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Abstract 
SGI delivers a unified compute, storage and remote visualization solution to manufacturing customers reducing 
overall system management requirements and costs with its multiple computer architectures available, namely, 

multi-node Distributed Memory Processor clusters and Shared Memory Processor systems. LS-DYNA integrates 
several solvers into a single code base.  

In this paper, the LS-DYNA explicit solver is hereby profiled. The MPI analysis tool used is SGI MPInside. SGI 
MPInside features customary communication profiling and features “on the fly” modeling to predict potential 
performance benefits of the different upgrades available from the latest Intel® Xeon® processor, interconnect 

fabric and its middleware, SGI MPI library, and the underlying LS-DYNA source code. We also describe how the 
profile-guided MPIplace component of SGI MPI is used to minimize inter rank transfer times on a SGI system thus 

reducing the simulation run time of the TopCrunch “Car2car” standard benchmark by up to 10%.
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1.0	 About SGI Systems
SGI systems used to perform the benchmarks outlined in this paper include the SGI® Rackable® standard 

depth cluster; SGI® ICE™ X integrated blade cluster and the SGI® UV™ 2000 shared memory system. They are 

the same servers used to solve some of the world’s most difficult computing challenges. Each of these server 

platforms supports LSTC LS-DYNA with its Shared Memory Parallel (SMP) and Distributed Memory Parallel 

(DMP) modes [1].

1.1	 SGI® Rackable® Standard-Depth Cluster

SGI Rackable standard-depth, rackmount C2112-4GP3 2U enclosure supports four nodes and up to 4TB of 

memory in 64 slots (16 slots per server). It also supports up to 144 cores per 2U with support of FDR InfiniBand, 

fourteen-core Intel® Xeon® processor E5-2600 v3 series and 2133 MHz DDR4 memory running SUSE® Linux® 

Enterprise Server or Red Hat® Enterprise Linux for a reduced TCO (Figure 1).

	
  
Figure 1: Overhead View of SGI Rackable Server with the Top Cover Removed
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1.2	 SGI® ICE™ XA System

SGI® ICE™ XA is one of the world’s fastest commercial distributed memory supercomputer. This performance 

leadership is proven in the lab and at customer sites including the largest and fastest pure compute InfiniBand 

cluster in the world. The system can be configured with compute nodes comprising Intel® Xeon® processor 

E5-2600 v3 series exclusively or with compute nodes comprising both Intel® Xeon® processors and Intel® Xeon 

Phi™ coprocessors or Nvidia® compute GPU’s. Running on SUSE® Linux® Enterprise Server and Red Hat® 

Enterprise Linux, SGI ICE XA can deliver over 191 teraflops of performance per rack and scale from 36 to tens 

of thousands of nodes.

SGI ICE XA is designed to minimize system overhead and communication bottlenecks, and offers, for example the 

highest performance and scalability above 2,000 cores for LS-DYNA topcrunch.org benchmarks with top-most 

positions six years running. SGI ICE X can be architected in a variety of topologies with choice of switch and single 

or dual plane FDR Infiniband interconnect. The integrated bladed design offers rack-level redundant power and 

cooling via air (currently ICE X provides air cooled racks not ICE XA), warm or cold water and is also available with 

storage and visualization options (Figure 2 shows the ICE X rack and blade enclosure).

SGI ICE XA configuration used in this paper:

•	 576 sockets (13,823 cores) 

•	 Intel® Xeon® 12 core 2.6Ghz E5-2690v3

•	 Mellanox® Technologies ConnectX® Industry standard Infiniband FDR integrated interconnect 
Hypercube

•	 128GB of RAM/core Memory Speed 2133MHz

•	 Altair® PBS Professional

•	 SLES or RHEL, SGI Performance Suite

Figure 2: SGI ICE X Cluster with Blade Enclosure
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1.3	 SGI® UV™ 3000

SGI UV 3000 server comprises up to 256 sockets (4,096 cores). Support for 64TB of global shared memory in a 

single system image enables efficiency of SGI UV for applications ranging from in-memory databases, to diverse 

sets of data and compute-intensive HPC applications all the while programming via the familiar Linux OS [2], without 

the need for rewriting software to include complex communication algorithms. TCO is lower due to one-system 

administration needs. Workflow and overall time to solution is accelerated by running Pre/Post-Processing, solvers 

and visualization on one system without having to move data (Figure 3).

Job memory is allocated independently from cores allocation for maximum multi-user, heterogeneous workload 

environment flexibility. Whereas on a cluster, problems have to be decomposed and require many nodes to be 

available, the SGI UV can run a large memory problem on any number of cores adapting to application license 

availability and with less concern about lack of memory resources killing the job.

	
  
Figure 3: SGI UV CAE workflow running LSTC applications

1.4	 SGI Performance Tools

Utilizing the latest MPI compliant libraries and standard-distribution Linux, SGI® Performance Suite (Figure 4) 

fuels HPC applications to achieve breakthrough speed and scale. A feature-rich tool set optimizes application 

placement, enables application tuning at runtime without recompiling, and can boost performance up to 70%. 

Fine-grain metrics facilitate MPI analysis. Checkpoint Restart augments productivity. And hard real-time 

performance can be realized without special kernels on standard Linux. Coupled with world-class application 

expertise, SGI takes Linux to the next level. For detailed information: http://www.sgi.com/products/software/.

	
  
Figure 4: SGI Performance Suite Components
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1.5	 SGI System Management Tools

Spanning bare-metal provisioning and protection against memory failure, to 24x7 systems monitoring, task 

automation, and innovative power optimization, SGI® Management Suite helps maximize productivity and 

achieve a high return on your investment. Administrators can deploy systems and upgrades with unparalleled 

speed, proactively manage system health and energy consumption, and deliver consistently high service levels 

— enabling users to run more jobs in less time and without interruption. For detailed information: http://www.

sgi.com/products/software/smc.html

1.6	 Resource and Workload Scheduling

Resource and workload scheduling allows one to manage large, complex applications, dynamic and 

unpredictable workloads, and optimize limited computing resources. SGI offers several solutions that customers 

can choose from to best meet their needs.

Altair Engineering PBS Professional® is SGI’s preferred workload management tool for technical computing 

scaling across SGI’s clusters and servers. Features:

•	 Policy-driven workload management which improves productivity, meets service levels, and 
minimizes hardware and software costs

•	 Integrated operation with SGI Management Center for features such as workload-driven, 
automated dynamic provisioning

•	 Altair PBS Professional Power Awareness integrates job-level power management with SGI 
Management Center 3

Adaptive Computing Moab® HPC Suite Basic Edition 

Adaptive Computing Moab® HPC Suite enables intelligent predictive scheduling for workloads on scalable 

systems. 

•	 Policy-based HPC workload manager that integrates scheduling, managing, monitoring and 
reporting of cluster workloads

•	 Includes TORQUE resource manager

1.7	 SGI® VizServer® with NICE DCV 

SGI VizServer with NICE DCV gives technical users remote 3D modeling tools through a web-based portal, 

allowing for GPU and resource sharing and secure data storage. (Figure 5)

Figure 5: SGI VizServer workflow
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SGI VizServer with NICE DCV installed on a company’s servers can provide LS-PrePost remote visualization 

capabilities through a software-as-a-service (SaaS) built in the company’s private network. The LS-PrePost 

software is accessed through an easy-to-use web interface, resulting in simplicity for the end user. This solution 

provides intuitive help and guidance to ensure that less-experienced users can maximize productivity without 

being hindered by complex IT processes. 

SGI VizServer with NICE DCV Components:

•	 Engineer-friendly self-service portal: The self-service portal enables engineers to access the 
LS-PrePost application and data in a web browser–based setting. It also provides security, 
monitoring, and management to ensure that users cannot leak company data and that IT 
managers can track usage. Engineers access the LS-PrePost application and data directly from 
their web browsers, with no need for a separate LS-PrePost software installation on their local 
client.

•	 Resource control and abstraction layer: The resource control and abstraction layer lies underneath 
the portal, not visible to end users. It handles job scheduling, remote visualization, resource 
provisioning, interactive workloads, and distributed data management without detracting from 
the user experience. This layer translates the user request from the browser and facilitates the 
delivery of resources needed to complete the visualization or HPC tasks. This layer has a scalable 
architecture to work on a single SGI Rackable cluster or SGI UV server, as well as a multi-site 
WAN implementation. 

•	 Computational and storage resources: The SGI VizServer with NICE DCV software takes 
advantage of the company’s existing or newly purchased SGI industry-standard resources, 
such as servers, HPC schedulers, memory, graphical processing units (GPUs), and visualization 
servers, as well as the required storage to host application binaries, models and intermediate 
results. These are all accessed through the web-based portal via the resource control and 
abstraction layer and are provisioned according to the end user’s needs by the middle software.

The NICE DCV and EnginFrame software is built on common technology standards. The software adapts to 

network infrastructures so that an enterprise can create its own secure engineering cloud without major network 

upgrades. The software also secures data, removing the need to transfer it and stage it on the workstation, since 

both technical applications and data stay in the private cloud or data center. These solutions feature the best 

characteristics of cloud computing—simple, self-service, dynamic, and scalable, while still being powerful enough 

to provide 3D visualization as well as HPC capabilities to end users, regardless of their location. 
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2.0	 LS-DYNA
2.1	 Versions used

LS-DYNA/MPP ls971 R3.2.1 or later. At R4.2.1, coordinate arrays were coded to double precision for 

the simulation of finer time-wise phenomena thus incurring a decrease in performance of 25% (neon) 

to 35% (car2car). 

Compilers: Fortran: Intel® Fortran Compiler 11.1 for EM64T-based applications.

MPI: IBM Platform MPI, Intel MPI, Open MPI and SGI MPI.

2.2	 Parallel Processing Capabilities of LS-DYNA

2.2.1	 Underlying Hardware and Software Notions

It is important to distinguish hardware components of a system and the actual computations being 

performed using them. On the hardware side, one can identify:

1.	 Cores, the Central Processing Units (CPU) capable of arithmetic operations.

2.	 Processors, the four, six, eight and up core socket-mounted devices.

3.	 Nodes, the hosts associated with one network interface and address.

With current technology, nodes are implemented on boards in a chassis or blade rack-mounted enclosure. 

The board may comprise of two sockets or more.

From the software side, one can identify:

1.	 Processes: execution streams having their own address space.

2.	 Threads: execution streams sharing address space with other threads.

Therefore, it is important to note that processes and threads created to compute a solution on a system will be 

deployed in different ways on the underlying nodes through the processors and cores’ hardware hierarchy.

2.2.2	 Parallelism Background

Parallelism in scientific/technical computing exists in two paradigms implemented separately but sometimes 

combined in ‘hybrid’ codes: Shared Memory Parallelism (SMP) appeared in the 1980’s with the strip mining of 

‘DO loops’ and subroutine spawning via memory-sharing threads. In this paradigm, parallel efficiency is affected 

by the relative importance of arithmetic operations versus data access referred to as ‘DO loop granularity.’ In 

the late 1990’s, Distributed Memory Parallelism (DMP) Processing was introduced and proved very suitable 

for performance gains because of its coarser grain parallelism design. It consolidated on the MPI Application 

Programming Interface. In the meantime, Shared Memory Parallelism saw adjunction of mathematical libraries 

already parallelized using efficient implementation through OpenMP™ (Open Multi-Processing) and Pthreads 

standard API’s.
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Both DMP and SMP (with some limitations) programs can be run on the two commonly available types of 

hardware systems:

•	 Shared Memory systems or single nodes with multiple cores sharing a single memory address 
space and a single instance of the operating system.

•	 Distributed Memory systems, otherwise known as clusters, comprised of nodes with separate 
local memory address spaces and a dedicated instance of the operating system per node.

Note: SMP programs because of their single memory spaces cannot execute across clusters. Inversely, DMP 

programs can run perfectly well on a Shared Memory system. Since DMP has coarser granularity than SMP, it 

is therefore preferable, on a Shared Memory system, to run DMP rather than SMP despite what the names may 

imply at first glance. SMP and DMP processing may be combined together, in what is called ‘hybrid mode’.

2.2.3	 Distributed Memory Parallelism Implementations

Distributed Memory Parallelism is implemented through the problem at hand with domain decomposition. 

Depending on the physics involved in their respective industry, the domains could be geometry, finite elements, 

matrix, frequency, load cases or right hand side of an implicit method. Parallel inefficiency from communication 

costs is affected by the boundaries created by the partitioning. Load balancing is also important so that all MPI 

processes perform the same number of computations during the solution and therefore finish at the same time. 

Deployment of the MPI processes across the computing resources can be adapted to each architecture with 

‘rank’ or ‘round-robin’ allocation.

2.2.4	 Parallelism Metrics

Amdahl’s Law, ‘Speedup yielded by increasing the number of parallel processes of a program is bounded 

by the inverse of its sequential fraction’ is also expressed by the following formula (where P is the program 

portion that can be made parallel, 1-P is its serial complement and N is the number of processes applied to the 

computation):

Amdahl Speedup=1/[(1-P)+P/N]

A derived metric is: Efficiency=Amdahl Speedup/N

A trend can already be deduced by the empirical fact that the parallelizable fraction of an application depends 

more on CPU speed, and the serial part, comprising of overhead tasks depends more on RAM speed or 

I/O bandwidth. Therefore, an application running on a higher CPU speed system will have a larger 1-P serial 

part and a smaller P parallel part causing its Amdahl Speedup to decrease. This can lead to a misleading 

assessment of different hardware configurations as shown by this example where, say System B has faster 

CPU speed than system A:

N System a elapsed seconds System B elapsed seconds

1 1000 810

10 100 90

Speedup 10 9
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System A and System B could show parallel speedups of 10 and 9, respectively, even though System B has 

faster raw performance across the board. Normalizing speedups with the slowest system serial time remedies 

this problem:

Speedup 10 11.11

A computational solution of a particular dataset is said to exhibit strong scalability if elapsed execution time 
decreases when number of processors increases. While computational solution of increasing dataset sizes 
is said to exhibit weak scalability when elapsed execution time can remain bounded through an increase of 
number of processors.

It may be preferable, in the end, to use a throughput metric, especially if several jobs are running simultaneously 

on a system:

Number of jobs/hour/system = 3600/(Job elapsed time)

The system could be a chassis, rack, blade, or any hardware provisioned as a whole unit.

2.3	 Parallel Execution Control

2.3.1	 Submittal Procedure

Submittal procedure must ensure:

1.	 Placement of processes and threads across nodes and also sockets within nodes.

2.	 Control of process memory allocation to stay within node capacity.

3.	 Use of adequate scratch files across nodes or network.

Batch schedulers/resource managers dispatch jobs from a front-end login node to be executed on one or more 

compute nodes so the following is a possible synoptic of a job submission script:

1.	 Change directory to the local scratch directory on the first compute node allocated by the batch scheduler.

2.	 Copy all input files over to this directory.

3.	 Create parallel local scratch directories on the other compute nodes allocated by the batch scheduler.

4.	 Launch application on the first compute node. The executable may itself carry out propagation and 

collection of various files between launch node and the others at start, and end of the main analysis 

execution. The launch script may also asynchronously sweep up output files like d3plot* files to free up 

scratch directory.
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2.3.2	 Run Command with MPI Tasks and OpenMP Thread Allocation Across Nodes and Cores

For LS-DYNA, the deployment of processes, threads and associated memory is achieved with the following 

keywords in the execution command below [1]:

•	 -np: Total number of MPI processes used in a Distributed Memory Parallel job.

•	 ncpu=: number of SMP OpenMP threads.

•	 memory, memory2: Size in words of allocated RAM for MPI processes. 
(A word is 4 or 8 bytes long for single or double precision executables, respectively.)

1.	 Pure MPI mode- on all or subset of cores available: 
mpirun -np #MPIprocesses HybridExec inputFile ncpu=1      

#MPIprocesses=#nodes x #CoresPerNode

2.	 Hybrid mode: combinations MPI processes & threads: 
mpirun -np #MPIprocesses HybridExec inputFile ncpu=#ThreadsPerProcess  

#MPIprocesses x ncpu = total#Threads = #nodes x #CoresPerNode 

3.	 SMP mode (threads only): 

mpirun -np 1 HybridExec inputFile ncpu=#CoresOn1Node 

4.	 SMP mode with SMP-only executable (threads only): 

SMPexec inputFile ncpu=#CoresOn1Node

2.4 	 Tuning

2.4.1 	 Input/Output and Memory

To achieve the best runtime in a batch environment, disk access to input and output files should be placed on 
the high performance filesystem closest to the compute node. The high performance filesystem could be either  
an in-memory filesystem (/dev/shm), a Direct (DAS) or a Network (NAS) Attached Storage filesystem. In diskless 
computing environments, in-memory filesystem or Network Attached Storage are the only options. In cluster 
computing environments with a Network Attached Filesystem (NAS), isolating application MPI communications 
and NFS traffic will provide the best NFS I/O throughput for scratch files. The filesystem nomenclature is 
illustrated in Figure 7.

Figure 6: Example filesystems for Scratch Space
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Having more system memory per core will increase performance since it can be allocated for the analysis as 

well as the Linux kernel buffer cache to improve I/O efficiency. SGI’s Flexible File I/O (FFIO) is a link-less library 

(which means it does not need to be linked to the application) bundled with SGI Accelerate. It implements user 

defined I/O buffer caches to avoid the operating system ones from thrashing when running multiple I/O intensive 

jobs or processes. This can be effective in Shared Memory Parallel systems or cluster computing environments 

using DAS or NAS storage subsystems. FFIO isolates user page caches so jobs or processes do not contend 

for Linux Kernel page cache. Hence, FFIO minimizes the number of system calls and I/O operations as echoed 

back by the eie_close sync and async values reflecting synchronous calls to disk—which should be as close to 

0 as possible—to and from the storage subsystem and improves performance for large and I/O intensive jobs. 

(Ref [2], Chapter 7 Flexible File I/O).

2.4.2 	 Using Only a Subset of Available Cores on Dense Processors

Two ways of looking at computing systems are either through nodes which are their procurement cost sizing 
blocks or through cores which are their throughput sizing factors. When choosing metrics, because processors 
have different prices, clock rates, core counts and memory bandwidth, optimizing for turnaround time or 
throughput will depend on running on all or a subset of cores available. Since licensing charges are assessed by 
the number of threads or processes being run as opposed to the actual number of physical cores present on 
the system, there is no licensing cost downside in not using all cores available so this may provide performance 
increase possibilities. The deployment of threads or processes across partially used nodes should be done with 
consideration to the existence of shared resources among cores.

2.4.3 	 Intel® Hyper-threading

Intel Hyper-threading (HT) is a feature of the Intel® Xeon® processor family which can increase performance for 
multi-threaded or multi-process applications. It allows a user to run twice the number of OpenMP threads or MPI 
processes than available physical cores per node (over-subscription).

Note, beyond 2 nodes, with LS-DYNA, Hyper-threading gains are negated by added communication costs 
between the double-up numbers of MPI processes.

2.4.4 	 Intel® Turbo Boost

Intel Turbo Boost is a feature of the Intel® Xeon® processor family, for increasing performance by raising the core 
operating frequency within controlled limits constrained by the thermal envelope of the processor. The mode of 
activation is a function of how many cores are active at a given moment when MPI processes, OpenMP threads 
or Pthreads are running. Turbo Boost can improve performance for low numbers of cores used, up to the ratio 
of the maximum frequency over baseline value. As more cores are used, Turbo Boost cannot increase the 
frequencies on all of them as it can on fewer active ones. For example, for a base frequency of 3.0GHz, when 
1-2 cores are active, core frequencies might be throttled up to 3.3GHz, but with 3-4 cores active, frequencies 
may be throttled up only to 3.2 GHz. For computational tasks, utilizing Turbo Boost often results in improved 
runtimes so it is best to leave it enabled, although the overall benefit may be mitigated by the presence of other 
performance bottlenecks outside of the processor.
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2.4.5 	 SGI Performance Suite MPI and SGI PerfBoost

The ability to bind an MPI rank to a processor core is key to control performance on the multiple node/socket/
core environments available. From [3], ‘3.1.2 Computation cost-effects of CPU affinity and core placement [...]
HP-MPI currently provides CPU-affinity and core-placement capabilities to bind an MPI rank to a core in the 
processor from which the MPI rank is issued. Children threads, including SMP threads, can also be bound to a 
core in the same processor, but not to a different processor; additionally, core placement for SMP threads is by 
system default and cannot be explicitly controlled by users.[...]’.

In contrast, SGI MPI, through its ‘omplace’ option enforces accurate placement of Hybrid MPI processes, 
OpenMP threads and Pthreads within each node. SGI MPI’s bundled PerfBoost facility linklessly translates IBM 
Platform MPI, Intel MPI, OpenMPI calls on the fly to SGI MPI calls.

2.4.6 	 SGI Accelerate LibFFIO

LS-DYNA/MPP/Explicit is not I/O intensive and placement can be handled by SGI MPI, therefore, libFFIO is not 
necessary. However, LS-DYNA/MPP/Implicit does involve larger I/O so libFFIO can compensate for bandwidth 
contention on NAS or slow filesystems.

3.0 	 Benchmarks Description
The benchmarks used belong to the three TopCrunch (http:www.topcrunch.org) datasets--created by National 
Crash Analysis Center (NCAC) at George Washington University. The TopCrunch project was initiated to track 
aggregate performance trends of high performance computer systems and engineering software. Instead of 
using a synthetic benchmark, an actual engineering software application, LS-DYNA/Explicit, is used with real 
data. Since 2008, SGI has held top performing positions on the three datasets. The metric is: Minimum Elapsed 
Time and the rule is that all cores for each processor must be utilized.

LS-DYNA/Implicit [4], [5] has been covered in [8][9].

3.1 	 Car2car

Angled 2 vehicle collision (Figure 8). The vehicle models are based on NCAC minivan model with 2.5 million 
elements. The simulation writes 201,854,976 Bytes d3plot and 101,996,544 Bytes d3plot[01-25] files at 26 time 
steps from start to end point (2624MB).

	
   Figure 8: Car2car
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3.2 	 Car2car Tuning

Going from Double to Single Precision when possible affects performance. LS-DYNA’s version chosen also 
affects results going back to R3.2.1. Then adjusting the otherwise automatic decomposition can improve results. 
Intel® Turbo Boost and dual rail further improve performance where last entry cumulates Single Precision, R3.2.1, 
custom decomposition, Turbo Boost mode and dual rail.

4.0 	 MPInside
4.1 	 MPInside Introduction 

MPInside is available with SGI MPI – High Performance MPI Environment along with mpiplace as an MPI profiling 
tool [10]. It can provide information to help MPI application developers optimize their application by finding out for 
example where MPI Send/Receive pairs are not executed synchronously.

4.2 	 MPInside Terminology

MPI communication consists of non-necessarily synchronized Sends and Receives.’Send Late Time’ (SLT) is 
defined as the delay between one process’s MPI_Recv call and the process’ MPI_Send call where the message 
is supposed to come from. The time it takes for data to actually be transferred is called Transfer Time (Tt). The 
sum of SLT and Tt is defined as Function time (FT). ‘Receive Late Time’ is defined as the delay between an MPI_
send blocked call and its remote receiver process’ MPI_Recv eventual call.
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Function Waiting Time FWT in above example is equal to the FT time because MPI_Recv is a blocking function 
but in case of a non-blocking function such as MPI_Irecv FWT would be the time of the MPI_Wait function that 
“finished” the request (in the MPI sense) corresponding to this function.

Non-blocking receives (MPI_Irecv, MPI_Recv_init) allow the application to overlap communication and 
computation. It is usually assumed that the communication time is transfer time, but in fact MPI_Irecv allows the 
application to do useful computations during Send Late Time as well. It is possible that this Send Late Time is 
still going by the time the application attempts to complete the non-blocking receive with MPI_Wait, MPI_Test or 
similar. In this case, the Send Late Time overlapped with computation is not counted. Only Send Late Time that 
is visible to the application as time spent blocked or delayed completing the request in a Wait or Test is counted.

4.3 	 MPInside usage

4.3.1 	 MPInside Command

MPInside command doesn’t require any change in the application or any re-link and only needs to be inserted as 
an argument of the mpirun command prepended to the target application executable.

4.3.2 	 MPInside Output

At end of run five tables with one entry per rank over multiple columns of MPI functions labeled in abbreviated 
form are output to ASCII files:

4.3.2.1 	 Timing Table

>>>> Communication time totals (s) 0 1<<<<

CPU	   Compute	   MPI_Init	 w_MPI_Recv	 Recv		  w_MPI_Waitall	 Waitall

0	    868.484133	   0.000232	 0		  322.801183	 0		  0

1	    654.365446	   0.000213	 0		  326.385665	 0		  0.348279

2	    645.987836	   0.000189	 0		  337.04429	 0		  0.270488

3	    634.765585	   0.000189	 0		  339.249457	 0		  0

4	    648.41097	   0.000214	 0		  333.377204	 0		  0

5	    657.331095	   0.000185	 0		  322.48984	 0		  0

4.3.2.2 	 Bytes Sent Table:

>>>> Bytes sent <<<<						    

CPU	   Compute	   MPI_Init	 w_MPI_Recv	 Recv		  w_MPI_Waitall	 Waitall

0	    ------	   0		  0		  0		  0		  0

1	    ------	   0		  0		  0		  0		  0

2	    ------	   0		  0		  0		  0		  0

3	    ------	   0		  0		  0		  0		  0

4	    ------	   0		  0		  0		  0		  0
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4.3.2.3 	 Number of “Send” Calls Table:

>>>> Calls sending data <<<<						    

CPU	   Compute	   MPI_Init	 w_MPI_Recv	 Recv		  w_MPI_Waitall	 Waitall

0	    ------	   1		  0		  0		  0		  0

1	    ------	   1		  0		  0		  0		  239981

2	    ------	   1		  0		  0		  0		  239981

3	    ------	   1		  0		  0		  0		  0

4	    ------	   1		  0		  0		  0		  0

4.3.2.4 	 Bytes Received Table:

>>>> Bytes received <<<<						    

CPU	   Compute	   MPI_Init	 w_MPI_Recv	 Recv		  w_MPI_Waitall	 Waitall

0	    ------	   0		  0		  28953401700	 0		  0

1	    ------	   0		  0		  28939575772	 0		  0

2	    ------	   0		  0		  20038927680	 0		  0

3	    ------	   0		  0		  19903973196	 0		  0

4	    ------	   0		  0		  13668688376	 0		  0

4.3.2.5 	 Number of “Recv” Calls Table:

>>>> Calls receiving data <<<<						    

CPU	   Compute	   MPI_Init	 w_MPI_Recv	 Recv		  w_MPI_Waitall	 Waitall

0	    ------	   0		  0		  14208346	 0		  0

1	    ------	   0		  0		  13966079	 0		  239981

2	    ------	   0		  0		  14222841	 0		  239981

3	    ------	   0		  0		  17384042	 0		  239981

4	    ------	   0		  0		  15638825	 0		  239981

4.3.2.6 	 Other Outputs

Function calls and their timing in histogram format in terms of message sizes for the following quantities:

 

4.3.2.6.1 	 Number of requests distribution:

>>> Rank 0 Sizes distribution <<<				 

Sizes	 Recv		  Send		  Isend		  Irecv

65536	 0		  106		  0		  48558469

32768	 0		  38		  0		  0

16384	 0		  22		  4356		  0

[...]

128		 489344		  1199947		 248494		  1199934

64		  1208805		 1679905		 245879		  719961

32		  487218		  720068		  2531		  239989

0		  3616833		 3927		  3636521	0
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4.3.2.6.2 	 Times Distribution:

>>> Rank 0 Size distribution times<<<				  

Sizes	 Recv		  Send		  Isend		  Irecv

65536	 0		  0.357941	 0		  30.856745

32768	 0		  0.001294	 0		  0

16384	 0		  0.000713	 0.002428	 0

8192	 16.060919	 1.945468	 0.005868	 0

4.3.2.7 	 Transfer Matrices

One row and one column are also produced per rank for these three quantities:

•	 TIME(i,j): the aggregate time rank “i” spent receiving data from rank “j”;

•	 SIZE(i,j): the amount of data transferred from “i” to “j”;

•	 REQUEST(i,j): the number of calls involved in these transfers.

4.4 	 Information Handled by MPInside 

4.4.1 	 General

MPInside reports the number of bytes physically transferred, not the size specified on the receive side.

For collective operations such as MPI_Bcast or MPI_Alltoall, transfers are assigned as a send for the root 
of the broadcast and as a receive for the other ranks participating in the operation. 

Sizes reported are computed as buffer size multiplied by number of ranks participating in the function.

“Compute” time as measured by MPInside is the time that a given rank spent that wasn’t attributable to 
a profiled MPI call including I/O time or separately if MPINSIDE_SHOW_READ_WRITE is set. In that case, 
number of characters and number of direct calls to libc I/O functions read(), write, open, and read or to 
MPI_File_xxx MPI I/O functions such as MPI_File_read_at() are reported in the same tables.

Non-communication-related times like I/O or system wait can also be captured by integrating with open source 
perf and oprofile or proprietary Intel® VTune™ profiling tools to drill further down into Compute time.

As mentioned earlier, a rank can be blocked on an MPI call waiting for some other rank to catch up. This is 
the case for collective operations such as MPI_Allreduce, where a fraction of the time in these MPI collective 
functions is spent waiting for the last rank to reach the rendezvous point. To evaluate the cost of these timing 
misalignments, a call to MPI_Barrier is inserted before each MPI collective to synchronize all ranks, and record 
its elapsed time thereby measuring the collective operation wait time only. The time shown in the subsequent 
MPI collective is about the physical transfer of data and its processing. This reporting is activated by setting 
MPINSIDE_EVAL_COLLECTIVE_WAIT.
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In the data tables and histograms, the column “b_xxx” will give the MPI_barrier time of the corresponding “xxx” 
MPI collective function and “xxx” column will show the remainder time.

For non-collective operations, setting MPINSIDE_EVAL_SLT directs MPInside to measure the time for all send 
calls that are late (SLT) with respect to Recv-Wait events. Such time will be labeled w_xxx in the tables where xxx 
could be MPI_Wait or MPI_Recv. It cannot be MPI_Irecv, because the Send late time, if any, will be, for this last 
function, accounted in an MPI_Wait-like function.

If neither profiling modes are enabled, (basic mode), times are shown as being spent by their respective MPI call.

If Collective Wait and SLT modes are enabled, time spent in MPI calls is subdivided into Transfer Time (Tt), and 
wait time. The latter is due to computational load imbalance or OS-related disturbance.

For MPI_Send or MPI_Isend/MPI_Wait couplets, receive-late time accounts for “late” receivers. With sufficient 
buffers, their impact can be minimized.

On the other hand, for MPI_Recv or MPI_Irecv/MPI_Wait couplets wait time is nonzero when matching sender 
is late (Send Late Time, SLT). This wait time cannot be avoided with any kind of buffering and hence is more 
important to monitor.

To summarize, all times in w_MPI_Recv, b_Bcast and b_Allreduce columns are wait times and all times in Recv, 
Bcast, and Allreduce columns are physical transfer times. The total elapsed time is the sum of the “Compute” 
column and all the MPI columns.

4.4.2 	 Shortened names for MPI functions

b_<Collective_function>: Artifical MPI_Barrier inserted before the collective function if MPINSIDE_EVAL_COLLECTIVE_
WAIT set. Total time for collective function is b_<Collective_function> + <Collective_function>. 

w_<receive_or_wait_func>: Artificial wait function accounting for time by which Sends were late with respect to 
matching MPI_Recv or MPI_Wait.

4.4.3 	 Further Capabilities

Instead of being measured, MPInside reports are also available with the communication modeling the 
hypothetical ‘Perfect Interconnect’. This asymptotic value can tell if enhancing communication hardware or library 
is worthwhile for a particular application and run case.
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A ‘Perfect’ profile will not eliminate times for Recv and Bcast where what remains is overhead time in libmpi.so for 
MPI call argument passing, pushing and popping functions on the stack, allocating and deallocating memory, but 
more importantly, waiting on one or more ranks on the other end of the Recv or Bcast to catch up. These times 
might be similar to SLT or collective waiting times, but might be shorter because zero transfer times sometimes 
lead to better rank synchronization.

4.5 	 MPInside Inferences

Large times in w_MPI_Recv column of MPInside tables correspond to Send Late Time (SLT) situations in Recv.

Large times in b_Bcast column of MPInside tables correspond to synchronization waiting times before Bcast 
actually start.

Recv and Bcast nonzero times with Perfect Interconnect mode similarly points to waiting on one or more ranks 
on the other end of the Recv or Bcast to catch up as shown similarly with Send Late Time (SLT) or Collective 
Wait time, but might be shorter if zero transfer time in between compute intervals leads to better synchronization 
between ranks. 

Above three symptoms maybe the result of load imbalances if they correspond to similar irregularities in Compute time.
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4.6 	 Remedying Load Imbalances

Using MPInside data domain decomposition can be modified by either analysts or LSTC to drive down load 
imbalances. If it cannot be improved, overlapping communication and computation with MPI_Ibcast (for 
MPT 2.10 and later) or MPI_Irecv and delaying blocking until work can’t proceed without more data will help. 
Periodical MPI_Test* on the requests that come back from Ibcast or Irecv can further increase overlap. SGI MPI 
has a separate progress thread that proceeds once a request is initiated. MPI_Test will “kick” the progress engine 
to make it check for completion again.

4.7 	 Case Study Car2car Topcrunch Benchmark

4.7.1 	 Basic Profiling

SGI MPInside was run to get basic profiling and construct the area plot stack across all 1992 MPI processes 
attributed to computation time and MPI calls. Figure 8 shows elapsed seconds on the Y axis for the complete 
range of ranks 0 to 1992. 

The light purple, blue and dark blue bands indicate that across all ranks, a little less than half of the running time 
was compute, with the majority of the communication time spent in Recv and Bcast calls.

	
  
Figure 8: mpinside_basic_f2501_stats.xls
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4.7.2 	 Collective Wait Profiling

Figure 9 shows how turning on Collectives Wait mode shows that the Bcast calls of previous graph are in fact 
made up of barrier-like times for ranks to synchronize--the Bcast itself being 1% of that time.

Figure 9: mpinside_collectivewait_f2501_stats.xls
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4.7.3 	 Send Late Time Profiling

Figure 10 shows how turning on Send Late Time mode does not affect Recv times and carve out a significant 
w_MPI_Recv portion which means Send Late Time delays are not significant.

Figure 10: mpinside_slt_f2501_stats.xls
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4.7.4 	 Perfect Interconnect Profiling

Figure 11 shows the b_Bcast constituted of wait times for synchronization are not erased out by a perfect 
interconnect and appear as Bcast in yellow. In contrast, perfect interconnect modeling zero’ed out Recv times.

Figure 11: mpinside_perfect_f2501_stats.xls

4.8 	 SGI MPIplace Profile Guided Placement Tool for MPI

SGI MPIplace can speed up execution by mapping ranks to a different sequence of nodes based on rank to 
rank matrix signature of communications obtained by MPInside to minimize inter node and inter switch transfer 
costs. A file defining the permutation of ranks to node list is generated that can be used by a subsequent run of 
the application. MPIplace translates the system’s InfiniBand topology information and data in the rank-to-rank 
matrices into a form that can be understood by Scotch. Scotch is a library that can apply heuristics to a class of 
loosely related problems from static mapping, graph partitioning and mesh refinement to get a near-optimal map, 
partition or mesh in cases where a truly optimal solution would be computationally intractable (NP-complete). 
MPIplace then uses Scotch’s implementation of the recursive bipartitioning algorithm to come up with a mapping 
of ranks to nodes that’s nearly optimal with respect to the observed transfer patterns. [11]
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4.8.1 	 Synopsis:

A.	 Run Application with MPT for performance baseline.

B.	 �Run Application with MPT and MPInside with 
MPINSIDE_MATRICES=PLA:-B:S set to produce transfer matrices.

C.	 �Run MPIplace using B) step matrices and node list to produce a permutation of ranks along the 
list of nodes. For example node list n001, n002, n003 with multiplicity of 24 cores maybe 
reordered like this:

n003

n002

n002

n002

n002

n002

n002

n002

n003

n003

n003

n003

[...]

D.	 Run Application again with MPT and permutation of ranks to get improved performance. 
So one would use the reordered list of nodes in mpirun command:

mpirun -v n003 1, n002 1, n002 1, n002 1,

n002 1, n002 1, n002 1, n002 1, n003 1, n003 1, n003 1, n003 1, n003 1, n003 1,

n003 1, n003 1, n003 1, n003 1, n003 1, n003 1, n003 1, n003 1, n003 1, n003 1,

n001 1, n001 1, n001 1, n001 1, n001 1, n001 1, n001 1, n001 1, n001 1, n002 1,

n002 1, n002 1, n002 1, n002 1, n002 1, n002 1, n002 1, n003 1, n003 1, n003 1,

n003 1, n003 1, n003 1, n003 1, n001 1, n001 1, n001 1, n001 1, n001 1, n001 1,

n001 1, n001 1, n001 1, n001 1, n001 1, n001 1, n001 1, n001 1, n001 1, n002 1,

n002 1, n002 1, n002 1, n002 1, n002 1, n002 1, n002 1, n002 1

omplace -vv -c 0-23

mpp971_s_R3.2.1_Intel_linux86-64_sgimpt i=neon.refined.rev01.k ncpu=1 memory=40m p=pfile 

memory2=4m 

and a modified mapping of ranks to nodes would be displayed:

wrank	 grank	 lrank	 pinning	   node name	 cpuid

0	 0	 0	 yes	    n003		 0

8	 1	 1   	 yes	    n003		 1

9	 2	 2   	 yes	    n003		 2

10	 3	 3   	 yes	    n003		 3

11	 4	 4   	 yes	    n003		 4

12	 5	 5   	 yes	    n003		 5

13	 6	 6   	 yes	    n003		 6

14	 7	 7   	 yes	    n003		 7

15	 8	 8   	 yes	    n003		 8

16	 9	 9   	 yes	    n003		 9

17	 10	 10   	 yes	    n003		 10
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Or, reordered for clarity:

wrank 	 grank	 lrank	 pinning	   node name	 cpuid

0	 0	 0   	 yes	    n003		 0

1	 24	 0   	 yes	    n002		 0

2	 25	 1   	 yes	    n002		 1

3	 26	 2   	 yes	    n002		 2

4	 27	 3   	 yes	    n002		 3

5	 28	 4   	 yes	    n002		 4

6	 29	 5   	 yes	    n002		 5

7	 30	 6   	 yes	    n002		 6

8	 1	 1   	 yes	    n003		 1

9	 2	 2   	 yes	    n003		 2

4.8.2 	 Case Study Car2Car Topcrunch Benchmark

Model with 1992 ranks over 83 24-core nodes was run with:

A.	 LS-DYNA with MPT 2.12-beta for performance baseline 
Elapsed: 3222 sec. (0 hours 53 min. 42 sec.) 239981 cycles

B.	 LS-DYNA with MPT 2.12-beta MPInside 3.6.6-beta to generate matrices. 
Elapsed: 3492 sec. (0 hours 58 min. 12 sec.) 239981 cycles

C.	 mpiplace to generate permutation file. 

$ head mpiplace_perm

936

937

1560

1561

1562

1563

1564

1565

1566

1567

[...]

Elapsed: 56.18 sec.

D.	 �LS-DYNA again MPT 2.12-beta, no MPInside with mpiplace_perm and mpirun 
Elapsed: 2992 sec. (0 hours 49 min. 52 sec.) 239981 cycles

Which is a gain of 7%

This 7% improvement in performance comes in addition to the load balance tuning done through domain 
decomposition. If domain decomposition wasn’t used for the baseline run the performance improvement 
using MPInside and mpiplace would yield a 10% improvement vs. 7%.
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5.0 	 Summary
The explicit solver has been studied with MPI analysis tool SGI MPInside using its features customary 
communication profiling and “on the fly” modeling to predict potential performance benefits of the different 
upgrades available from the latest Intel® Xeon® CPU, interconnect and its middleware, MPI library, and the 
underlying LS-DYNA source code. The profile-guided mpiplace component was exercised to minimize inter rank 
transfer times and already brought some benefit encouraging further efforts in that area.
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