordinates and Transformation Matrices — 5

Appendix F
Homogeneous Coordinates and Transformation Matrices

This appendix presents a brief discussion of homogeneous coordinates. It also lists the form of the
transformation matrices used for rotation, scaling, translation, perspective projection, and orthographi
projection. These topics are introduced and discussed in Chapter 3. For a more detailed discussion of
these subjects, see almost any book on three—dimensional computer gréptessimple Computer
Graphics: Principles and Practicky Foley, van Dam, Feiner, and Hughes (Reading, MA:
Addison-Wesley, 1990)or a text on projective geomefiyfor example,The Real Projective Planby

H. S. M. Coxeter, 2nd ed. (Cambridge: Cambridge University Press, 1961). In the discussion that
follows, the termhomogeneous coordinatealways means three—dimensional homogeneous coordinate:
although projective geometries exist for all dimensions.

This appendix has the following major sections:
"Homogeneous Coordinates"

"Transformation Matrices"

Homogeneous Coordinates

OpenGL commands usually deal with two— and three—dimensional vertices, but in fact all are treated
internally as three—dimensional homogeneous vertices comprising four coordinates. Every column ves

Y, z, v)rT represents a homogeneous vertex if at least one of its elements is nonzero. If the real nurr
ais nonzero, therx(y, z, v)/T and @x, ay, az, aN)T represent the same homogeneous vertex. (This is
just like fractionsxy = (ax)/(ay).) A three—dimensional euclidean space polim,(z)T becomes the
homogeneous vertex with coordinatgsy(, z 1.05r, and the two—-dimensional euclidean pominT
becomesy y, 0.0, 1.07.

As long aswis nonzero, the homogeneous verbexy z, v)/T corresponds to the three—dimensional point

(xw, yiw, ZIWT. If w= 0.0, it corresponds to no euclidean point, but rather to some idealized "point at

infinity." To understand this point at infinity, consider the point (1, 2, 0, 0), and note that the sequence
points (1, 2, 0, 1), (1, 2, 0, 0.01), and (1, 2.0, 0.0, 0.0001), corresponds to the euclidean points (1, 2),
(100, 200), and (10000, 20000). This sequence represents points rapidly moving toward infinity along
line 2x=y. Thus, you can think of (1, 2, 0, 0) as the point at infinity in the direction of that line.

Note: OpenGL might not handle homogeneous clip coordinateswttd correctly. To be sure that
your code is portable to all OpenGL systems, use only nonnegatigkies.
Transforming Vertices

Vertex transformations (such as rotations, translations, scaling, and shearing) and projections (such a
perspective and orthographic) can all be represented by applying an approgtiatatrx to the
coordinates representing the vertex: tepresents a homogeneous vertexMnsd a 44 transformation
matrix, thenMv is the image of under the transformation Y. (In computer—graphics applications, the

OpenGL Programming Guide — Appendix F, Homogeneous Coordinates and Transformation Matrices — 1

transformations used are usually nonsinduliarother words, the matrikl can be inverted. This isn’'t
required, but some problems arise with nonsingular transformations.)

After transformation, all transformed vertices are clipped sadlyataindz are in the range@r-w]
(assumingwv > 0). Note that this range corresponds in euclidean space to [-1.0, 1.0].

Transforming Normals

Normal vectors aren't transformed in the same way as vertices or position vectors. Mathematically, it's
better to think of normal vectors not as vectors, but as planes perpendicular to those vectors. Then, th
transformation rules for normal vectors are described by the transformation rules for perpendicular
planes.

A homogeneous plane is denoted by the row veatds,(c, d, where at least one af b, g ordis
nonzero. Ifg is a nonzero real number, then b, ¢, J and @a, gb, gc, gilrepresent the same plane. A

point &, vy, z, wT is on the planeq| b, c, dif axtbytcztdw= 0. (Ifw = 1, this is the standard
description of a euclidean plane.) In order forly, ¢, d to represent a euclidean plane, at least oae of
b, or c must be nonzero. If they're all zero, then (0, Ad)epresents the "plane at infinity," which
contains all the "points at infinity."

If pis a homogeneous plane and a homogeneous vertex, then the statemelits on plan@” is
written mathematically agv= 0, wherepvis normal matrix multiplication. IM is a nonsingular vertex

transformation (that is, ax4 matrix that has an inverﬁe‘]), thenpv= 0 is equivalent tpM‘le: 0,

soMv lies on the pIaan‘l. Thus,pM‘lis the image of the plane under the vertex transformtion

If you like to think of normal vectors as vectors instead of as the planes perpendicular to themcltet
be vectors such thatis perpendicular to. ThennTv = 0. Thus, for an arbitrary nonsingular
transformatiorM, nTM~Mv = 0, which means that nTM-1 is the transpose of the transformed normal

vector. Thus, the transformed normal vectdrNS‘:BTn. In other words, normal vectors are transformed
by the inverse transpose of the transformation that transforms points. Whew!

Transformation Matrices

Although any nonsingular matrid represents a valid projective transformation, a few special matrices
are particularly useful. These matrices are listed in the following subsections.

Translation

The callglTranslate*(x, y, zgenerate$, where

OpenGL Programming Guide — Appendix F, Homogeneous Coordinates and Transformation Matrices — 2

Scaling

The callglScale*(x, y, zjenerates S, where

Notice that S-1 is defined onlyxjfy, andz are all nonzero.

Rotation
The callglRotate*(a, x, y, zjenerates R as follows:
Letv=(x,y,2)T,and u = V/||v|]| = (X, Yy, 2)T.

Also let

Then

TheR matrix is always defined. K=y=z=0, thenR is the identity matrix. You can obtain the inverse of
R, R-1 by substitutinge-for a, or by transposition.

OpenGL Programming Guide — Appendix F, Homogeneous Coordinates and Transformation Matrices — 3

TheglRotate*() command generates a matrix for rotation about an arbitrary axis. Often, you're rotating
about one of the coordinate axes; the corresponding matrices are as follows:

As before, the inverses are obtained by transposition.

Perspective Projection

The callglFrustum(l, r, b, t, n, fgenerateR, where

R is defined as long dsgr, t£b, andnzf.

Orthographic Projection

The callglOrtho(l, r, b, t, n, f generateR, where

OpenGL Programming Guide — Appendix F, Homogeneous Coordinates and Transformation Matrices — 4

R is defined as long dgr, t£b, andnzf.

OpenGL Programming Guide — Appendix G, Programming Tips — 5

Appendix G
Programming Tips

This appendix lists some tips and guidelines that you might find useful. Keep in mind that these tips ai
based on the intentions of the designers of the OpenGL, not on any experience with actual applicatior
and implementations! This appendix has the following major sections:

"OpenGL Correctness Tips"
"OpenGL Performance Tips"

"GLX Tips"

OpenGL Correctness Tips

Perform error checking often. CglGetError() at least once each time the scene is rendered to
make certain error conditions are noticed.

Do not count on the error behavior of an OpenGL implementatiomight change in a future

release of OpenGL. For example, OpenGL 1.1 ignores matrix operations invoked bgiBexgn()
andglEnd()commands, but a future version might not. Put another way, OpenGL error semantics
may change between upward—compatible revisions.

If you need to collapse all geometry to a single plane, use the projection matrix. If the modelview
matrix is used, OpenGL features that operate in eye coordinates (such as lighting and
application—defined clipping planes) might fail.

Do not make extensive changes to a single matrix. For example, do not animate a rotation by
continually callingglRotate*()with an incremental angle. Rather, gisoadldentity()to initialize
the given matrix for each frame, then @dRotate*() with the desired complete angle for that frame.

Count on multiple passes through a rendering database to generate the same pixel fragments onl
this behavior is guaranteed by the invariance rules established for a compliant OpenGL
implementation. (See Appendix H for details on the invariance rules.) Otherwise, a different set of
fragments might be generated.

Do not expect errors to be reported while a display list is being defined. The commands within a
display list generate errors only when the list is executed.

Place the near frustum plane as far from the viewpoint as possible to optimize the operation of the
depth buffer.

Call glFlush()to force all previous OpenGL commands to be executed. Do not cogt®ett() or
glls*() to flush the rendering stream. Query commands flush as much of the stream as is required
return valid data but don’t guarantee completing all pending rendering commands.

Turn dithering off when rendering predithered images (for example, giB@pyPixels(is called).

Make use of the full range of the accumulation buffer. For example, if accumulating four images,

OpenGL Programming Guide — Appendix G, Programming Tips — 1

scale each by one—quarter as it's accumulated.

If exact two—dimensional rasterization is desired, you must carefully specify both the orthographic
projection and the vertices of primitives that are to be rasterized. The orthographic projection shol
be specified with integer coordinates, as shown in the following example:

gluOrtho2D(0, width, 0, height);

wherewidth andheightare the dimensions of the viewport. Given this projection matrix, polygon
vertices and pixel image positions should be placed at integer coordinates to rasterize predictably
For exampleglRectiQ, 0, 1,) reliably fills the lower left pixel of the viewport, and

glRasterPos2f, 0 reliably positions an unzoomed image at the lower left of the viewport. Point
vertices, line vertices, and bitmap positions should be placed at half-integer locations, however. F
example, a line drawn fronrxZ, 0.5) to X2, 0.5) will be reliably rendered along the bottom row of
pixels into the viewport, and a point drawn at (0.5, 0.5) will reliably fill the same pixgiRastiQ,
0,1,2.

An optimum compromise that allows all primitives to be specified at integer positions, while still
ensuring predictable rasterization, is to transteaady by 0.375, as shown in the following code
fragment. Such a translation keeps polygon and pixel image edges safely away from the centers
pixels, while moving line vertices close enough to the pixel centers.

glViewport(0, 0, width, height);
gIMatrixMode(GL_PROJECTION);
glLoadldentity();

gluOrtho2D(0, width, 0, height);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

glTranslatef(0.375, 0.375, 0.0);

/* render all primitives at integer positions */

Avoid using negativev vertex coordinates and negatiyéexture coordinates. OpenGL might not
clip such coordinates correctly and might make interpolation errors when shading primitives defin
by such coordinates.

Do not assume the precision of operations, based upon the data type of parameters to OpenGL
commands. For example, if you are usgigotated() you should not assume that geometric
processing pipeline operates with double—precision floating point. It is possible that the paramete!
to glRotated()are converted to a different data type before processing.

OpenGL Performance Tips

UseglColorMaterial() when only a single material property is being varied rapidly (at each vertex,
for example). UsglMaterial() for infrequent changes, or when more than a single material property
is being varied rapidly.

UseglLoadldentity()to initialize a matrix, rather than loading your own copy of the identity matrix.

OpenGL Programming Guide — Appendix G, Programming Tips — 2

Use specific matrix calls such giRotate*() glTranslate*() andglScale*()rather than composing
your own rotation, translation, or scale matrices and catlikigltMatrix().

Use query functions when your application requires just a few state values for its own computatiol
If your application requires several state values from the same attribute grog|®usteAttrib()
andglPopAttrib()to save and restore them.

Use display lists to encapsulate potentially expensive state changes.
Use display lists to encapsulate the rendering calls of rigid objects that will be drawn repeatedly.

Use texture objects to encapsulate texture data. Place gllfésdmage*()calls (including
mipmaps) required to completely specify a texture and the assogliditedParameter*(calls
(which set texture properties) into a texture object. Bind this texture object to select the texture.

If the situation allows it, usgl*TexSublmage()o replace all or part of an existing texture image
rather than the more costly operations of deleting and creating an entire new image.

If your OpenGL implementation supports a high—performance working set of resident textures, try
make all your textures resident; that is, make them fit into the high—performance texture memory.
necessary, reduce the size or internal format resolution of your textures until they all fit into
memory. If such a reduction creates intolerably fuzzy textured objects, you may give some texture
lower priority, which will, when push comes to shove, leave them out of the working set.

Use evaluators even for simple surface tessellations to minimize network bandwidth in client-sen
environments.

Provide unit-length normals if it's possible to do so, and avoid the overhead of GL_NORMALIZE.
Avoid usingglScale*()when doing lighting because it almost always requires that
GL_NORMALIZE be enabled.

SetglShadeModel(Jo GL_FLAT if smooth shading isn’t required.

Use a singlglClear() call per frame if possible. Do not ugi€lear() to clear small subregions of
the buffers; use it only for complete or near—complete clears.

Use a single call tgIBeginGL_TRIANGLES) to draw multiple independent triangles rather than
calling gIBeginGL_TRIANGLES) multiple times, or callingglBeginGL_POLYGON. Even if

only a single triangle is to be drawn, use GL_TRIANGLES rather than GL_POLYGON. Use a
single call toglBeginGL_QUADYS) in the same manner rather than calling
gIBeginGL_POLYGON) repeatedly. Likewise, use a single calytBegin(GL_LINES) to draw
multiple independent line segments rather than cafjiBgginGL_LINES) multiple times.

Some OpenGL implementations benefit from storing vertex data in vertex arrays. Use of vertex
arrays reduces function call overhead. Some implementations can improve performance by batch
processing or reusing processed vertices.

In general, use the vector forms of commands to pass precomputed data, and use the scalar forn
commands to pass values that are computed near call time.

OpenGL Programming Guide — Appendix G, Programming Tips — 3

Avoid making redundant mode changes, such as setting the color to the same value between eac
vertex of a flat—-shaded polygon.

Be sure to disable expensive rasterization and per—fragment operations when drawing or copying
images. OpenGL will even apply textures to pixel images if asked to!

Unless absolutely needed, avoid having different front and back polygon modes.

GLX Tips

UsegIXWaitGL()rather tharglFinish() to force X rendering commands to follow GL rendering
commands.

Likewise, usgIXWaitX() rather tharKSync()to force GL rendering commands to follow X
rendering commands.

Be careful when usinglXChooseVisual()pecause boolean selections are matched exactly. Since
some implementations won’t export visuals with all combinations of boolean capabilities, you
should callgiXChooseVisual(3everal times with different boolean values before you give up. For
example, if no single—-buffered visual with the required characteristics is available, check for a
double-buffered visual with the same capabilities. It might be available, and it's easy to use.

OpenGL Programming Guide — Appendix H, OpenGL Invariance - 4

Appendix H
OpenGL Invariance

OpenGL is not a pixel-exact specification. It therefore doesn’t guarantee an exact match between ime
produced by different OpenGL implementations. However, OpenGL does specify exact matches, in sc
cases, for images produced by the same implementation. This appendix describes the invariance rule
that define these cases.

The obvious and most fundamental case is repeatability. A conforming OpenGL implementation
generates the same results each time a specific sequence of commands is issued from the same initi:
conditions. Although such repeatability is useful for testing and verification, it's often not useful to
application programmers, because it's difficult to arrange for equivalent initial conditions. For example
rendering a scene twice, the second time after swapping the front and back buffers, doesn’t meet this
requirement. So repeatability can’t be used to guarantee a stable, double-buffered image.

A simple and useful algorithm that counts on invariant execution is erasing a line by redrawing it in the
background color. This algorithm works only if rasterizing the line results in the same fragypeits

being generated in both the foreground and background color cases. OpenGL requires that the
coordinates of the fragments generated by rasterization be invariant with respect to framebuffer conte
which color buffers are enabled for drawing, the values of matrices other than those on the top of the
matrix stacks, the scissor parameters, all writemasks, all clear values, the current color, index, normal
texture coordinates, and edge—flag values, the current raster color, raster index, and raster texture
coordinates, and the material properties. It is further required that exactly the same fragments be
generated, including the fragment color values, when framebuffer contents, color buffer enables, matr
other than those on the top of the matrix stacks, the scissor parameters, writemasks, or clear values ¢

OpenGL further suggests, but doesn'’t require, that fragment generation be invariant with respect to th
matrix mode, the depths of the matrix stacks, the alpha test parameters (other than alpha test enable)
stencil parameters (other than stencil enable), the depth test parameters (other than depth test enable
blending parameters (other than enable), the logical operation (but not logical operation enable), and 1
pixel-storage and pixel-transfer parameters. Because invariance with respect to several enables isn’t
recommended, you should use other parameters to disable functions when invariant rendering is requ
For example, to render invariantly with blending enabled and disabled, set the blending parameters to
GL_ONE and GL_ZERO to disable blending rather than cafjibjsablg GL_BLEND). Alpha testing,
stencil testing, depth testing, and the logical operation all can be disabled in this manner.

Finally, OpenGL requires that per-fragment arithmetic, such as blending and the depth test, is invaria
all OpenGL state except the state that directly defines it. For example, the only OpenGL parameters tl
affect how the arithmetic of blending is performed are the source and destination blend parameters ar
the blend enable parameter. Blending is invariant to all other state changes. This invariance holds for
scissor test, the alpha test, the stencil test, the depth test, blending, dithering, logical operations, and

buffer writemasking.

As a result of all these invariance requirements, OpenGL can guarantee that images rendered into
different color buffers, either simultaneously or separately using the same command sequence, are pi
identical. This holds for all the color buffers in the framebuffer or all the color buffers in an off-screen

OpenGL Programming Guide — Appendix H, OpenGL Invariance - 1

buffer, but it isn’t guaranteed between the framebuffer and off-screen buffers.

OpenGL Programming Guide — Appendix I, Color Plates - 2

Appendix |
Color Plates

This appendix contains the color plates that appear in the printed version of this guide.

Plate 1

The scene from the cover of this book, with the objects rendered as wireframe models. See Chapter Z

Plate 2

The same scene using fog for depth—cueing (lines further from the eye are dimmer). See Chapter 6.

OpenGL Programming Guide — Appendix I, Color Plates — 1

Plate 3

The same scene with antialiased lines that smooth the jagged edges.
See Chapter 6.

OpenGL Programming Guide — Appendix I, Color Plates - 2

Plate 4

The scene drawn with flat—shaded polygons (a single color for each filled polygon). See Chapter 4.

OpenGL Programming Guide — Appendix I, Color Plates — 3

Plate 5

The scene rendered with lighting and smooth—shaded polygons.
See Chapters 4 and 5.

OpenGL Programming Guide — Appendix I, Color Plates — 4

Plate 6

The scene with texturemaps and shadows added. See Chapters 9 and 14.

OpenGL Programming Guide — Appendix I, Color Plates — 5

Plate 7

The scene drawn with one of the objects motion—blurred. The accumulation buffer is used to compose
sequence of images needed to blur the moving object. See Chapter 10.

OpenGL Programming Guide — Appendix I, Color Plates — 6

Plate 8

A close-up shatthe scene is rendered from a new viewpoint. See Chapter 3.

OpenGL Programming Guide — Appendix I, Color Plates — 7

Plate 9

The scene drawn using atmospheric effects (fog) to simulate a smoke—filled room. See Chapter 6.

OpenGL Programming Guide — Appendix I, Color Plates — 8

Plate 10

Teapots drawn with jittered viewing volumes into the accumulation buffer for a depth—of-field effect. T

gold teapot is in sharpest focus.
See Chapter 10.

Plate 11

A smooth—-shaded triangle. The three vertices at the corners are drawn in red, green, and blue; the re:
the triangle is smoothly shaded between these three colors. See Chapter 4.

OpenGL Programming Guide — Appendix I, Color Plates — 9

Plate 12

The color cube. On the left, the red, green, and blue axes are shown; on the right, the axes denote ye
cyan, and magenta. See Chapter 4.

Plate 13

Objects drawn with gray material parameters and colored light sources. (a) The scene on the left has
blue ambient light and a white diffuse light source. The scene on the right has a pale blue diffuse light
source and almost no ambient light. (b) On the left, an infinite light source is used; on the right, a local
light source is used. With the infinite light source, the highlight (specular reflection) is centered on bott
the cone and the sphere because the angle between the object and the line of sight is ignored. With a
light source, the angle is taken into account, so the highlights are located appropriately on both object
See Chapter 5.

OpenGL Programming Guide — Appendix I, Color Plates — 10

Plate 14

Gray teapots drawn with different lighting conditions. (a) Each of the three teapots is drawn with
increasing ambient light. (b) The teapots are clipped to expose their interiors. The top teapot uses
one-sided lighting, the middle one uses two-sided lighting with the same material for both front and b
faces, and the bottom teapot uses two-sided lighting and different materials for the front and back fac

See Chapter 5.

OpenGL Programming Guide — Appendix I, Color Plates — 11

Plate 15

A lighted sphere drawn using color index mode. See Chapter 5.

Plate 16

Twelve spheres, each with different material parameters. The row properties are as labeled above. Tt
first column uses a blue diffuse material color with no specular properties. The second column adds
white specular reflection with a low shininess exponent. The third column uses a high shininess expor
and thus has a more concentrated highlight. The fourth column uses the blue diffuse color and, instea
specular reflection, adds an emissive component. See Chapter 5.

OpenGL Programming Guide — Appendix I, Color Plates — 12

Plate 17

Lighted, smooth—shaded teapots drawn with different material properties that approximate real materi
The first column has materials that resemble (from top to bottom) emerald, jade, obsidian, pearl, ruby,
and turquoise. The second column resembles brass, bronze, chrome, copper, gold, and silver. The th
column represents various colors of plastic: black, cyan, green, red, white, and yellow. The fourth
column is drawn with similar colors of rubber. See Chapter 5

OpenGL Programming Guide — Appendix I, Color Plates — 13

Plate 18

Lighted, green teapots drawn using automatic texture—coordinate generation and a red contour textur
map. (a) The texture contour stripes are parallel to the plane x = 0, relative to the transformed object (
is, using GL_OBJECT_LINEAR). As the object moves, the texture appears to be attached to it. (b) A
different planar equation (x + y + z = 0) is used, so the stripes have a different orientation. (c) The texi
coordinates are calculated relative to eye coordinates and hence aren't fixed to the object
(GL_EYE_LINEAR). As the object moves, it appears to "swim" through the texture. See Chapter 9.

OpenGL Programming Guide — Appendix I, Color Plates — 14

Plate 19

A texture—-mapped Bezier surface mesh created using evaluators. See Chapters 9 and 12.

Plate 20

A single polygon drawn using a set of mipmapped textures. In this case, each texture is simply a diffe
color. The polygon is actually a rectangle oriented so that it recedes into the distance, appearing to
become progressively smaller. As the visible area of the polygon becomes smaller, correspondingly

smaller mipmaps are used. See Chapter 9.

OpenGL Programming Guide — Appendix I, Color Plates — 15

Plate 21

An environment-mapped object. On the left is the original texture, a processed photograph of a coffee
shop in Palo Alto, taken with a very wide—angle lens. Below is a goblet with the environment map
applied; because of the mapping, the goblet appears to reflect the coffee shop off its surface. See Chi
9.

OpenGL Programming Guide — Appendix I, Color Plates — 16

Plate 22

A scene with several flat—-shaded objects. On the left, the scene is aliased. On the right, the accumula
buffer is used for scene antialiasing: the scene is rendered several times, each time jittered less than
pixel, and the images are accumulated and then averaged. See Chapter 10.

OpenGL Programming Guide — Appendix I, Color Plates — 17

Plate 23

A magnification of the previous scenes. The left image shows the aliased, jagged edges. In the right
image, the edges are blurred, or antialiased, and hence less jagged. See Chapter 10.

Plate 24

A scene drawn with texture mapping, lighting, and shadows. The paintings, floor, ceiling, and benches
are texture—-mapped. Note the use of spotlights and shadows. See Chapters 5, 9, and 14.

OpenGL Programming Guide — Appendix I, Color Plates — 18

Plate 25

A lighted, smooth—shaded model on a texture-mapped surface.
See Chapters 4, 5

OpenGL Programming Guide — Appendix I, Color Plates — 19

Plate 26

A dramatically lit and shadowed scene, with most of the surfaces textured. The iris is a polygonal moc
See Chapters 2, 5, 9, and 14.

OpenGL Programming Guide — Appendix I, Color Plates — 20

Plate 27

Sophisticated use of texturing. All surfaces are texture—-mapped. In addition, the attenuated spotlight
effect is created using a projected texture. See Chapters 9 and 14.

OpenGL Programming Guide — Appendix I, Color Plates — 21

Plate 28

Lit, smooth—shaded three—dimensional font. The font is created by extruding a two—dimensional shap

along a specified axis.
See Chapters 2, 4, and 5.

Plate 29 and 30

Two scenes snapped from a visual simulation program. The hills are composed of just a few polygons
but all the polygons are texture-mapped. Similarly, the buildings are composed of only a few textured
rectangular walls. See Chapters 2, 3, and 9.

OpenGL Programming Guide — Appendix I, Color Plates — 22

Plate 31

Another scene from a different visual simulation program. The hills are textured, and the scene is
rendered with fog. The airplanes, obviously, are polygonal. See Chapters 2, 3, 6, and 9.

OpenGL Programming Guide — Appendix I, Color Plates — 23

Glossary

accumulation buffer

Memory (bitplanes) that is used to accumulate a series of images generated in the color buffer. Using
accumulation buffer may significantly improve the quality of the image, but also take correspondingly
longer to render. The accumulation buffer is used for effects such as depth of field, motion blur, and
full-scene antialiasing.

aliasing

A rendering technique that assigns to pixels the color of the primitive being rendered, regardless of
whether that primitive covers all or only a portion of the pixel's area. This results in jagged edges, or
jaggies.

alpha

A fourth color component. The alpha component is never displayed directly and is typically used to
control color blending. By convention, OpenGL alpha corresponds to the notion of opacity rather than
transparency, meaning that an alpha value of 1.0 implies complete opacity, and an alpha value of 0.0
complete transparency.

ambient

Ambient light is nondirectional and distributed uniformly throughout space. Ambient light falling upon &
surface approaches from all directions. The light is reflected from the object independent of surface
location and orientation with equal intensity in all directions.

animation

Generating repeated renderings of a scene, with smoothly changing viewpoint and/or object positions
quickly enough so that the illusion of motion is achieved. OpenGL animation is almost always done
using double-buffering.

antialiasing

A rendering technique that assigns pixel colors based on the fraction of the pixel's area that's covered
the primitive being rendered. Antialiased rendering reduces or eliminates the jaggies that result from
aliased rendering.

application—specific clipping
Clipping of primitives against planes in eye coordinates; the planes are specified by the application us
glClipPlane()

attribute group
A set of related state variables, which OpenGL can save or restore together at one time.

back faces

See faces.

bit

Binary digit. A state variable having only two possible values: 0 or 1. Binary numbers are construction
of one or more bits.

bitmap
A rectangular array of bits. Also, the primitive rendered bygtB&émap()command, which uses its
bitmapparameter as a mask.

bitplane
A rectangular array of bits mapped one—to—one with pixels. The framebuffer is a stack of bitplanes.

blending
Reduction of two color components to one component, usually as a linear interpolation between the tv
components.

buffer

A group of bitplanes that store a single component (such as depth or green) or a single index (such as
color index or the stencil index). Sometimes the red, green, blue, and alpha buffers together are refert
to as the color buffer, rather than the color buffers.

C
God’s programming language.

C++

The object-oriented programming language of a pagan deity.

client

The computer from which OpenGL commands are issued. The computer that issues OpenGL comma
can be connected via a network to a different computer that executes the commands, or commands ¢
issued and executed on the same computer. See also server.

client memory
The main memory (where program variables are stored) of the client computer.

clip coordinates
The coordinate system that follows transformation by the projection matrix and precedes perspective
division. View—volume clipping is done in clip coordinates, but application—specific clipping is not.

clipping

Elimination of the portion of a geometric primitive that's outside the half-space defined by a clipping
plane. Points are simply rejected if outside. The portion of a line or of a polygon that’s outside the
half-space is eliminated, and additional vertices are generated as necessary to complete the primitive
within the clipping half-space. Geometric primitives and the current raster position (when specified) a
always clipped against the six half-spaces defined by the left, right, bottom, top, near, and far planes
the view volume. Applications can specify optional application—specific clipping planes to be applied ir
eye coordinates.

color index

A single value that represents a color by name, rather than by value. OpenGL color indices are treate:
continuous values (for example, floating—point numbers), while operations such as interpolation and
dithering are performed on them. Color indices stored in the framebuffer are always integer values,

however. Floating—point indices are converted to integers by rounding to the nearest integer value.

color-index mode
An OpenGL context is in color-index mode if its color buffers store color indices rather than red, greei
blue, and alpha color components.

color map
A table of index—to—RGB mappings that’'s accessed by the display hardware. Each color index is read
from the color buffer, converted to an RGB triple by lookup in the color map, and sent to the monitor.

components

Single, continuous (for example, floating—point) values that represent intensities or quantities. Usually
component value of zero represents the minimum value or intensity, and a component value of one
represents the maximum value or intensity, though other ranges are sometimes used. Because comp
values are interpreted in a normalized range, they are specified independent of actual resolution. For
example, the RGB triple (1, 1, 1) is white, regardless of whether the color buffers store 4, 8, or 12 bits
each.

Out-of-range components are typically clamped to the normalized range, not truncated or otherwise
interpreted. For example, the RGB triple (1.4, 1.5, 0.9) is clamped to (1.0, 1.0, 0.9) before it's used to
update the color buffer. Red, green, blue, alpha, and depth are always treated as components, never
indices.

concave
Not convex.

context
A complete set of OpenGL state variables. Note that framebuffer contents are not part of OpenGL sta
but that the configuration of the framebuffer is.

convex
A polygon is convex if no straight line in the plane of the polygon intersects the polygon more than
twice.

convex hull

The smallest convex region enclosing a specified group of points. In two dimensions, the convex hull i
found conceptually by stretching a rubber band around the points so that all of the points lie within the
band.

coordinate system

In n—dimensional space, a sehdhearly independent vectors anchored to a point (called the origin). A
group of coordinates specifies a point in space (or a vector from the origin) by indicating how far to
travel along each vector to reach the point (or tip of the vector).

culling
The process of eliminating a front face or back face of a polygon so that it isn’t drawn.

current matrix
A matrix that transforms coordinates in one coordinate system to coordinates of another system. Ther

are three current matrices in OpenGL: the modelview matrix transforms object coordinates (coordinatt
specified by the programmer) to eye coordinates; the perspective matrix transforms eye coordinates ti
clip coordinates; the texture matrix transforms specified or generated texture coordinates as describec
the matrix. Each current matrix is the top element on a stack of matrices. Each of the three stacks car
manipulated with OpenGL matrix-manipulation commands.

current raster position
A window coordinate position that specifies the placement of an image primitive when it's rasterized.
The current raster position and other current raster parameters are updatgtRakmPos()s called.

decal

A method of calculating color values during texture application, where the texture colors replace the
fragment colors or, if alpha blending is enabled, the texture colors are blended with the fragment colot
using only the alpha value.

depth
Generally refers to thewindow coordinate.

depth buffer

Memory that stores the depth value at every pixel. To perform hidden-surface removal, the depth buff
records the depth value of the object that lies closest to the observer at every pixel. The depth value ¢
every new fragment uses the recorded value for depth comparison and must pass the comparison tes
before being rendered.

depth—cuing
A rendering technique that assigns color based on distance from the viewpoint.

diffuse

Diffuse lighting and reflection accounts for the directionality of a light source. The intensity of light
striking a surface varies with the angle between the orientation of the object and the direction of the lig
source. A diffuse material scatters that light evenly in all directions.

directional light source
See infinite light source.

display list

A named list of OpenGL commands. Display lists are always stored on the server, so display lists can
used to reduce network traffic in client—server environments. The contents of a display list may be
preprocessed and might therefore execute more efficiently than the same set of OpenGL commands
executed in immediate mode. Such preprocessing is especially important for computing intensive
commands such as NURBS or polygon tessellation.

dithering

A technique for increasing the perceived range of colors in an image at the cost of spatial resolution.
Adjacent pixels are assigned differing color values; when viewed from a distance, these colors seem t
blend into a single intermediate color. The technique is similar to the halftoning used in black—and-wt
publications to achieve shades of gray.

double-buffering

OpenGL contexts with both front and back color buffers are double—-buffered. Smooth animation is
accomplished by rendering into only the back buffer (which isn't displayed), then causing the front anc
back buffers to be swapped. $patSwapBuffers(in Appendix D.

edge flag

A Boolean value at a vertex which marks whether that vertex precedes a boundagjtetig-lag*()

may be used to mark an edge as not on the boundary. When a polygon is drawn in GL_LINE mode, o
boundary edges are drawn.

element
A single component or index.

emission
The color of an object which is self-illuminating or self-radiating. The intensity of an emissive materia
not attributed to any external light source.

evaluated
The OpenGL process of generating object—-coordinate vertices and parameters from previously specif
Bézier equations.

execute
An OpenGL command is executed when it's called in immediate mode or when the display list that it's
part of is called.

eye coordinates
The coordinate system that follows transformation by the modelview matrix and precedes transformat
by the projection matrix. Lighting and application—specific clipping are done in eye coordinates.

faces

The sides of a polygon. Each polygon has two faces: a front face and a back face. Only one face or tr
other is ever visible in the window. Whether the back or front face is visible is effectively determined
after the polygon is projected onto the window. After this projection, if the polygon’s edges are directe:
clockwise, one of the faces is visible; if directed counterclockwise, the other face is visible. Whether
clockwise corresponds to front or back (and counterclockwise corresponds to back or front) is
determined by the OpenGL programmer.

flat shading
Refers to a primitive colored with a single, constant color across its extent, rather than smoothly
interpolated colors across the primitive. See Gouraud shading.

fog

A rendering technique that can be used to simulate atmospheric effects such as haze, fog, and smog
fading object colors to a background color based on distance from the viewer. Fog also aids in the
perception of distance from the viewer, giving a depth cue.

fonts

Groups of graphical character representations generally used to display strings of text. The characters
may be roman letters, mathematical symbols, Asian ideograms, Egyptian hieroglyphics, and so on.

fragment
Fragments are generated by the rasterization of primitives. Each fragment corresponds to a single pix
and includes color, depth, and sometimes texture—coordinate values.

framebuffer
All the buffers of a given window or context. Sometimes includes all the pixel memory of the graphics
hardware accelerator.

front faces
See faces.

frustum
The view volume warped by perspective division.

gamma correction
A function applied to colors stored in the framebuffer to correct for the nonlinear response of the eye
(and sometimes of the monitor) to linear changes in color-intensity values.

geometric model
The object—coordinate vertices and parameters that describe an object. Note that OpenGL doesn’t de
syntax for geometric models, but rather a syntax and semantics for the rendering of geometric models

geometric object
See geometric model.

geometric primitive
A point, a line, or a polygon.

Gouraud shading

Smooth interpolation of colors across a polygon or line segment. Colors are assigned at vertices and
linearly interpolated across the primitive to produce a relatively smooth variation in color. Also called
smooth shading.

group
Each pixel of an image in client memory is represented by a group of one, two, three, or four elements

Thus, in the context of a client memory image, a group and a pixel are the same thing.

half-spaces
A plane divides space into two half-spaces.

hidden-line removal

A technique to determine which portions of a wireframe object should be visible. The lines that compri
the wireframe are considered to be edges of opaque surfaces, which may obscure other edges that ai
farther away from the viewer.

hidden-surface removal

A technique to determine which portions of an opaque, shaded object should be visible and which
portions should be obscured. A test of the depth coordinate, using the depth buffer for storage, is a
common method of hidden—surface removal.

homogeneous coordinates

A set ofn+1 coordinates used to represent points-dimensional projective space. Points in projective
space can be thought of as points in euclidean space together with some points at infinity. The
coordinates are homogeneous because a scaling of each of the coordinates by the same nonzero cor
doesn't alter the point to which the coordinates refer. Homogeneous coordinates are useful in the
calculations of projective geometry, and thus in computer graphics, where scenes must be projected ¢
a window.

image
A rectangular array of pixels, either in client memory or in the framebuffer.

image primitive
A bitmap or an image.

immediate mode

Execution of OpenGL commands when they’re called, rather than from a display list. No
immediate—-mode bit exists; the mode in immediate mode refers to use of OpenGL, rather than to a
specific bit of OpenGL state.

index

A single value that's interpreted as an absolute value, rather than as a normalized value in a specified
range (as is a component). Color indices are the names of colors, which are dereferenced by the disp
hardware using the color map. Indices are typically masked rather than clamped when out of range. F
example, the index 0xf7 is masked to 0x7 when written to a 4-bit buffer (color or stencil). Color indice:
and stencil indices are always treated as indices, never as components.

indices

Preferred plural of index. (The choice between the plural forms indices or intlagegell as matrices

or matrixes and vertices or vertekelsas engendered much debate between the authors and principal
reviewers of this guide. The authors’ compromise solution is to use the —ices form but to state clearly
the record that the use of indiadd, matrice bic], and vertice $§ic] for the singular forms is an
abomination.)

infinite light source
A directional source of illumination. The radiating light from an infinite light source strikes all objects a:
parallel rays.

interpolation
Calculation of values (such as color or depth) for interior pixels, given the values at the boundaries (st
as at the vertices of a polygon or a line).

IRIS GL
Silicon Graphics proprietary graphics library, developed from 1982 through 1992. OpenGL was desigr

with IRIS GL as a starting point.

IRIS Inventor
See Open Inventor.

jaggies

Artifacts of aliased rendering. The edges of primitives that are rendered with aliasing are jagged rathe
than smooth. A near—horizontal aliased line, for example, is rendered as a set of horizontal lines on
adjacent pixel rows rather than as a smooth, continuous line.

jittering

A pseudo-random displacement (shaking) of the objects in a scene, used in conjunction with the
accumulation buffer to achieve special effects.

lighting
The process of computing the color of a vertex based on current lights, material properties, and
lighting-model modes.

line
A straight region of finite width between two vertices. (Unlike mathematical lines, OpenGL lines have
finite width and length.) Each segment of a strip of lines is itself a line.

local light source

A source of illumination which has an exact position. The radiating light from a local light source
emanates from that position. Other names for a local light source are point light source or positional li¢
source. A spotlight is a special kind of local light source.

logical operation

Boolean mathematical operations between the incoming fragment’s RGBA color or color-index value
and the RGBA color or color-index values already stored at the corresponding location in the
framebuffer. Examples of logical operations include AND, OR, XOR, NAND, and INVERT.

luminance
The perceived brightness of a surface. Often refers to a weighted average of red, green, and blue colc
values that gives the perceived brightness of the combination.

matrices
Preferred plural of matrix. See indices.

matrix
A two-dimensional array of values. OpenGL matrices arexlltAough when stored in client memory

they're treated asxIl6 single—dimension arrays.

modelview matrix
The 4<4 matrix that transforms points, lines, polygons, and raster positions from object coordinates to
eye coordinates.

modulate

A method of calculating color values during texture application, where the texture and the fragment
colors are combined.

monitor
The device that displays the image in the framebuffer.

motion blurring

A technique that uses the accumulation buffer to simulate what appears on film when you take a pictu
of a moving object or when you move the camera while taking a picture of a stationary object. In
animations without motion blur, moving objects can appear jerky.

network
A connection between two or more computers that allows each to transfer data to and from the others

nonconvex
A polygon is nonconvex if there exists a line in the plane of the polygon that intersects the polygon mc
than twice.

normal
A three—component plane equation that defines the angular orientation, but not position, of a plane or
surface.

normalized

To normalize a normal vector, divide each of the components by the square root of the sum of their
squares. Then, if the normal is thought of as a vector from the origin to therpgimty(, nz), this

vector has unit length.

factor = sqrt(n% + ny2 + n22)

nx' = nx / factor

ny’ = ny / factor

nz' = nz / factor

normal vectors
See normal.

NURBS
Non-Uniform Rational B—Spline. A common way to specify parametric curves and surfaces. (See GLI
NURBS routines in Chapter 12.)

object
An object-coordinate model that’s rendered as a collection of primitives.

object coordinates
Coordinate system prior to any OpenGL transformation.

Open Inventor
An object-oriented 3D toolkit, built on top of OpenGL, based on a 3D scene database and user intera
components. It includes objects such as cubes, polygons, text, materials, cameras, lights, trackballs a
handle boxes.

orthographic
Nonperspective projection, as in some engineering drawings, with no foreshortening.

parameters
Values passed as arguments to OpenGL commands. Sometimes parameters are passed by referenct
OpenGL command.

perspective division
The division ofx, y, andz by w, carried out in clip coordinates.

pixel

Picture element. The bits at location y) of all the bitplanes in the framebuffer constitute the single
pixel (X, y). In an image in client memory, a pixel is one group of elements. In OpenGL window
coordinates, each pixel corresponds to alL@screen area. The coordinates of the lower-left corner of
the pixel arex,yare , y), and of the upper-right corner acel(, y+1).

point
An exact location in space, which is rendered as a finite—diameter dot.

point light source
See local light source.

polygon
A near—planar surface bounded by edges specified by vertices. Each triangle of a triangle mesh is a

polygon, as is each quadrilateral of a quadrilateral mesh. The rectangle spedjfiRedisy()is also a
polygon.

positional light source

See local light source.

primitive

A point, a line, a polygon, a bitmap, or an image. (Note: Not just a point, a line, or a polygon!)
projection matrix

The 4<4 matrix that transforms points, lines, polygons, and raster positions from eye coordinates to cli
coordinates.

proxy texture
A placeholder for a texture image, which is used to determine if there are enough resources to suppot
texture image of a given size and internal format resolution.

guadrilateral
A polygon with four edges.

rasterized

Converted a projected point, line, or polygon, or the pixels of a bitmap or image, to fragments, each
corresponding to a pixel in the framebuffer. Note that all primitives are rasterized, not just points, lines
and polygons.

rectangle
A quadrilateral whose alternate edges are parallel to each other in object coordinates. Polygons speci
with gIRect*()are always rectangles; other quadrilaterals might be rectangles.

rendering
Conversion of primitives specified in object coordinates to an image in the framebuffer. Rendering is tl
primary operation of OpenGLit's what OpenGL does.

resident texture

A texture image that is cached in special, high—performance texture memory. If an OpenGL
implementation does not have special, high—performance texture memory, then all texture images are
deemed resident textures.

RGBA
Red, Green, Blue, Alpha.

RGBA mode
An OpenGL context is in RGBA mode if its color buffers store red, green, blue, and alpha color
components, rather than color indices.

server
The computer on which OpenGL commands are executed. This might differ from the computer from
which commands are issued. See client.

shading
The process of interpolating color within the interior of a polygon, or between the vertices of a line,
during rasterization.

shininess
The exponent associated with specular reflection and lighting. Shininess controls the degree with whic
the specular highlight decays.

single-buffering
OpenGL contexts that don’t have back color buffers are single-buffered. You can use these contexts
animation, but take care to avoid visually disturbing flashes when rendering.

singular matrix
A matrix that has no inverse. Geometrically, such a matrix represents a transformation that collapses
points along at least one line to a single point.

specular

Specular lighting and reflection incorporates reflection off shiny objects and the position of the viewer.
Maximum specular reflectance occurs when the angle between the viewer and the direction of the
reflected light is zero. A specular material scatters light with greatest intensity in the direction of the
reflection, and its brightness decays, based upon the exponential value shininess.

spotlight
A special type of local light source that has a direction (where it points to) as well as a position. A

spotlight simulates a cone of light, which may have a fall-off in intensity, based upon distance from th
center of the cone.

stencil buffer

Memory (bitplanes) that is used for additional per—fragment testing, along wdipthebuffer. The
stencil test may be used for masking regions, capping solid geometry, and overlapping translucent
polygons.

stereo

Enhanced three—dimensional perception of a rendered image by computing separate images for eack
Stereo requires special hardware, such as two synchronized monitors or special glasses to alternate
viewed frames for each eye. Some implementations of OpenGL support stereo by having both left anc
right buffers for color data.

stipple

A one- or two—dimensional binary pattern that defeats the generation of fragments where its value is
Line stipples are one—-dimensional and are applied relative to the start of a line. Polygon stipples are
two—-dimensional and are applied with a fixed orientation to the window.

tessellation
Reduction of a portion of an analytic surface to a mesh of polygons, or of a portion of an analytic curv
to a sequence of lines.

texel
A texture element. A texel is obtained from texture memory and represents the color of the texture to |
applied to a corresponding fragment.

textures
One- or two—-dimensional images that are used to modify the color of fragments produced by
rasterization.

texture mapping

The process of applying an image (the texture) to a primitive. Texture mapping is often used to add
realism to a scene. For example, you can apply a picture of a building facade to a polygon representir
wall.

texture matrix
The 44 matrix that transforms texture coordinates from the coordinates in which they’re specified to tl
coordinates that are used for interpolation and texture lookup.

texture object

A named cache that stores texture data, such as the image array, associated mipmaps, and associate
texture parameter values: width, height, border width, internal format, resolution of components,
minification and magnification filters, wrapping modes, border color, and texture priority.

transformations
The warping of spaces. In OpenGL, transformations are limited to projective transformations that inclt

anything that can be represented bya rhatrix. Such transformations include rotations, translations,
(nonuniform) scalings along the coordinate axes, perspective transformations, and combinations of th

triangle
A polygon with three edges. Triangles are always convex.

vertex
A point in three—dimensional space.

vertex array

Where a block of vertex data (vertex coordinates, texture coordinates, surface normals, RGBA colors,
color indices, and edge flags) may be stored in an array and then used to specify multiple geometric
primitives through the execution of a single OpenGL command.

vertices
Preferred plural of vertex. See indices.

viewpoint

The origin of either the eye- or the clip—coordinate system, depending on context. (For example, whe
discussing lighting, the viewpoint is the origin of the eye—coordinate system. When discussing projecti
the viewpoint is the origin of the clip—coordinate system.) With a typical projection matrix, the
eye—coordinate and clip—coordinate origins are at the same location.

view volume

The volume in clip coordinates whose coordinates satisfy the three conditions
W< X<w

WS ysw

-w< zsw

Geometric primitives that extend outside this volume are clipped.

VRML

VRML stands for Virtual Reality Modeling Language, which is (according to the VRML Mission
Statement) "a universal description language for multi—participant simulations." VRML is specifically
designed to allow people to navigate through three—dimensional worlds thatare placed on the World V
Web. The first versions of VRML are subsets of the Open Inventor file format with additions to allow

hyperlinking to the Web (to URLSUniversal Resource Locators).

window
A subregion of the framebuffer, usually rectangular, whose pixels all have the same buffer configuratic
An OpenGL context renders to a single window at a time.

window-aligned

When referring to line segments or polygon edges, implies that these are parallel to the window
boundaries. (In OpenGL, the window is rectangular, with horizontal and vertical edges). When referrin
to a polygon pattern, implies that the pattern is fixed relative to the window origin.

window coordinates

The coordinate system of a window. It's important to distinguish between the names of pixels, which
discrete, and the window-coordinate system, which is continuous. For example, the pixel at the lower
corner of a window is pixel (0, 0); the window coordinates of the center of this pixel are (02, 0.5,

Note that window coordinates include a depthgz, @omponent, and that this component is continuous as
well.

wireframe
A representation of an object that contains line segments only. Typically, the line segments indicate
polygon edges.

working set

On machines with special hardware that increases texture performance, this is the group of texture
objects that are currently resident. The performance of textures within the working set outperforms the
textures outside the working set.

X Window System
A window system used by many of the machines on which OpenGL is implemented. GLX is the name
the OpenGL extension to the X Window System. (See Appendix C.)

