
W h i t e P a p e r

A Hardware-Accelerated MPI
Implementation on SGI® UV™ Systems

January, 2012

Abstract
The SGI UV system has a rich set of hardware features that enable scalable programming models to be implemented

with high efficiency and performance. In particular, the popular Message Passing Interface (MPI) programming model

has been implemented to utilize the MPI hardware acceleration features included in the UV system. This paper describes

the hardware-accelerated features of SGI UV MPI and shows the performance gains achieved by their use.

.

W H I T E P A P E R

A Hardware-Accelerated MPI Implementation on SGI UV Systems 2

T A B L E O F C O N T E N T S

1.0 Introduction			 3

2.0 Background 	 3

3.0 SGI Shared Memory Architecture: Massive Shared Memory Resources 	 4

4.0 Benefits of Global Shared Memory 	 5

5.0 Programming Models	 6

W H I T E P A P E R

A Hardware-Accelerated MPI Implementation on SGI UV Systems 3

1.0 Introduction
One of the most interesting aspects of the SGI UV Coherent Shared Memory Processor (SMP) system
is the size of the system—up to 2,560 cores—that can exist within a single Linux® OS instance.
Such a “huge PC” provides many potential parallel programming strategies. Techniques used on
SMP systems like OpenMP and threaded access to shared memory segments are every bit as useful
on scale-up UV systems as the popular MPI parallel programming model or other cluster-friendly
programming models such as SHMEM™, UPC and other PGAS languages. Clearly, the UV system
hardware supports much flexibility in the way of parallel programming.

Nevertheless, MPI is the predominant scalable parallel programming model in the technical compute
industry, and SGI UV hardware and software have been engineered to meet the demanding performance
needs of MPI users. MPI is crucial to supporting the most scalable applications on the largest scale-out
multi-partition UV systems, where many partitions are connected via NUMAlink® 5 interconnect and
the system size can grow up to 256K processor cores. Such systems are clusters of large SMPs, and
a natural way to program a parallel application to run across the system is through the use of MPI.

2.0 SGI UV MPI Software Stack
The SGI MPI software stack includes a number of software components. These software items are
availablefrom SGI via the SGI MPI product bundle. A list of the most significant components follows

•	 MPI. Libraries and commands to build and run MPI programs.

•	 �XPMEM. This library and kernel module provides shared memory mapping for processor access and
global memory mapping for references by the UV MPI Offload Engine (MOE) component known as
the Global Reference Unit (GRU).

•	 �GRU Development Kit. These libraries provide the API to directly control the global memory
reference and MOE operations supported by the UV Hub that implements MPI messages,
DMA and synchronization.

•	 �NUMA tools. The dplace and omplace commands pin processes and threads in MPI programs
and MPI/OpenMP hybrid programs onto CPUs. The dlook command can display a process address
space complete with NUMA placement information.

•	 �PerfBoost. This tool allows you to run applications that have been compiled for many popular MPI
implementations with UV acceleration features activated.

•	 �Perfcatcher. A runtime profiling tool that reports on MPI and SHMEM function calls made.

•	 �MPIInside. An advanced MPI profiling and performance visualization tool optimized to use run-time
state instead of excessively large trace files.

W H I T E P A P E R

A Hardware-Accelerated MPI Implementation on SGI UV Systems 4

3.0 Dual Transport Methods
Because the scale-up SGI UV is a single SMP, MPI message queues and synchronization constructs
can be implemented by memory reference via processor mapping of memory throughout the system.
This approach is generally taken in the industry for best MPI performance within SMPs in general, and
SGI MPI takes advantage of this technique as well. The SGI implementation has evolved and improved
as it moved from one large SGI distributed memory SMP system to another over the years. Distributed
memory support started with the SGI Origin® line of computer systems, continued in the SGI Altix®
3700 and 4700 lines, and most recently has been provided in the SGI UV. Rich and robust handling of
NUMA architectures has come out of this process of continued improvements.

One major hardware feature sets UV apart from earlier SGI NUMA computer systems, and opens the
door to MPI acceleration and offload as well as efficient PGAS programming model support—MOE.
The MOE provides MPI message queues, innovative synchronization primitives and advanced RDMA
capabilities such as strided and indexed global memory updates. The MOE provides a way to optimize
MPI within a UV system, whether it is running as a single-instance machine or as a larger multi-partition
(NUMAlink cluster) system. SGI MPI uses run-time heuristics in point-to-point and collective communication
to choose the appropriate communication mode, either shared memory or MOE-based.

Within a single SGI UV SMP, all MPI process pairs can use either shared memory or MOE transport.
Nearby nodes or in-cache messages are best suited for shared memory message passing because
the latency is extremely low using this communication method. More distant nodes or messages
in the 400KB to 4MB range are good fits for MOE transport. The incremental latency per interconnect
hop is much lower with MOE transport than traditional shared memory. Figure 1 shows a profile
of message latency across a 2,048-core UV system for the two transport methods. On such a system,
the maximum distance between any two sockets is five NUMAlink interconnect fabric hops.

Figure 1: MPI Latency on an SGI UV System for Shared Memory and MOE Transport vs. Distance

Sheet1

Distance (hops
shared

memory MOE
0 380 1412
1 QPI 690 1412
1 NL 1585 1450
2 NL 1860 1501
3 NL 2033 1541
4 NL 2266 1602
5 NL 2485 1640

Hops GRU
on socket 2540
paired socket 3066
1 NL hop 3960
2NL hops 3950

Hops
shared

memory GRU
on socket 1696 915
paired socket 1633 809
1 NL hop 960 809

Procs/hub
shared

memory GRU
1 1237000 460000
2 2515000 916000
4 4572000 1820000
8 9275000 3618000

16 13509000 6802000
32 18369000 13011000

nprocs Barrier time
4 0.32

32 1.8
64 2.2

128 2.3
256 3.1
512 4

1024 4.3

nprocs
Allreduce

time
2 0.59
4 1.25
8 1.78

16 3.15
32 6.55
64 9.15

128 14.35
256 17.59
512 17

1024 19
1536 20

MPI huge message bandwidth
pong.c – 100 MB messages
MPT 2.01
MPI_GRU_CBS=0 GRU_THREAD_DSEG_SZ=4096
MPI_BUFFER_MAX=0 MPI_SHARED_NEIGHBORHOOD=1
GRU_TLB_PRELOAD=100
Mbyte/sec

MPI Message Rate
OSU osu_mbw_mr.c benchmark
1.87 GHz 16 HT/socket
MPT 2.02
msgs/sec

MPI Barrier
Intel MPI Benchmark
8 cores/socket 1 MPI proc/core
MPT 2.02
Ave barrier delay
Microseconds
UV system with routers

MPI Allreduce
Intel MPI Benchmark
A single 8 byte floating point datum per process
2.0 GHz 8 cores/socket 1 MPI proc/core
MPT 2.02
Ave allreduce delay
Microseconds

Message Passing Performance on Altix UV
Updated 6/30/10

UV MPI small message latency at varying distance
Half ping-pong latency for 8 byte messages
2.00 GHz
MPT 2.01
Nanoseconds
Uv32 with routers

MPI large message bandwidth
pong.c - 4 MB messages
MPT 2.03
MPI_GRU_CBS=0 GRU_THREAD_DSEG_SZ=8196
MPI_BUFFER_MAX=0 MPI_SHARED_NEIGHBORHOOD=1
Mbyte/sec

0
500

1000
1500
2000
2500
3000
3500
4000
4500

on
socket

paired
socket

1 NL
hop

2NL
hops

M
By

te
/s

GRU

0
200
400
600
800

1000
1200
1400
1600
1800

on
socket

1 NL
hop

M
By

te
/s shared

memory
GRU

0

1

2

3

4

5

1 100 10000

MPI Processes

us

Barrier
time

0
5

10
15
20
25

1 100 10000

MPI Processes

us

Allreduce
time

0

5000000

10000000

15000000

20000000

0 20 40

Procs/hub

m
sg

s/
se

c shared
memory
GRU

0

500

1000

1500

2000

2500

3000

0 1 QPI 1 NL 2 NL 3 NL 4 NL 5 NL

Shared Memory
MOE

Page 1

MPI Latency vs. Distance

Distance

W H I T E P A P E R

A Hardware-Accelerated MPI Implementation on SGI UV Systems 5

4.0 SGI UV Hardware Accelerates MPI Collectives
The SGI UV MOE implements atomic memory operations in conjunction with a hardware multicast facility
that helps to accelerate MPI_Barrier, MPI_Bcast, and MPI_Allreduce. All of these collectives benefit from
the multicast feature, and MPI_Barrier further benefits from the way the multicast feature
is triggered by certain barrier counter variable updates.

The acceleration of these collectives is a compelling advantage for applications that run with large
process counts. As the process count increases, the time spent in these collectives can grow while the
overall time for the application decreases. The result is a greater dependency on performance
of these collectives. Figure 2 shows the performance of these collectives on UV with and without
the hardware acceleration.

Figure 2: Accelerated MPI Collectives on SGI UV.

Barrier Acceleration on UV

Sheet1

Page 1

Procs Barrier (shm) Barrier (MOE) Procs Bcast (shm) Bcast (MOE)

64 8 2.2 64 4.7 4

128 12.8 2.3 128 5.8 4.4

256 16.7 3.2 256 8.7 5.2

512 21 3.8 512 8.9 5.7

1024 26 4 1024 9.7 6.7

2048 30 4.7 2048 11.4 8

Perfromance of accelerated collectives

uv48-sys system

2.27 Ghz / with routers

0
5

10
15
20
25
30
35

0 500 1000 1500 2000 2500

u
s
e
c

MPI procs

Barrier Acceleration on UV

Barrier (shm)

Barrier (MOE)

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500

u
s
e
c

MPI procs

8-byte Bcast Acceleration on UV

Bcast (shm)

Bcast (MOE)

0
5

10
15
20
25
30
35
40

0 500 1000 1500 2000 2500

u
s
e
c

MPI procs

8-byte Allreduce Acceleration on UV

Allreduce (shm)

Allreduce (MOE)

MPI procs

8-byte Allreduce Acceleration on UV

Sheet1

Page 1

Procs Barrier (shm) Barrier (MOE) Procs Bcast (shm) Bcast (MOE)

64 8 2.2 64 4.7 4

128 12.8 2.3 128 5.8 4.4

256 16.7 3.2 256 8.7 5.2

512 21 3.8 512 8.9 5.7

1024 26 4 1024 9.7 6.7

2048 30 4.7 2048 11.4 8

Perfromance of accelerated collectives

uv48-sys system

2.27 Ghz / with routers

0
5

10
15
20
25
30
35

0 500 1000 1500 2000 2500

u
s
e
c

MPI procs

Barrier Acceleration on UV

Barrier (shm)

Barrier (MOE)

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500

u
s
e
c

MPI procs

8-byte Bcast Acceleration on UV

Bcast (shm)

Bcast (MOE)

0
5

10
15
20
25
30
35
40

0 500 1000 1500 2000 2500

u
s
e
c

MPI procs

8-byte Allreduce Acceleration on UV

Allreduce (shm)

Allreduce (MOE)

MPI procs

8-byte Bcast Acceleration on UV

Sheet1

Page 1

Procs Barrier (shm) Barrier (MOE) Procs Bcast (shm) Bcast (MOE)

64 8 2.2 64 4.7 4

128 12.8 2.3 128 5.8 4.4

256 16.7 3.2 256 8.7 5.2

512 21 3.8 512 8.9 5.7

1024 26 4 1024 9.7 6.7

2048 30 4.7 2048 11.4 8

Perfromance of accelerated collectives

uv48-sys system

2.27 Ghz / with routers

0
5

10
15
20
25
30
35

0 500 1000 1500 2000 2500

u
s
e

c

MPI procs

Barrier Acceleration on UV

Barrier (shm)

Barrier (MOE)

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500

u
s
e

c

MPI procs

8-byte Bcast Acceleration on UV

Bcast (shm)

Bcast (MOE)

0
5

10
15
20
25
30
35
40

0 500 1000 1500 2000 2500

u
s
e

c

MPI procs

8-byte Allreduce Acceleration on UV

Allreduce (shm)

Allreduce (MOE)

MPI procs

W H I T E P A P E R

A Hardware-Accelerated MPI Implementation on SGI UV Systems 6

Global Sales and Support: sgi.com/global

©2012 Silicon Graphics International Corp. All rights reserved. SGI, the SGI logo, UV, NUMAlink,
Origin and Altix are registered trademarks or trademarks of Silicon Graphics International Corp.
or its subsidiaries in the United States and/or other countries. All other product and company names
and logos are registered trademarks or trademarks of their respective holders. 07022012 4265

5.0 Conclusion
The SGI UV system has been designed to accelerate MPI point-to-point and collective communication.
The MPI acceleration is performed by the UV MPI Offload Engine through hardware-implemented message
queues, innovative hardware synchronization primitives and hardware multicast. The UV MPI implementation
achieves a very flat MPI latency curve vs. distance, and industry-leading performance on some commonly
used MPI collective communication operations.

