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Abstract 
LSTC Explicit, Implicit solver technologies are closely integrated following LSTC’s single executable strategy. Seamless switching 

from large time steps transient dynamics to linear statics and normal modes analysis can thus consistently exploit latest  
algorithm improvements in Shared Memory Parallelism (SMP), Distributed Memory Parallelism (DMP) and their combination (Hybrid 

Mode) and leverage SGI computer architectures using SGI’s software stack, establishing `topcrunch’ world records since 2007.

This paper will show how this is accomplished on SGI’s multi-node Distributed Memory Processor clusters such as SGI® Rackable® 

systems and SGI® ICE™ X up to Shared Memory Processor servers such as SGI® UV™ 2000 servers. This paper will discuss 
how customers are using SGI’s compute and storage infrastructure to run LS-DYNA simulations using the d3VIEW™ application in 

a massively scalable environment.

SGI’s front-end to Cyclone is powered by d3VIEW™, a web portal based software used to submit, monitor and view results 
without the need to download large files. d3VIEW’s Simlyzer™ technology performs post-simulation analysis and visualization 

that is proven to eliminate over 80% of the LS-DYNA post processing repetitive tasks with no necessary scripting.
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1.0 hardware Systems
Various systems comprised in SGI product line and available through SGI Cyclone were used to run  
the benchmarks.

1.1 SGi® Rackable cluster
SGI Rackable cluster supports up to 256GB of memory per node in a dense architecture with up to 32 
cores per 1U with support for Linux®, FDR and QDR Infiniband® interconnect, eight-core processors, GPU’s 
and DDR3 memory (Fig.1). Configuration used for the benchmarks was:

•	 Intel® Xeon® 8-core 2.6 GHz E5-2670 or 6-core 2.9 GHz E5-2667

•	 IB QDR or FDR interconnect

•	 4 GB of Memory/core

•	 Altair® PBSPro Batch Scheduler v11

•	 SLES or RHEL with latest SGI Performance Suite, Accelerate

Fig.1: Overhead View of SGI Rackable Server with the Top Cover Removed and Actual Server

1.2 SGi® ice™ X 
SGI ICE X integrated blade cluster is a highly scalable, diskless, cable-free infiniband interconnect high 
density rack mounted multi-node system. ICE X combines Intel® Xeon® processor E5-2600 series platform 
with a unique board and interconnect design. Running on standard Linux®, SGI ICE X delivers over 53 teraflops 
per rack of 2,304 processor cores (Fig. 2). Configuration used for the benchmarks was:

•	 Intel® Xeon® 8-core 2.6 GHz E5-2670 or 6-core 2.9 GHz E5-2667

•	 Integrated IB FDR interconnect Hypercube/Fat Tree

•	 4 GB of Memory/core

•	 Altair® PBSPro Batch Scheduler v11

•	 SLES or RHEL with latest SGI Performance Suite, Accelerate
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Fig. 2: SGI ICE X Cluster with Blade Enclosure 

1.3 SGi® uV™ 2000 
SGI UV 2000 scales up to 256 sockets (2,048 cores, 4096 threads) with architectural support for up to 
262,144 cores (32,768 sockets). Support for up to 64TB of global shared memory in a single system image 
enables SGI UV to be very efficient for applications ranging from in-memory databases, to a diverse set  
of data and compute-intensive HPC applications. It is simpler with this platform for the user to access  
large resources with programming via a familiar OS [1], without the need for rewriting software to include 
complex communication algorithms. TCO is lower due to its low, one-system administration demands. 

CAE workflow can be accelerated for overall time to solution by running pre/Post-processing, solvers and 
visualization on one machine without moving data (Fig. 3). Flexibility of sizing memory allocated to a job 
independently from the core allocation in a multi-user, heterogenous workload environment prevents jobs 
requiring a large amount of memory from being starved for cores. For example, a job requiring 128GB to 
run in-core could be broken up through domain decomposition into 8 parallel MPI processes needing only 
16GB so one could run it on 8 24GB cluster nodes. But these 8 cluster nodes may not be available in a 
busy environment so the job would be waiting in the queue, effectively starved for nodes. On the Shared 
Memory Parallel system, one can always find 8 free cores and allocate the 128GB to them for the job and 
there is also the option to run the job serially on 1 core with 128GB allocation.

Fig. 3: SGI UV CAE Workflow 
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Configuration used for the benchmarks was:

•	 64 sockets (512 cores) per rack

•	 Intel® Xeon® 8 core 2.4 GHz E5-4640 or 6 core 2.9 GHz E5-4617

•	 SGI NUMAlink® 6 Interconnect

•	 4 GB of Memory/core

•	 Altair® PBSPro Batch Scheduler with CPUSET MOM v11

•	 SLES or RHEL with latest SGI Performance Suite, Accelerate

1.4 Access to benchmark systems
SGI offers Cyclone computing resources to all SGI advanced architectures aforementioned (Fig. 4). 
Cyclone™ services can reduce customer time to results time to results by accessing leading-edge open 
source applications and best-of-breed commercial software platforms from top Independent Software 
Vendors (ISV’s) like LSTC.

Fig. 4: SGI Cyclone

1.5 d3View
d3VIEW is a web based software that provides users with a single unified interface for submitting, monitoring 
and visualizing LS-DYNA simulation results. Coupled with its advanced visualization features and multiple-
simulation comparison capabilities, d3VIEW portal software is the industry leader in providing a platform  
for simulation engineers in the area of simulation data visualization and collaboration.

d3VIEW portal software can be integrated with SGI clusters to provide users an instant access for 
running complex simulations. Jobs can be submitted and monitored from any internet-enabled device. 
d3VIEW portal software also provides a “Job Preview” function that allows users to get quick peek at the 
ongoing simulations in real-time. Users can also send signals to LS-DYNA or alter job properties while  
the job is running on SGI clusters.
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Once the job completes, d3VIEW portal software processes the results which otherwise is done manually 
to present the user an “overview” of the simulation that emphases simulation quality and structural performance. 
Depending on the result overview, users can then make quick “size” changes and resubmit the job or 
download the data set to perform additional calculations.

2.0 LS-dYNA

2.1 Versions used
LS-DYNA/MPP ls971 R5.1.1 hybrid with Message Passing Interface or R3.2.1. The latter is faster than 
R5.1.1 by 25% (neon) to 35% (car2car) because at R4.2.1, coordinate arrays where coded to double  
precision for the simulation of finer time-wise phenomena.

2.2 Parallel Processing capabilities of LS-dYNA

2.2.1 hardware and Software Nomenclature
Specific terminology is adopted differentiating processors and cores in hardware:

•	 Core: a Central Processing Unit (CPU) capable of arithmetic operations.

•	 Processor: a four (quad-core), six (hexa-core), eight or twelve core assembly socket-mounted device.

•	  Node or Host: a computer system associated with one network interface and address. With current technology, 
it is implemented on a board in a rack-mounted chassis or blade enclosure. The board comprises two 
sockets or more.

On the software side one distinguishes between:

•	 Process: execution stream having its own address space.

•	 Thread: execution stream sharing address space with other threads.

Based on these definitions, it follows there is not necessarily one to one mapping between processes  
and cores when describing a computational run.

2.2.2 Parallelism Background
Parallelism in scientific/technical computing exists in two paradigms implemented separately or recently 
combined in the so-called Hybrid codes: Shared Memory Parallelism (SMP) appeared in the 1980’s with 
the strip mining of ‘DO loops’ and subroutine spawning via memory-sharing threads. In this paradigm. 
parallel efficiency is affected by the ratio of arithmetic operations versus data access referred to as `DO loop 
granularity’. In the late 1990’s Domain Decomposition Parallel (DMP) Processing was introduced and proved 
more suitable for performance gains because of its coarser grain parallelism based on geometry, matrix or 
frequency domain decomposition. It consolidated on the MPI Application Programming Interface. In this 
paradigm, parallel efficiency is affected by the boundaries created by the partitioning. In the mean time, 
Shared Memory Parallelism saw adjunction of mathematical libraries already parallelized using efficient 
implementation through Shared Memory Parallelism API OpenMPTM (Open Multi-Processing) and Pthreads 
standards. These two paradigms run on two different system hardware levels:

•	 Shared Memory systems or single nodes with memory shared by all cores.

•	 Cluster Nodes with their own local memory, i.e. Distributed Memory systems.

The two methods can be combined together in what is called ‘Hybrid Mode’.
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It has to be noted that while Shared Memory Processing cannot span cluster nodes both communication  
and memory-wise, Distributed Memory Parallelism can also be used within a Shared Memory system. 
Since DMP has coarser granularity than SMP, it is preferable, when possible to run DMP within Shared 
Memory systems [2],[3]. 

2.2.3 Parallelism Metrics
Amdahl’s Law, ‘Speedup yielded by increasing the number of parallel processes of a program is bounded 
by the inverse of its sequential fraction’ is also expressed by the following formula where P is the program 
portion that can be made parallel, 1-P is its serial complement and N is the number of processes applied  
to the computation:

Amdahl Speedup=1/[(1-P)+P/N]

A derived metric thus is:

Efficiency=(Amdahl Speedup)/N

A trend can already be deduced by the empirical fact that the parallelizable fraction of an application is 
more dependent on CPU speed, and the serial part, comprising overhead tasks is more dependent on  
RAM speed or I/O bandwidth. Therefore, a higher CPU speed system will have a larger 1-P serial part and  
a smaller P parallel part causing the Amdahl Speedup to decrease. This can lead to misleading assesment 
of different hardware configurations as shown by this example:

where System A and System B parallel speedups are 10 and 8, respectively, even though System B has 
faster raw performance. Normalizing speedups with the slowest system serial time remedies this problem:

Two other useful notions used for ranking supercomputers especially are:

•	 Strong scalability: Decreasing execution time on a particular dataset by increasing processes count.

•	 Weak scalability. Keeping execution time constant on ever larger datasets by increasing processes count.

It may be preferable, in the end, to instead use a throughput metric, especially if several jobs are running 
simultaneously on a system:

Number of jobs/hour/system =3600/(Job elapsed time)

The system could be a chassis, rack, blade, or any number of units of hardware provisioned indivisibly.

3.0 Tuning

3.1 using only a subset of available cores on dense processors
Two ways of looking at computing systems are either through nodes which are their cost sizing blocks or 
through cores available which are their throughput sizing factors. When choosing the former, because 
processors have different prices, clock rates, core counts and memory bandwidth, optimizing for turnaround 
time or throughput will depend on running on all or a subset of cores available. Since licensing charges are 
assessed by the number of threads or processes being run as opposed to the actual number of physical cores 

N System A elapsed seconds System B elapsed seconds

1 1000 640

10 100 80

Speedup 10 8

Speedup 10 12.5
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present on the system, there is no licensing cost downside in not using all cores available. The deployment of 
threads or processes across partially used nodes should be done carefully in consideration of the existence of 
shared resources among cores. For this study, however, this second strategy is not shown here.

3.2 hyperthreading
Beyond 2 nodes, with LS-DYNA, hyperthreading gains are negated by added communication costs  
between the doubled numbers of MPI processes. These results are not shown here.

3.3 MPi tasks and OpenMP thread allocation across nodes and cores
For LS-DYNA, the deployment of processes, threads and associated memory is achieved with the following 
keywords in execution command:

•	 -np: Total number of MPI processes used in a Distributed Memory Parallel job.

•	 ncpu: number of SMP OpenMP threads

•	  memory, memory2: Size in words of allocated RAM for MPI processes. (A word is 4 or 8 bytes long for 
single or double precision executables, respectively.)

3.4 SGi Performance suite MPi, PerfBoost
The ability to bind an MPI rank to a processor core is key to control performance because of the multiple 
node/socket/core environments. From [4], ‘3.1.2 Computation cost-effects of CPU affinity and core placement 
[...]HP-MPI currently provides CPU-affinity and core-placement capabilities to bind an MPI rank to a core 
in the processor from which the MPI rank is issued. Children threads, including SMP threads, can also be 
bound to a core in the same processor, but not to a different processor; additionally, core placement for 
SMP threads is by system default and cannot be explicitly controlled by users.[...]’. In contrast, SGI MPI, 
through the omplace command uniquely provides convenient placement of Hybrid MPI processes/OpenMP 
threads and Pthreads within each node. This MPI library is linklessly available through the PerfBoost facility 
bundled with SGI ProPack™ software. PerfBoost provides a Platform-MPI, IntelMPI, OpenMPI, HP-MPI ABI-
compatible interface to SGI MPI. However, since SGI MPI native executables are available from LSTC, 
PerfBoost is not necessary.

3.5 SGi Accelerate LibFFiO
LS-DYNA/MPP/Explicit is not I/O intensive and placement can be handled by SGI MPI, therefore, libFFIO  
is not necessary.

4.0 Benchmarks description
The benchmarks used are the three TopCrunch (http:www.topcrunch.org) dataset--created by National 
Crash Analysis Center (NCAC) at George Washington University. The TopCrunch project was initiated to 
track aggregate performance trends of high performance computer systems and engineering software. 
Instead of using a synthetic benchmark, an actual engineering software applications, LS-DYNA/Explicit  
is used with real data. Since 2007, SGI has held the top performing position on the three datasets. The 
metric is: Minimum Elapsed Time and the rule is that all cores for each processor must be utilized.

4.1 Neon Refined Revised
The benchmark consists of a vehicle based on 1996 Plymouth Neon crashing with an initial speed 31.5 
miles/hour. The model comprises 535k elements, 532,077 shell elements, 73 beam elements, 2,920 solid 
elements, 2 contact interfaces, 324 materials. The simulation time is 30 ms (29,977 cycles) (figure 5) and 
writes 68,493,312 Bytes d3plot and 50,933,760 Bytes d3plot[01-08] files at 8 time steps from start to end 
point (114MB).
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Fig. 5: Neon Refined Revised

4.2 3 Vehicle collision
The benchmark consists of a van crashing into the rear of a compact car, which, in turn, crashes into a midsize 
car (figure 6) with a total model size of 794,780 elements, 785,022 shell elements, 116 beam elements, 
9,642 solid elements, 6 contact interfaces, 1,052 materials, and a simulation time of 150 ms (149,881 
cycles), writing 65,853,440 Bytes d3plot and 33,341,440 Bytes d3plot[01-19] files at 20 time steps from 
start to end point (667MB). The 3cars model is very difficult to scale well: most of the contact work is in two 
specific areas of the model, and it is hard to evenly spread that work out across a large number of processes. 
Particularly as the ”active” part of the contact (which part is crushing the most) changes with time, so the 
computational load of each process will change with time.

Fig. 6: Vehicle Collision

4.3 car2car
The benchmark consists of an angled 2 vehicle collision (figure 7). The vehicle models are based on NCAC 
minivan model with 2.5 million elements. The simulation writes 201,854,976 Bytes d3plot and 101,996,544 
Bytes d3plot[01-25] files at 26 time steps from start to end point (2624MB).

Fig. 7: Car2car 
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5.0 Absolute Performance Results
Figure 8 shows a table with the relevant characteristics listed to properly compare the performance data 
obtained on the benchmark systems or on published topcrunch.org data. Within each system, it is possible to 
scale CPU frequency to further evaluate performance (Section 7). A case by case look at the results follows 
in the next subsections. The number of MPI processes chosen for each dataset are 256, 512 and 1024, 
corresponding to peak parallel efficiency.

Figure 8: Global table of computed or previously published data for various systems
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5.1 Absolute performance comparison for Neon Refined Revised
Figure 9 shows that new Intel Xeon E5-2600 processor running at 2.6 GHz with Turbo Boost enabled 
outperforms previous generation Intel Xeon EP X5690 processor even though frequency is lower. At same 
2.6GHz frequency, ICE X cluster increase performance over Rackable cluster by 6% because of its FDR 
Infiniband interconnect and predictably, at 2.9 GHz ICE X dominates all platforms. SGI UV 2000 shared 
memory system performance is in line with the Rackable cluster as it uses almost the same processor as  
opposed to previous generation UV 1000’s Intel Xeon EX E7-8837 processors.

Figure 9: Elapsed time comparisons between platforms, neon refined revised
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5.2 Absolute performance comparison for 3 Vehicle collision
Figure 10 shows that new Intel Xeon E5-2600 processor running at 2.6 GHz with Turbo Boost enabled 
outperforms previous generation Intel Xeon EP X5690 processor even though frequency is lower. The ICE X 
cluster dominates all platforms at any frequency because of its FDR Infiniband interconnect. UV 2000 
performance is in line with Rackable as it uses almost the same processor as opposed to previous generation 
UV 1000’s Intel Xeon Westmere EX E7-8837.

Figure 10:Elapsed time comparisons between platforms, 3 vehicle collision
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5.3 Absolute performance comparison for car2car
Figure 11 shows that new Intel Xeon E5-2600 processor running at 2.6 GHz with Turbo Boost enabled 
outperforms previous generation Intel XeonEP X5690 processor even though frequency is lower. ICE X 
dominates all platforms at any frequency because of its FDR Infiniband interconnect.

Figure 11:Elapsed time comparisons between platforms, car2car
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6.0 interconnect effect
SGI Performance Suite MPInside, a MPI profiling and performance analysis tool that provides finer-grained 
metrics for analyzing MPI communications [5] was used to separate timings imputed to computational work and 
communications. A typical chart is shown in Figure 12 where Computation work is the bottom blue layer.

Figure 12: Typical MPInside chart.

6.1 interconnect effect Neon Refined Revised
From left to right, Figure 13 shows that for same CPU frequency of 2.60 GHz, communication-wise,  
the Rackable servers with QDR is slower than the ICE X system with FDR by 6% and the UV 2 server 
with NUMAlink®  interconnect 6 shows higher communication times (12%) while the UV 1 server with 
NUMAlink interconnect 5 also shows higher computation times for a combined 31% slow down.

Figure 13: Rackable with QDR, ICE X with FDR, UV2 with NL6, UV1 with NL5
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6.2 interconnect effect 3 Vehicle collision
From left to right, Figure 14 shows that for same CPU frequency 2.60 GHz, communication-wise,  
the Rackable servers with QDR is slower than the ICE X system with FDR by 6% but faster than the UV 2 
server with NUMAlink® 6 interconnect and UV 1 with NUMAlink® 5 by 17%.

Figure 14: Rackable with QDR, ICE X with FDR, UV2 with NL6, UV1 with NL5

6.3 interconnect effect car2car
From left to right, Figure 15 shows that for same CPU frequency 2.60 GHz, communication-wise,  
the Rackable servers with QDR is slower than the ICE X system FDR by 3% (UV server times not available 
at time of study).

Figure 15: Rackable with QDR, ICE X with FDR

7 Turbo, cPu Frequency effect
From left to right, Figure 16 shows for car2car that the Rackable server with Turbo ON is 12% faster than 
Turbo OFF at 2.6 GHz. ICE X at 2.6 GHz is 2.7% slower than at 2.7 GHz and 9% slower than at 2.9 GHz.

Figure 17 shows the percentages increase in performance for the 3 cases compared with ideal values. One 
can see that changes in CPU frequency do not translate in the same percentage increase of performance. 

Figure 16: Rackable 2.6GHz Turbo Boost ON, Turbo Boost OFF, ICE X 2.6, 2.7 2.9GHz 
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Figure 17: Turbo ON/OFF percentage comparison, Frequency effect percentage vs ideal.

8 MPi library effect
As mentioned in section 3.4, and shown by the following elapsed seconds (lower is better) table,  
performance can increase by using SGI MPI and tuning may affect results as well:

9 Summary
Ugrading a single system attribute like CPU frequency, interconnect, number of cores per node, RAM 
speed, brings diminishing returns if the others are kept unchanged. Trades can be made based on metrics 
such as dataset turnaround times or throughput, acquisition, licensing, energy, facilities, maintenance costs 
to minimize.
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dataset \ MPi SGi MPi Platform MPi intel MPi Source: Topcrunch 

Neon Refined Revised 60 71 81 64 (Intel MPI)

3 Vehicle Collision 431 514 595 530 (Platform MPI)


