
Three Key Features of ZFS
Since it was first introduced, almost every slide deck 
describing ZFS has contained a diagram much like Figure 
1. Unfortunately, as accurate as that diagram is, it leaves 
much to be explained by the presenter, so those reviewing 
the slides without the benefit of the presentation audio or 
video are left to make their own conclusions. To understand 
what the slide describes, it is necessary to know a few key 
things about ZFS:

1) ZFS Never Modifies Data in Place: 

Doing so would expose the possibility of data corruption 
common to other file systems when a write is not completed 
properly (known as the “RAID-5 Write Hole”). Consider the 
following example, where pieces of data A, B, C, and D 
result in parity P written in a traditional RAID-5 file system:

If A, then, is to be modified to A’, of course the parity must 
be recalculated to P’ and updated as well—as shown here

If, however, the storage system is interrupted between the 
modification of A to A’ and P to P’, it is possible to end up 
with a situation as follows—where P is the old and incorrect 
parity value for A’, B, C, and D.

This, then, is corrupted data. The traditional RAID-5 file 
system is unaware of the problem, and, in fact, most traditional 
file systems blindly trust parity data. It is possible that this 
will go undetected for a period of time, but if P is ever 
called upon (e.g., during the reconstruction of a drive that 
contained A’), it would result in entirely incorrect data in the 
file system. By never modifying data in place, ZFS avoids 
this problem.

2) ZFS Checksums Every Data and Metadata 
Block in the File System, and the Checksums are 
Stored with the Parent: 

Traditional file systems store a data block’s checksum 
physically next to the data. If the checksum algorithm is 
strong (and not all file systems use a strong one), reading 
the checksum and comparing it to the data will detect an  
error within the data block (often called bit rot or digital decay).

This does not, however, protect against several other very 
real problems—things like phantom writes (where a drive 
claimed to have written data but never did), misdirected 
reads or writes (where a drive read or wrote a data block 
with a matching checksum but in the wrong location), and 
other problems (like drive firmware bugs). ZFS, however, 
can detect all of these conditions (and correct them in 
mirrored or RAIDZ configurations!)because the checksums 
for each data and metadata block are stored in physically 
separate locations with pointer information from “parent” 
to “child”—often depicted as a tree as in the following 
diagram. These checksums are calculated and compared 
every time ZFS walks through this tree to retrieve a piece of 
data, and if data is found to be in error, ZFS will use parity 
to return the correct data. It then will fix the bad data block 
as well! Note that even the highest parent metadata block 
is itself protected by a checksum stored in an “uberblock” 
(the entry point of a ZFS file system)—of which there are 
multiple copies stored in strategic places on disk.
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Figure 1: A common ZFS “Copy on Write” diagram
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3) ZFS Always is Consistent on Disk:

There is never a need for a file system check (fsck) in ZFS. 
Since ZFS never modifies data in place, new data is written to 
new space—starting from the bottom of the tree (data) and 
working up (metadata), but only when the entry point to 
the file system (known as the “uberblock” in ZFS parlance) 
is updated is the state of the file system actually changed. 
Consider the first diagram again—shown again here:

In the first state (#1 in Figure 3, above), the top-center 
uberblock is the entry state to the file system. To retrieve 
any data block at the bottom, ZFS starts with the uberblock 
and navigates through the appropriate metadata block 
pointers (comparing checksums along the way) to retrieve 
the appropriate data and be sure of its integrity.

In the next state (#2, above), the process of modifying the 
bottom-left two data blocks has begun. The green blocks 
depict the new data written in a new place, but that means 
that new parent block pointers, with checksums for the 
new data, are required as well.

In the third state (#3, above), most of the necessary 
new metadata block pointers have been written, but the 
uberblock has not yet been updated. Note that the orange 
state of the file system still is perfectly consistent, because 
all of the metadata and data still is intact. If power was lost 
at this point, when the system came up again, it could still 
navigate the orange file system state without error. 

Finally (step #4, above), the uberblock is updated in what  
is known as an “atomic” operation—meaning it either  
happens successfully or it does not happen at all. At this 
point, the new state of the file system—containing all of the 
green blocks and the unchanged orange blocks from the 
right-hand side—also is perfectly consistent and updated 
with the new bottom-left data. Note that ZFS moves from 
one perfectly consistent file system state to another. The 
old orange data and metadata blocks now can be free for 
future use.

This process is where the notion of “copy on write” in ZFS 
comes into play. There are times when multiple parent 
block pointers can refer to a single physical block of data 
on disk, and this efficiency poses no problem for ZFS. 
When one of the users of that data needs to modify it, the 
new data is written to a new place, and the appropriate 
changes to the metadata are made. Some have described 
that as “redirect on write,” but understanding the process 
is more important than settling on a name. (Note that not 
all of the updates depicted in the diagrams above are 
necessarily writes to disk; many of these changes happen 
simultaneously when ZFS flushes its transaction groups 
from memory to disk. There are a lot of additional optimizations 
not described here.)

 So where is the confusion on Copy-on-Write with ZFS? 
The idea of Copy-on-Write—often abbreviated as “COW”—
has been around for years. The original concept is an 
optimization strategy used in computing. The idea is that 
multiple users unknowingly share a resource (e.g., a piece 
of memory or disk space) as long as the resource is exactly 
the same; only when one of the users needs to modify the 
resource does that user get its own copy of the resource  
to use however it desires. Since the users are completely  
unaware of this happening, the strategy is great for  
minimizing necessary resources and is used in many places 
in the computing industry today.

The trouble is that this strategy can be implemented in 
various ways, and some are more efficient than others. 
Specifically, in the world of snapshots on storage devices, 
there are some strikingly different implementations from 
different vendors that all use the “copy on write” terminology. 
While this series of papers will not attempt to explain all of 
the other “copy on write” implementations in the storage 
industry, a couple of rather well-known contrasts will be 
drawn that should help alleviate confusion when people 
believe they know what “copy on write” means and apply 
that incorrectly to their understanding of ZFS.
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figure 2: ZFS stores checksums separate from data

figure 3, ZFS updates are atomic: the file system state  
is always consistent.
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