
Three Key Features of ZFS
Since it was first introduced, almost every slide deck
describing ZFS has contained a diagram much like Figure
1. Unfortunately, as accurate as that diagram is, it leaves
much to be explained by the presenter, so those reviewing
the slides without the benefit of the presentation audio or
video are left to make their own conclusions. To understand
what the slide describes, it is necessary to know a few key
things about ZFS:

1) ZFS Never Modifies Data in Place:

Doing so would expose the possibility of data corruption
common to other file systems when a write is not completed
properly (known as the “RAID-5 Write Hole”). Consider the
following example, where pieces of data A, B, C, and D
result in parity P written in a traditional RAID-5 file system:

If A, then, is to be modified to A’, of course the parity must
be recalculated to P’ and updated as well—as shown here

If, however, the storage system is interrupted between the
modification of A to A’ and P to P’, it is possible to end up
with a situation as follows—where P is the old and incorrect
parity value for A’, B, C, and D.

This, then, is corrupted data. The traditional RAID-5 file
system is unaware of the problem, and, in fact, most traditional
file systems blindly trust parity data. It is possible that this
will go undetected for a period of time, but if P is ever
called upon (e.g., during the reconstruction of a drive that
contained A’), it would result in entirely incorrect data in the
file system. By never modifying data in place, ZFS avoids
this problem.

2) ZFS Checksums Every Data and Metadata
Block in the File System, and the Checksums are
Stored with the Parent:

Traditional file systems store a data block’s checksum
physically next to the data. If the checksum algorithm is
strong (and not all file systems use a strong one), reading
the checksum and comparing it to the data will detect an
error within the data block (often called bit rot or digital decay).

This does not, however, protect against several other very
real problems—things like phantom writes (where a drive
claimed to have written data but never did), misdirected
reads or writes (where a drive read or wrote a data block
with a matching checksum but in the wrong location), and
other problems (like drive firmware bugs). ZFS, however,
can detect all of these conditions (and correct them in
mirrored or RAIDZ configurations!)because the checksums
for each data and metadata block are stored in physically
separate locations with pointer information from “parent”
to “child”—often depicted as a tree as in the following
diagram. These checksums are calculated and compared
every time ZFS walks through this tree to retrieve a piece of
data, and if data is found to be in error, ZFS will use parity
to return the correct data. It then will fix the bad data block
as well! Note that even the highest parent metadata block
is itself protected by a checksum stored in an “uberblock”
(the entry point of a ZFS file system)—of which there are
multiple copies stored in strategic places on disk.

Copy-on-Write, Checksums, and Consistency

SGI NAS ZFS

SGI® NAS ZFS Key Features

A’

A’

B

B

C

C

D

D

P’

P

1. initial block tree 2. COW some data

3. COW metadata 4. Update überblocks & free

Figure 1: A common ZFS “Copy on Write” diagram

A B C D P

A BA sum B sum

3) ZFS Always is Consistent on Disk:

There is never a need for a file system check (fsck) in ZFS.
Since ZFS never modifies data in place, new data is written to
new space—starting from the bottom of the tree (data) and
working up (metadata), but only when the entry point to
the file system (known as the “uberblock” in ZFS parlance)
is updated is the state of the file system actually changed.
Consider the first diagram again—shown again here:

In the first state (#1 in Figure 3, above), the top-center
uberblock is the entry state to the file system. To retrieve
any data block at the bottom, ZFS starts with the uberblock
and navigates through the appropriate metadata block
pointers (comparing checksums along the way) to retrieve
the appropriate data and be sure of its integrity.

In the next state (#2, above), the process of modifying the
bottom-left two data blocks has begun. The green blocks
depict the new data written in a new place, but that means
that new parent block pointers, with checksums for the
new data, are required as well.

In the third state (#3, above), most of the necessary
new metadata block pointers have been written, but the
uberblock has not yet been updated. Note that the orange
state of the file system still is perfectly consistent, because
all of the metadata and data still is intact. If power was lost
at this point, when the system came up again, it could still
navigate the orange file system state without error.

Finally (step #4, above), the uberblock is updated in what
is known as an “atomic” operation—meaning it either
happens successfully or it does not happen at all. At this
point, the new state of the file system—containing all of the
green blocks and the unchanged orange blocks from the
right-hand side—also is perfectly consistent and updated
with the new bottom-left data. Note that ZFS moves from
one perfectly consistent file system state to another. The
old orange data and metadata blocks now can be free for
future use.

This process is where the notion of “copy on write” in ZFS
comes into play. There are times when multiple parent
block pointers can refer to a single physical block of data
on disk, and this efficiency poses no problem for ZFS.
When one of the users of that data needs to modify it, the
new data is written to a new place, and the appropriate
changes to the metadata are made. Some have described
that as “redirect on write,” but understanding the process
is more important than settling on a name. (Note that not
all of the updates depicted in the diagrams above are
necessarily writes to disk; many of these changes happen
simultaneously when ZFS flushes its transaction groups
from memory to disk. There are a lot of additional optimizations
not described here.)

 So where is the confusion on Copy-on-Write with ZFS?
The idea of Copy-on-Write—often abbreviated as “COW”—
has been around for years. The original concept is an
optimization strategy used in computing. The idea is that
multiple users unknowingly share a resource (e.g., a piece
of memory or disk space) as long as the resource is exactly
the same; only when one of the users needs to modify the
resource does that user get its own copy of the resource
to use however it desires. Since the users are completely
unaware of this happening, the strategy is great for
minimizing necessary resources and is used in many places
in the computing industry today.

The trouble is that this strategy can be implemented in
various ways, and some are more efficient than others.
Specifically, in the world of snapshots on storage devices,
there are some strikingly different implementations from
different vendors that all use the “copy on write” terminology.
While this series of papers will not attempt to explain all of
the other “copy on write” implementations in the storage
industry, a couple of rather well-known contrasts will be
drawn that should help alleviate confusion when people
believe they know what “copy on write” means and apply
that incorrectly to their understanding of ZFS.

 sum

 sum

 sumAsum Bsum

A B

 sum

 sum

figure 2: ZFS stores checksums separate from data

figure 3, ZFS updates are atomic: the file system state
is always consistent.

1. initial block tree 2. COW some data

3. COW metadata 4. Update überblocks & free

SGI® NAS ZFS Key Features

©2013 Silicon Graphics International Corp. All rights reserved. SGI and the SGI logo are registered trademarks
or trademarks of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other
countries. All other trademarks are property of their respective holders. 05032013 4417

Global Sales and Support: sgi.com/global

