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abstract 
This paper describes how to implement Red Hat® Enterprise Linux® 6.3’s Kernel-based Virtual Machine (KVM) on a SGI UV  
system to consolidate many heterogeneous software environments.  The resultant environment provides a complete virtual  
machine for each guest with integrated I/O capabilities and a large external storage pool.  This paper presents benchmarks  
and explains best practices derived from case studies. These benchmarks show that with minimal configuration near-native 

performance is easily achieved on the SGI UV 2000.
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1.0 introduction
Despite the advantages of virtualized environments, careful planning is necessary for a successful  
implementation. Some considerations include:

•	  The consolidation of multiple VMs onto one physical machine can magnify the impact of hardware  
failures. Careful planning is required for disaster recovery. 

•	  Incorrect VM implementation can degrade application performance. Following best practices is critical 
to avoid severe performance penalties. There is a trade-off between consolidation and performance 
that needs to be balanced depending on the use case.

•	 Applying system management tools in a virtual environment is non-trivial.

•	  Unneeded or over-specified virtual machines in a data center waste the resources of the virtual  
servers’ hosts.

The above considerations stress the importance of proper planning before implementing a virtualized solution. 
The best results will only be achieved by abiding by best practices and being aware of the specific needs of 
a virtualized environment.

2.0 Using red hat enterprise Linux 6.3’s KVM
Red Hat® Enterprise Linux® (RHEL) 6.3’s Kernel-based Virtual Machine (KVM) is an excellent virtualization 
solution, as it solves several major problems:

•	  The KVM, being a kernel-level virtualization hypervisor, allows Linux Guest OSes to run with the same level 
of hardware support as on bare-metal with no additional guest drivers necessary. 

•	  The KVM is actively supported by the open-source community. Any modern Linux distribution should  
run on top of the KVM as a guest OS without needing additional software or drivers. 

•	  The KVM allows for many customization options for the VM. The GUI Virtualization Manager in RHEL 6.3 
KVM allows for easy creation and management of VMs. For example, one can create virtual machines  
using a wizard and manage multiple virtual machines within a GUI interface.

•	  The KVM supports mature system administration tools, making it easier to administer many VMs in a data-
center. For example, a command line tool, virsh, can be used to manage virtual machines. The virsh tool 
has an option called vcpupin to dynamically map virtual cores in a running VM to physical cores  
on the system.

•	  For more control and tuning capabilities, one can use the virsh edit command to edit the XML files that 
define the VM configuration. For example, the cpuset and vcpupin directives can be used to assign a VM  
to a particular set of CPUs and pin virtual CPUs to physical cores on the system.

•	  As of the date of this paper (July 2013), RHEL 6.3 KVM supports 160 Virtualized CPU cores (vcpus)  
per Guest OS (VM), allowing massive scalability.

A SGI UV running RHEL is perfectly suited for consolidating many applications onto a single system. It  
provides the largest single-system image on the market, allowing unparalleled performance and scalability.

2.1 heterogeneous Software environments with Virtualization
Virtualization using RHEL 6.3 KVM technology provides a complete virtual machine for each guest. A virtual 
machine appears to be an actual hardware system to the operating system and applications running on 
it. Unlike Linux Containers, KVM virtual machines require the installation of a guest operating system. This 
guest operating system is completely independent from the host and other installed VMs. Each guest is 
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installed, managed, maintained, and updated independently. Completely different versions of software can 
be installed on each guest. The result is an ideal environment for server consolidation.1 Figure 1 shows the 
following components of a virtualized environment:

•	 host – The physical computer on which the virtual machine is loaded.

•	  Virtual Machine – The software environment which appears to a guest OS as hardware. It consists of 
computing power (CPU), memory, network interface(s), and storage.

•	  Virtualization Layer – The KVM software layer (hypervisor) that makes available the physical hardware 
resources to the virtual machines. 

•	  host OS – The operating system installed on the bare physical computer (host).

•	  Server hardware – The hardware components of the physical computer, shown here also attached  
to some external storage. 

Application 1 Application 2 

OS 1 OS 2  OS 3 

Virtualization Layer: RHEL 6.3 KVM Hypervisor 

Server Hardware 

 
 
 

H 
O 
S 
T 

Application 3 

RHEL 6.3 Host OS 

Virtual Machines 

External 
Storage 

Figure 1: Red Hat Enterprise Linux 6.3 KVM consolidating heterogeneous software environments 

3.0 Performance Benchmarks on SGi UV 
This section describes the hardware and software configurations used for running a few performance 
benchmarks on an Intel® Xeon® E5-4600 processor-based SGI UV server platform, as well as the 
benchmark results.

3.1 Benchmark Configuration
The following benchmark configuration is used:

•	Server: 

 - 1 x SGI UV system with: 

•	32 x Intel Xeon E5-4650 2.7 GHz processors

•	256 x 16 GB DIMMS (4 TB Total)

•	External Storage: 

 - 2 x SGI IS5500, each with 4 LUNs, each LUN with 7 x 600 GB 10K RPM SAS drives in RAID0

 - Storage is attached via 8 Gb Fibre Channel HBAs

•	OS and Virtualization Environment:

1 http://www.redhat.com/products/virtualization/server/
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 - Host & Guest OS: Red Hat Enterprise Linux Server release 6.3 – kernel 2.6.32-279.el6.x86_64 SMP

 -  KVM software: libvirt-0.9.10-21.el6.x86_64; qemu-kvm-0.12.1.2-2.295.el6.x86_64;  
virt-manager-0.9.0-14.el6.x86_64

 - Java Virtual Machine (JVM) Version 

 - Oracle Java HotSpot 1.6.0_23-b05 (64-bit)

3.2 Benchmark workloads
The following benchmark workloads were executed on the SGI UV in different modes – once on bare metal 
and then under different RHEL 6.3 KVM configurations – to show (a) the relative performance of a virtualized 
environment to the bare physical hardware (i.e., native performance) and (b) the benefits of using different 
RHEL 6.3 KVM configuration options:

•	 LMbench2 3.0, measuring the memory latency and bandwidth on UV and KVM;

•	 IOzone3 v3.414, assessing the I/O capabilities of external storage on UV and KVM;

•	  SPECjbb®20054 v1.07, measuring the throughput and scalability of Java applications on the UV NUMA 
architecture and assessing the overall efficiency of the KVM environment with such applications.

3.3 Performance Metrics
The performance metrics for the LMbench, IOzone and SPECjbb®2005 benchmarks are, respectively:

•	 Memory latency (ns) and memory bandwidth (MB/s);

•	 I/O throughput (MB/s);

•	 BOPS (business operations per second).

3.4 KVM Configuration Descriptions
Four different VM configurations5 were used for the testing:

•	  Default VM - The default VM as created using virt-manager. In this case, each vcpu is free to use any 
core on any socket (Figure 2).

•	  VM with NUMA nodes – This VM is created by editing the VM definition file (an XML file in /etc/libvirt/
qemu) and using the cell construct. When the VM boots, the cells appear as NUMA nodes within the 
VM (Figure 3).

•	  VM with vcpu pinning – This VM is created by editing the VM definition file and using the cpuset and 
vcpupin constructs. These constructs assign vcpus to physical cores on the host on a 1:1 basis and 
pins them there (Figure 4).

•	  Multiple VMs with 1 VM per node (socket)6 – Each node is assigned only one VM, with the number of 
VMs created determined by the demands of the application. The number of nodes sets an upper limit 
for the number of VMs that can be created. Each VM is thus aligned to a specific socket (Figure 5).

2 http://www.bitmover.com/lmbench/
3 http://www.iozone.org/
4 http://www.spec.org/jbb2005/
5  For visual simplicity, Figures 2-5 show a hypothetical system with 8 sockets (nodes), with each node containing 8 cores and with 

hyperthreading turned off.
6  A NUMA node, or node, relates to a physical socket on the system. There are 8 cores per node; enabling hypterthreading doubles this 

to 16 cores per node.
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Figure 2: Depiction of a Default VM  
with no vcpu Pinning

Figure 4: Depiction of a VM with vcpu Pinning  
but no NUMA Nodes

Figure 3: Depiction of a VM with NUMA Nodes  
with vcpu Pinning

Figure 5: Depiction of Multiple VMs  
with 1 VM per Node

3.5 Benchmark results
This section presents benchmark results for a variety of different system configurations. These results guide 
the creation of best practices for UV configuration.

3.5.1 Memory Latency and Bandwidth
Results from the LMBench 3.0 latency tests show that the main memory latency under the RHEL 6.3 KVM 
is nearly the same as Native, with random memory latency only 4% higher than Native. The KVM VM is  
running with 16 vcpus pinned to one CPU socket with HT enabled (Figure 6).7
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Figure 6: LMbench 3.0 Memory Latency Tests on SGI UV 2000: RHEL 6.3 KVM vs. Native

7  For many of the test results in this paper, the difference in performance from setting hyperthreading on or off is negligible; thus,  
only one case is shown.
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Similarly, the LMBench 3.0 bandwidth tests (Figure 7) show the memory bandwidth for KVM as just  
5% less than Native. 

Figure 7: LMbench 3.0 Memory Bandwidth Tests on SGI UV 2000: RHEL 6.3 KVM vs. Native

However, the file reread test gave anomalous results, with the KVM being more than 400% faster than  
Native. This discrepancy is due to the kernel setting memory_spread_page. This setting controls how the 
file buffer cache is allocated. If set to 1 (buffer spread), the file buffer cache is spread among all nodes. If 
set to 0 (buffer local), then the file buffer cache is allocated local to the same node where the request is 
made to create a file. Changing memory_spread_page from buffer spread to buffer local (1 to 0) improved 
Native’s file reread result by 445% without much impact to the other Native and KVM results. Changing 
this kernel setting does not impact KVM performance, since a VM pinned to a node automatically mimics 
the local cache behavior as set to buffer local. The memory_spread_slab setting behaves similarly for the 
allocation of kernel slab memory.

After setting these kernel settings to 0, all the results show that KVM performance is less than 5%  
below Native. 

3.5.2 i/O throughput
This section describes the I/O performance tests executed on a SGI UV directly attached to an external SGI 
IS5500 storage subsystem. Following are some benchmark specifics:

•	  The IOzone benchmark was run with Direct I/O using 8 threads writing 50 GB files to xfs filesystems on 8 
LUNs on two IS5500s. 

•	  Virtual Machine’s virtual hard disk drive was created using virtio device driver with an XFS filesystem 
datastore and raw disk image. Within the VM, the virtual devices (/dev/vd*) were formatted with xfs 
filesystem.

•	  For Native tests, the SCSI (/dev/sd*) LUN devices were formatted with xfs filesystems.

•	  Note: This I/O test was done in a localized fashion, because even on bare metal non-localized I/O  
and (especially) buffered I/O exhibits very random behavior since the location of the buffer cache is  
not controllable. 

Figure 8 shows bandwidth results for file reread operations that are similar to the results for memory bandwidth 
reread operations (see Figure 7). This is before adjusting the kernel settings for memory_spread_page and 
memory_spread_slab (i.e., buffer spread). That is, the KVM is outperforming Native.
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Figure 8: IOzone Benchmark on SGI UV with Direct-attached External SGI IS5500 Storage: 
RHEL 6.3 vs. Native

After adjusting the kernel settings to buffer local, Native throughput improved 35-185% while KVM throughput 
basically remained the same. This led to Native results being approximately 0-18% better than KVM results 
depending on the test.8

The KVM has slightly worse throughput with HT on (by about 1-17%) than with HT off (Figure 9). However, 
the throughput for KVM with HT off is still slightly below the throughput for Native with HT off or HT on for 
most tests.

For the stride read test, the KVM is barely better than Native but the difference (about 3-6%) is likely  
statistically insignificant.

Figure 9: IOzone Benchmark on SGI UV 2000 Comparing HT Off and On: RHEL 6.3 vs. Native

8 The KVM drives were configured to use the virtio driver instead of passthrough. Using passthrough should improve performance.
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3.5.3 running SPeCjbb®2005
For the purposes of these tests, SPECjbb®2005 was used in a couple different modes:

•	 Single JVM

•	 Multiple JVM

•	 Parallel Single JVM

The first two ways are the official methods for running SPECjbb®2005. The Single JVM method consists of 
using only one JVM for generating the workload. The Multiple JVM method runs multiple JVMs and sums the 
score for each to generate an overall score for the test. This method is often used for NUMA architectures.  
We assigned JVMs to specific vcpus (on VMs) or CPUs (on Native) using the numactl command. This allows 
the JVMs to be assigned to NUMA nodes, eliminating internode communication on the host.

The final mode (Parallel Single JVM) is a hybrid that is not an official mode for running SPECjbb®2005 but is 
used in order to drive multiple VMs. SSH is used to run multiple single JVM runs in parallel on different VMs. 
This exercises multiple VMs which are assigned to NUMA nodes. The score is the sum of each single JVM  
run and is analogous to how the Multiple JVM method score is calculated.

The Multiple JVM mode was used for Native SPECjbb®2005 runs. For KVM runs, either the Multiple JVM mode 
or the Parallel Single JVM mode was used depending on the purpose of the experiment.

3.5.4 KVM Configuration Comparisons Using SPeCjbb – 32 cores
The following KVM configurations were used for these SPECjbb®2005 experiments:

•	 Default VM

•	 VM with NUMA nodes

•	 VM with vcpu pinning

•	 Multiple VMs with 1 VM per node

32 cores are the maximum number of vcpus that can be used in a VM when using the cell construct to  
create NUMA nodes within a VM. This is much lower than the maximum number of cores that can be used 
in a VM with RHEL 6.3 KVM (160 cores), which is covered in the next section. 

Figure 10 and Figure 11 show the results for HT off and HT on, respectively. With HT off, 32 vcpus are 
spread across 4 nodes while, with HT on, 32 cores are spread across only 2 nodes. Native results are also 
included for comparison.

As NUMA awareness increases, SPECjbb throughput increases. This increase is more pronounced with 
hyperthreading off. With hyperthreading on a VM is using 16 cores per node (versus 8 cores per node with 
HT off); the resultant additional resource contention decreases the impact of additional NUMA awareness. 
Diminishing returns in performance take effect after using NUMA nodes on the VM with 2 nodes (~28% 
with HT on).
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Figure 10: KVM Configuration Comparisons Using SPECjbb®2005 – 32 cores, HT Off

0.0	  

0.2	  

0.4	  

0.6	  

0.8	  

1.0	  

1.2	  

1.4	  

1.6	  

Configura1ons	  

To
ta

l	  B
O
PS

	  (M
ill

io
ns

)	  

VM	  Configura1on	  Comparisons	  using	  SPECjbb	  
32	  cores,	  1	  JVM/16c,	  16c/node,	  HT=On	  

1	  Default	  VM	  

2	  Node	  NUMA	  VM	  

1	  vcpupin	  VM	  

1	  VM/Node	  

Na1ve	  

Higher	  is	  
Be*er	  

28%	  

18%	  
6%	  

Figure 11: KVM Configuration Comparisons Using SPECjbb®2005 – 32 cores, HT On

3.5.5 KVM Configuration Comparisons Using SPeCjbb – 160 cores

The configurations used in these experiments are unchanged from the previous section (32 cores) except 
not using the VM with NUMA nodes configuration, which is not supported for more than 32 cores. 160 
cores is the maximum number of cores supported for a VM in RHEL 6.3 KVM which is why 160 cores were 
used in these tests.

Figures 12 and 13 show the results for hyperthreading off and on, respectively. With HT off, 160 vcpus are 
spread across 20 nodes; with HT on, 160 cores are spread across 10 nodes.

As with 32 cores, increased NUMA awareness increases throughput. Again, this effect is more pronounced 
with HT off. Pinning vcpus has less impact than it did on 32 cores, likely because the VMs are spread 
across more nodes. Switching to 1 VM per node substantially increases throughput performance; as was 
the case with the 32 core experiment, performance is within 18% of Native.
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Figure 12: KVM Configuration Comparisons Using SPECjbb®2005 – 160 cores, HT Off

0	  

1	  

2	  

3	  

4	  

5	  

6	  

7	  

Configura2ons	  

To
ta

l	  B
O
PS

	  (M
ill

io
ns

)	  

VM	  Configura2on	  Comparisons	  using	  SPECjbb	  
160	  cores,	  1	  JVM/16c,	  16c/node,	  HT=On	  

1	  Default	  VM	  

1	  vcpupin	  VM	  

1	  VM/Node	  

Na2ve	  

Higher	  is	  
Be*er	  

11%	  

162%	  

18%	  

Figure 13: KVM Configuration Comparisons Using SPECjbb®2005 – 160 cores, HT On

These results highlight the superiority of using 1 VM per node on KVM, instead of the default VM or 
vcpu pinning configurations. In the 1 VM per node configuration, the system’s resources are better  
isolated and utilized by the VMs, thus increasing throughput. Since there is a bigger increase in the number 
of nodes being used, the delta between the 1 VM per node case and the other cases is much larger. 
That is, for the 32 core experiments, the configuration change is moving from 1 VM to only 4 or 2 VMs 
(for HT off and HT on respectively). For the 160 core experiments, the configuration change results in 
going from 1 VM to 20 or 10 VMs (for HT off and HT on respectively).

3.5.6 KVM Scaling Comparisons Using SPeCjbb – running 1 JVM/node
For these experiments, the same three KVM configurations are uses as in the 160 core experiments:

•	 Default VM

•	 VM with vcpu pinning

•	 Multiple VMs with 1 VM per node

Figure 14 and Figure 15 (for HT off and HT on respectively) show that the default VM and the VM with 
vcpu pinning configurations see little benefit from using more than four nodes. This is in stark contrast 
to the scaling seen on the 1 VM per node and Native configurations. This further shows that running  
1 VM per node offers the maximum performance with RHEL 6.3 KVM.
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Figure 14: KVM Scaling Comparisons using SPECjbb®2005 – 1 JVM/node, HT Off
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Figure 15: KVM Scaling Comparisons using SPECjbb®2005 – 1 JVM/node, HT On

3.5.7 KVM vs. Native SPeCjbb®2005 Scaling Comparison
These tests compare the optimal KVM configuration (1 VM per node) to Native for increasing numbers  
of JVMs. By increasing the number of VMs (and thus JVMs), more NUMA nodes are utilized on the  
SGI UV system.

Figure 16 shows KVM and Native scaling linearly with the number of JVMs. Turning on HT increased  
performance by about 10% on both configurations. Native performance is roughly 17% better than  
KVM performance.
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Figure 16: KVM vs. Native SPECjbb®2005 Scaling Comparison – HT Off and On

3.5.8 Multiple JVM Mode Comparison with SPeCjbb®2005
The previous experiments used different methods of running SPECjbb®2005 to find the best KVM VM  
configurations. By contrast, this experiment was designed to observe the performance of SPECjbb®2005 
using the same configuration on KVM and Native. The Multiple JVM method, which is optimal for the  
Native environment, is used. Since KVM is confined to 32 cores when configuring NUMA nodes within a 
VM, 32 core VMs with either 4 or 2 NUMA nodes (for HT off and on, respectively) are used for comparison. 
The Multiple JVM SPECjbb®2005 method is run on a single VM with multiple nodes and on Native with 
multiple nodes.

Figure 17 shows similar results as in previous experiments using multiple VMs:

•	 Both KVM and Native performance scaled linearly as the number of JVMs, or nodes, was increased.

•	 On both KVM and Native, having HT on increased performance by about 11%.

As a VM is configured to use more physical nodes, its performance does not improve as much as tests run 
on Native nodes using more physical nodes (see trend lines in Figure 16), even with vcpu pinning. Native 
performance is about 17% better than KVM performance for both HT off and HT on when using a single 
node, but Native throughput is 23-26% better than KVM when 2 nodes are used and 57% better when 4 
nodes are used (HT off).
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Figure 17: KVM vs. Native SPECjbb®2005 Multiple JVM Mode Comparison

3.6 Performance Summary
To summarize on performance:

•	  Measured by memory latency and bandwidth, KVM performance is 95-100% of Native performance.

•	  With Java applications, measured via SPECjbb (using 1 JVM per node), KVM is 83% of Native  
performance. Hyperthreading adds 10% more throughput for both KVM and Native.

•	  For I/O throughput measured via IOzone (with HT on), KVM performance is 82-100% of Native  
performance.

•	  Experiments show that kernel parameters memory_spread_page and memory_spread_slab play an 
important role on the Native I/O throughput and Native file buffer memory bandwidth. Performance 
improvements of approximately 35-185% and 445%, respectively, can be achieved by toggling these 
parameters. Changing these parameters does not impact KVM performance since a VM pinned to a node 
automatically sees optimal cache behavior. 

•	  Cpuset and vcpupin do a good job of keeping vcpus pinned to cores and using memory local to those cores.

•	  Running SPECjbb on a 4 node VM and monitoring the memory used on the host appears to show that 
the memory is used on the correct physical nodes. However, the same memory utilization is seen when 
using vcpupin without the use of cells (and with better performance), so using vcpupin instead of cells 
is currently recommended. This could change if cells are updated to support more vcpus and more 
closely align vcpus and memory.

•	  For a 160 vcpu VM, the overall throughput of the system is increased by using the vcpupin feature,  
but levels off after 4 JVMs.
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4.0 Best Practices
The best practices for achieving optimal performance on a virtualized SGI UV system can be described 
as follows:

•	  The size of host and guest OSes supported by RHEL 6.3 KVM today (September 2013) are 160 CPUs 
and 160 vcpus, respectively. It is recommended to stay within this limit on UV, even though UV can 
scale up to 4096 physical cores. Table 1 shows the RHEL 6.3 KVM official limits and recommendations 
on UV.

•	  For the best performance, use virtual machines with vcpu counts and memory sizes less than or equal 
to the physical hardware of the NUMA node it is running on. For example, if a UV system has a NUMA 
node with 8 cores and 64 GB of memory, a VM should be less than or equal to this size. 

Figure 18 shows an example configuration of a 256 core UV with 32 virtual machines configured on each 
of the 32 NUMA nodes having 8 vcpus. Similarly, a 64-core UV may be configured with 8 virtual machines, 
each configured on one of the 8 NUMA nodes to use 16 vcpus (with HT on). One could theoretically configure 
a maximum of 512 virtual machines on a 512-core UV system having 4 TB of memory by restricting each 
VM to 1 core and 8 GB of memory.

•	  When configuring a VM that must span more than one NUMA node, it is important to use vcpupin 
directives to keep the vcpus pinned to physical cores. This can be done within Virt-Manager and virsh 
vcpupin or through configuration in the VM xml definition file via virsh edit. 

•	  Enabling transparent hugepages (THP) on the UV host, which enables THP on the KVM, results in a better 
KVM performance.

•	  When using hyperthreading-capable CPUs on UV, it is recommended to allocate a number of vcpus to 
a VM which is less than or equal to the number of threads that exist on a CPU. For example, if a CPU 
has 8 cores/16 threads, a VM with 16 or fewer vcpus should be used. Be sure to configure the VM to 
use the correct CPU number associated to that socket. 

•	  Use virtual hard disks via the virtio driver to attach external I/O to a VM on UV. 

host Virtual Machine (Official) Virtual Machine on UV 2000

Max Cores 160/4096 160 Up to the Number of cores  
on a NUMA Node

Max Memory 2 TB/64 TB 2 TB Up to the amount of memory 
on a NUMA Node

Table 1: RHEL 6.3 KVM official limits and SGI UV recommendations
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Figure 18: Consolidation of Heterogeneous Workloads on SGI UV using Red Hat 6.3 KVM

5.0 Summary 
The SGI UV 2000 makes full use of the new virtualization features of Red Hat Enterprise Linux 6.3 KVM up 
to the KVM’s maximum host size limits. This enables the consolidation of multiple physical servers onto 
one UV. This increases utilization of computer resources, eases manageability, improves energy savings 
and lead to a more cost-effective solution. SGI UV with RHEL 6.3 KVM enables easily manageable, high 
performance installations that can run multiple database deployments, collections of commercial applications, 
development/debugging environments, and IT infrastructures.
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