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Abstract
The SGI UV system has a rich set of hardware features that enable scalable programming models to be implemented  

with high efficiency and performance. In particular, the popular Message Passing Interface (MPI) programming model  

has been implemented to utilize the MPI hardware acceleration features included in the UV system. This paper describes 

the hardware-accelerated features of SGI UV MPI and shows the performance gains achieved by their use.
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1.0 Introduction
One of the most interesting aspects of the SGI UV Coherent Shared Memory Processor (SMP) system 
is the size of the system—up to 2,560 cores—that can exist within a single Linux® OS instance. 
Such a “huge PC” provides many potential parallel programming strategies. Techniques used on 
SMP systems like OpenMP and threaded access to shared memory segments are every bit as useful 
on scale-up UV systems as the popular MPI parallel programming model or other cluster-friendly 
programming models such as SHMEM™, UPC and other PGAS languages. Clearly, the UV system 
hardware supports much flexibility in the way of parallel programming.

Nevertheless, MPI is the predominant scalable parallel programming model in the technical compute 
industry, and SGI UV hardware and software have been engineered to meet the demanding performance 
needs of MPI users. MPI is crucial to supporting the most scalable applications on the largest scale-out 
multi-partition UV systems, where many partitions are connected via NUMAlink® 5 interconnect and 
the system size can grow up to 256K processor cores. Such systems are clusters of large SMPs, and 
a natural way to program a parallel application to run across the system is through the use of MPI.

2.0 SGI UV MPI Software Stack
The SGI MPI software stack includes a number of software components. These software items are 
availablefrom SGI via the SGI MPI product bundle. A list of the most significant components follows

•	 MPI. Libraries and commands to build and run MPI programs.

•	 �XPMEM. This library and kernel module provides shared memory mapping for processor access and 
global memory mapping for references by the UV MPI Offload Engine (MOE) component known as 
the Global Reference Unit (GRU).

•	 �GRU Development Kit. These libraries provide the API to directly control the global memory  
reference and MOE operations supported by the UV Hub that implements MPI messages,  
DMA and synchronization.

•	 �NUMA tools. The dplace and omplace commands pin processes and threads in MPI programs  
and MPI/OpenMP hybrid programs onto CPUs. The dlook command can display a process address 
space complete with NUMA placement information.

•	 �PerfBoost. This tool allows you to run applications that have been compiled for many popular MPI 
implementations with UV acceleration features activated.

•	 �Perfcatcher. A runtime profiling tool that reports on MPI and SHMEM function calls made.

•	 �MPIInside. An advanced MPI profiling and performance visualization tool optimized to use run-time 
state instead of excessively large trace files.
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3.0 Dual Transport Methods
Because the scale-up SGI UV is a single SMP, MPI message queues and synchronization constructs 
can be implemented by memory reference via processor mapping of memory throughout the system. 
This approach is generally taken in the industry for best MPI performance within SMPs in general, and 
SGI MPI takes advantage of this technique as well. The SGI implementation has evolved and improved 
as it moved from one large SGI distributed memory SMP system to another over the years. Distributed 
memory support started with the SGI Origin® line of computer systems, continued in the SGI Altix® 
3700 and 4700 lines, and most recently has been provided in the SGI UV. Rich and robust handling of 
NUMA architectures has come out of this process of continued improvements.

One major hardware feature sets UV apart from earlier SGI NUMA computer systems, and opens the 
door to MPI acceleration and offload as well as efficient PGAS programming model support—MOE. 
The MOE provides MPI message queues, innovative synchronization primitives and advanced RDMA 
capabilities such as strided and indexed global memory updates. The MOE provides a way to optimize 
MPI within a UV system, whether it is running as a single-instance machine or as a larger multi-partition 
(NUMAlink cluster) system. SGI MPI uses run-time heuristics in point-to-point and collective communication 
to choose the appropriate communication mode, either shared memory or MOE-based.

Within a single SGI UV SMP, all MPI process pairs can use either shared memory or MOE transport. 
Nearby nodes or in-cache messages are best suited for shared memory message passing because  
the latency is extremely low using this communication method. More distant nodes or messages  
in the 400KB to 4MB range are good fits for MOE transport. The incremental latency per interconnect 
hop is much lower with MOE transport than traditional shared memory. Figure 1 shows a profile  
of message latency across a 2,048-core UV system for the two transport methods. On such a system, 
the maximum distance between any two sockets is five NUMAlink interconnect fabric hops.

Figure 1: MPI Latency on an SGI UV System for Shared Memory and MOE Transport vs. Distance
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4.0 SGI UV Hardware Accelerates MPI Collectives
The SGI UV MOE implements atomic memory operations in conjunction with a hardware multicast facility 
that helps to accelerate MPI_Barrier, MPI_Bcast, and MPI_Allreduce. All of these collectives benefit from 
the multicast feature, and MPI_Barrier further benefits from the way the multicast feature  
is triggered by certain barrier counter variable updates.

The acceleration of these collectives is a compelling advantage for applications that run with large 
process counts. As the process count increases, the time spent in these collectives can grow while the 
overall time for the application decreases. The result is a greater dependency on performance  
of these collectives. Figure 2 shows the performance of these collectives on UV with and without  
the hardware acceleration.

Figure 2: Accelerated MPI Collectives on SGI UV.
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5.0 Conclusion
The SGI UV system has been designed to accelerate MPI point-to-point and collective communication. 
The MPI acceleration is performed by the UV MPI Offload Engine through hardware-implemented message 
queues, innovative hardware synchronization primitives and hardware multicast. The UV MPI implementation 
achieves a very flat MPI latency curve vs. distance, and industry-leading performance on some commonly 
used MPI collective communication operations.


