
W h i t e P a p e r

MD NASTRAN™ on
Advanced SGI® Architectures*

Olivier Schreiber †, Scott Shaw †, Joe Griffin**

�* Presented at MSC.SOFTWARE 2010 Automotive Conference

† SGI Applications Engineering
** Development Engineer, MSC.Software

Abstract
This paper will explore interconnect latency and bandwidth, processor, memory and file system requirements to

establish guidelines for running MD Nastran on advanced SGI computer hardware systems. The scope of the

capabilities used covers Normal Mode Analysis using Shared Memory Parallelism (SMP) and Distributed Memory

Parallelism (DMP) and their combination (Hybrid Mode) through geometry and frequency domain decomposition on

Shared and Distributed Memory systems ranging from single node multicore workstations through multiple nodes

clusters to single image many-core systems addressing very large memory space.

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 2

T A B L E O F C O N T E N T S

INTRODUCTION		 3

1.0 SGI hardware overview 	 3

	 1.1 SGI® Octane™ III 	 3

	 1.2 SGI® Altix® XE1300 cluster 	 4

	 1.3 SGI® Altix® ICE cluster	 6

	 1.4 SGI® Altix® 450 and Altix® 4700 (SMP) 	 6

	 1.5 SGI® Altix® UV 10, Altix® UV 100,Altix® UV 1000 (SMP) 	 7

	 1.6 Altix XE, Altix ICE are Intel Cluster Ready Certified 	 8

	 1.7 Cloud access to benchmark systems: Cyclone 	 8

2.0 MD Nastran Usage for the study 	 10

	 2.1 Parallelism 		 10

	 2.2 Shared Memory Parallel Processing 	 10

	 2.3 Distributed Memory Parallel Processing 	 10

		 2.3.1 Geometry Domain Decomposition 	 11

		 2.3.2 Frequency Domain Decomposition	 11

	 2.4 Execution 		 11

	 2.5 Software Environment 	 12

3.0 Results 			 12

	 3.1 Benchmark example 	 12

	 3.2 Benchmark Results 	 12

		 3.2.1 Scaling on 1 node	 12

		 3.2.2 Scaling on multiple nodes 	 13

		 3.2.3 Influence of Communication Protocol and Interconnect 	 14

		 3.2.4 SGI Message Passing Toolkit(MPT) MPI library through SGI MPI PerfBoost 	15

		 3.2.5 Effect of core frequency and Intel Turbo Boost Technology 	 15

		 3.2.6 Effect of scratch space file system 	 16

		 3.2.7 Effect of libFFIO (Flexible File I/O)	 17

		 3.2.8 Effect of RAM available on node 	 19

		 3.2.9 Effect of memory speed 	 20

		 3.2.10 Combining SMP with DMP or hybrid mode using
			 SGI MPI PerfBoost and MPT 	 21

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 3

Introduction
How to use SGI OctaneTM III, Altix®, Altix XE, Altix ICE and SGI UV embodying multiple computer
technologies (Figure 1) is described in Ref [1]. They can all run MD Nastran solvers such as normal
modes analysis. Software capabilities employed by MD Nastran to utilize this hardware include
Shared Memory Parallel (SMP), Distributed Memory Parallel (DMP) and their combination (Hybrid
Mode) as described in Ref [2]. This paper will present an overview of the two sides of these activities
and how to adapt them to each other.

Figure 1: New hardware technologies

1.0 SGI hardware overview
Various systems comprised in SGI product line and available through SGI Cyclone™, HPC on-demand
Cloud Computing (see section 1.7) were used to run the benchmarks described in section 3.1.

1.1 SGI Octane III
Scalable desk side multi-node system with GigE or Infiniband interconnects, up to 10 nodes,
120 cores with SUSE® Linux® Enterprise Server 10 SP2, SGI ProPack™ 6SP3.

•	 Dual-socket nodes of 2.93GHz six-core Xeon®X5670, 12MB cache

•	 Dual-socket nodes of 2.93GHz quad-core Xeon®X5570, 8MB cache

•	 Dual-socket nodes of 2.53GHz quad-core Xeon®E5540, 8MB cache

•	 RAM: 48, 72, 96GB/node 1066, 1333MHz DDR3 ECC

Figure 2: SGI Octane III

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 4

1.2 SGI Altix XE 1300 cluster
Highly scalable and configurable rack-mounted multi-node system with GigE
and/or Infiniband interconnects.

Figure 3: SGI Altix XE 1300 cluster

•	 SGI XE250 or XE270 Administrative/NFS Server node

•	 SGI XE340 Dual-socket compute nodes of 2.93GHz six core Xeon X5670 12MB Cache

•	 SGI XE340 Dual-socket compute nodes of 2.93GHz quad core Xeon X5570 8MB Cache

•	 �SGI XE250 Dual-socket compute nodes of 3.0GHz quad core Xeon X5472 12MB Cache,
1600MHz Front Size Bus.

•	 32GB 1333MHz RAM(max 96GB/node)

•	 SUSE Linux Enterprise Server 11 SP2, SGI ProPack 6SP3

•	 SGI Foundation Software 1SP5

•	 Infiniband ConnectX QDR PCIe Host Card Adapters

•	 Integrated GigE dual port Network Interface Cards

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 5

SGI Altix XE 1300 cluster with dual Ethernet and Infiniband switch is illustrated in Figure 4.

Figure 4: Dual Ethernet and Infiniband switch cluster configuration example

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 6

1.3 SGI Altix ICE cluster
Highly scalable, diskless, integrated cable-free Infiniband interconnect rack mounted multi-node system.

Figure 5: SGI Altix ICE cluster and IRU

•	 Intel Xeon 5500 2.93GHz quad-core or 5600 3.46GHz six-core

•	 Two single-port ConnectX-2 IB HCA

•	 12 DDR3 1066 MHz or 1333 MHz ECC DIMM slots per blade

•	 SGI Tempo management tools

•	 SGI ProPack™ for Linux®

•	 Altair® PBS Professional™ workload manager

1.4 SGI Altix 450 and Altix 4700 (SMP)
A highly scalable Shared Memory Parallel (SMP) system allows flexibility of sizing memory allocated
to a job independently from the core allocation. In a multi-user, heterogeneous workload environment,
this prevents jobs requiring a large amount of memory to be starved for cores. For example, a job
requiring 128GB to run in-core could be broken up through domain decomposition into 8 parallel
MPI processes needing only 16GB so one could run it on 8 24GB cluster nodes. But these 8 cluster
nodes may not be available in a busy environment so the job would be waiting in the queue, effectively
starved for nodes. On the Shared Memory Parallel system, one can always find 8 free cores and there
is at worst the option to run the job serially on 1 core with 128GB RAM allocation.

MD Nastran on Advanced SGI Architectures

1.3 SGI Altix ICE cluster

Highly scalable, diskless, integrated cable-free Infiniband interconnect rack mounted multi-

node system.

Figure 5: SGI Altix ICE cluster and IRU

• Intel Xeon 5500 2.93GHz quad-core or 5600 3.46GHz six-core

• Two single-port ConnectX-2 IB HCA

• 12 DDR3 1066 MHz or 1333 MHz ECC DIMM slots per blade

• SGI Tempo management tools

• SGI ProPack™ for Linux®

• Altair® PBS Professional™ workload manager

1.4 SGI Altix 450 and Altix 4700 (SMP)

Highly scalable Shared Memory Parallel (SMP) system. Allows flexibility of sizing memory

allocated to a job independent of the core allocation. In a multi-user, heterogeneous workload

environment, this prevents jobs requiring a large amount of memory to be starved for cores.

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 7

Figure 6: SGI Altix 4700, 450 SMP

•	 SGI Altix 4700 1.669GHz dual core Itanium® 9150M 24MB Cache processors, SGI NUMAlink® 4

•	 SUSE Linux Enterprise Server 11 SP2, SGI® ProPack 6SP3 for Linux®

1.5 SGI Altix UV 10, UV 100, UV 1000 SMP
Highly scalable latest generation x86-based Shared Memory Parallel system. Affords the same
flexibility as the architecture of 1.4.

Figure 7: SGI Altix UV 10, UV 100, UV 1000 SMP

•	 6-core Intel Xeon 7542 2.66GHz

•	 NUMAlink® 5

•	 SUSE Linux Enterprise Server 11 SP2, SGI(c) ProPack 6SP3 for Linux®

 ANSYS® on Advances SGI® Architectures

• SGI Altix 4700 128 1.669GHz dual core Itanium

9150M 24MB cache processors,

512GB RAM NUMAlink®

4

1.5 SGI Altix UV 10, UV 100, UV 1000 SMP

Highly scalable latest generation x86-based Shared Memory Parallel system. A�ords the

same flexibility as the architecture of 1.4.

Figure 7: SGI Altix UV 10, UV 100, UV 1000 SMP

• 122.66Ghz6-core Xeon® X7542 (72 cores)

• 192GB RAM

• NUMAlink® 5

• SGI Foundation Software, SGI ProPack 7

1.6 Altix XE, Altix ICE are Intel Cluster Ready Certified

Altix XE, Altix ICE are Intel® Cluster Ready Certified (figure8).

MD Nastran on Advanced SGI Architectures

1.3 SGI Altix ICE cluster

Highly scalable, diskless, integrated cable-free Infiniband interconnect rack mounted multi-

node system.

Figure 5: SGI Altix ICE cluster and IRU

• Intel Xeon 5500 2.93GHz quad-core or 5600 3.46GHz six-core

• Two single-port ConnectX-2 IB HCA

• 12 DDR3 1066 MHz or 1333 MHz ECC DIMM slots per blade

• SGI Tempo management tools

• SGI ProPack™ for Linux®

• Altair® PBS Professional™ workload manager

1.4 SGI Altix 450 and Altix 4700 (SMP)

Highly scalable Shared Memory Parallel (SMP) system. Allows flexibility of sizing memory

allocated to a job independent of the core allocation. In a multi-user, heterogeneous workload

environment, this prevents jobs requiring a large amount of memory to be starved for cores.

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 8

1.6 Altix XE, Altix ICE are Intel Cluster Ready Certified
Altix XE, Altix ICE are Intel® Cluster Ready Certified (Figure 8).

Figure 8: Intel Cluster Ready Certification

1.7 Cloud access to benchmark systems: SGI Cyclone™
SGI offers Cyclone, HPC on-demand computing resources of all SGI advanced architectures
aforementioned (Figure 9). There are two service models in Cyclone: Software as a Service (SaaS)
and Infrastructure as a Service (IaaS) (Figure 10). With SaaS, Cyclone customers can significantly
reduce time to results by accessing leading-edge open source applications and best-of-breed
commercial software platforms from top Independent Software Vendors (ISV’s).

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 9

Figure 9: SGI Cyclone – HPC on-demand Cloud Computing

Figure 10: SGI Cyclone – Service Models

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 10

The physical elements of Cyclone features:

•	 Pre-configured, pre-certified applications and tools

•	 High speeds Scale-Up, Scale-Out and Hybrid(GPU/Graphics) platforms

•	 High speed processors

•	 High speed networking (NUMAlink, InfiniBand)

•	 Non-virtualized environments

•	 Dedicated management node for security

•	 SSH or Virtual Private Network(VPN) access

•	 From scratch storage to long-term storage

•	 Data exchange service

•	 24 x 7 x 365 monitoring and support

•	 Dedicated customer accounts

•	 SGI professional services also available

2.0 MD Nastran Usage for the study

2.1 Parallelism
To avoid confusion with the concepts involving various computer systems, a specific nomenclature
is used here for clarity. A node or host means a computer system associated with one network in-
terface and its address, implemented on a board enclosed in a rack-mounted chassis or blade. This
board comprises two sockets (most common) or more receiving the processor with the 4, 6, 8 or 12
cores constituting the actual Central Processing Units (CPU’s). Shared Memory Parallelism (SMP)
appeared in the 1980’s for ‘DO Loop’ processing strip mining or subroutine spawning via memory-
sharing threads. In the late 1990’s Domain Decomposition Parallel (DMP) Processing appeared and
revealed itself more suitable for performance gains because of coarser grain parallelism. In the mean
time, Shared Memory Parallelism was maintained as is but saw the adjunction of mathematical libraries
already parallelized using efficient implementation of Shared Memory Parallelism API OpenMP™ (Open
Multi-Processing). Both parallel computing methods can run on Shared Memory systems like a single
host or distributed memory systems like clusters but the constraints are different: Shared Memory
Processing cannot span cluster nodes both communication and memory-wise. The two methods can
be combined together in what is called ‘Hybrid Mode’. However, performance gains may not always be
realized without attention to the many ways to combine these methods.

2.2 Shared Memory Parallel Processing
Shared Memory Parallelism (SMP)–meaning memory shared by all cores of each node– uses OpenMP
Application Programming Interface™ (Open Multi-Processing) or Pthreads and is simply activated by
invoking smp=<value> on the command line.

2.3 Distributed Memory Parallel Processing
These methods are activated by invoking dmp=<value> on the command line, and as many MPI pro-
cesses are distributed in ‘rank’ or round-robin allocation across all hosts=<host:host:...> designated
nodes on the multiple cores.

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 11

2.3.1 Geometry Domain Decomposition

In this method activated by simply invoking dmp=<value> on the command line, the finite element
domain or global matrices is partitioned into as many MPI processes.

2.3.2 Frequency Domain Decomposition
This method, activated by invoking numseg=<dmparallel_value> on the command line, partitions the
frequency domain into as many MPI processes.

2.4 Execution
Submittal procedure must ensure:

• Placement of processes and threads across nodes and sockets within nodes

• Control of process memory allocation to stay within node capacity

• Use of adequate scratch files across nodes or network

Batch schedulers/resource managers dispatch jobs from a front-end login node to be executed on one or
more compute nodes. To achieve the best runtime in a batch environment disk access to input and output
files should be placed on the high performance file system closest to the compute node. The high perfor-
mance file system could be in-memory file system (/dev/shm), a Direct (DAS) or Network (NAS) Attached
Storage file system. In diskless computing environments in-memory file system or network attached stor-
age are the only options. This file system nomenclature is illustrated in Figure 11.

Figure 11: Example file systems for scratch space

Following is the synoptic of a job submission script.

1.	�Change directory to the local scratch directory on the first compute node allocated by the batch scheduler.

2.	Copy all input files over to this directory.

3.	�Create parallel local scratch directories on the other compute nodes allocated by the batch scheduler.

4.	�Launch application on the first compute node. The executable may itself carry out propagation and collection
of various files between launch and the other nodes at start and end of the main analysis execution.

 ANSYS® on Advances SGI® Architectures

Care must be taken to minimize the boundary sizes between partitions to decrease inter-

process communication. Load balancing is just as important as minimizing the

communication costs. Workload for each MPI process is balanced so that each process does

roughly the same number of computations during the solution and therefore finishes at the

same time. Allocation of the total number of MPI processes over the nodes may be made by

filling up each node’s cores designated for processing first (‘rank’ allocation) or by

distributing them in round-robin fashion across all the nodes.

2.3 Distributed execution control

2.3.1 Submittal procedure

Submittal procedure must ensure:

• Placement of processes and threads across nodes and sockets within nodes

• Control of process memory allocation to stay within node capacity

• Use of adequate scratch files across nodes or network

Batch schedulers/resource managers dispatch jobs from a front-end login node to be executed

on one or more compute nodes. To achieve the best runtime in a batch environment disk

access to input and output files should be placed on the high performance filesystem closest

to the compute node. The high performance filesystem could be in-memory filesystem

(/dev/shm), a Direct (DAS) or Network (NAS)Attached Storage filesystem. In diskless

computing environments in-memory filesystem or network attached storage are the only

options. This filesystem nomenclature is illustrated in Figure 11

Figure 11: Example filesystems for scratch space

Following is the synoptic of a job submission script.

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 12

2.5 Software Environment

MSC.Nastran 2008 and MD Nastran 2010.1 were used.

3.0 Results

3.1 Benchmark example
The benchmark used is a Car Body model similar to Figure 12. It has approximately 268,000 Grids,
275,000 Elements, 1,584,000 degrees of freedom. The solution sequence performed is solution 103
with all roots requested in the frequency range of 0 to 200Hz and 0 to 400Hz, that is approximately
1000 and 3000 modes, respectively.

Figure 12: Car Body Model

3.2 Benchmark Results

3.2.1 Scaling on 1 node
Figure 13 shows scaling within one 12-core X5670/2.93GHz node in configurations similar to 1.1
or 1.2 for this standard benchmark run in DMP (MPI) mode parallelism using two different domain
decompositions, namely Geometry Domain Decomposition (2.2.3) and Frequency Domain Decomposition
(2.2.1). One can see that the optimal number of processes is different for the two methods and an
anomaly exists for a 6-way Geometry Domain Decomposition. Beyond 8-way decomposition, elapsed
times increase and therefore Hyperthreading, i.e. using more than the number (12) of physical cores
available would not be beneficial. (Hyper-Threading (HT) is a feature which can increase performance
for multi-threaded or multi-process applications. It allows a user to run twice the number of OpenMP
threads and Pthreads or MPI processes than available physical cores per node.) The domain decomposition
used does not necessarily cause a proportional division of the memory and I/O bandwidth requirements
on the individual cores processing each domain. Indeed, Geometry Domain Decomposition (2.2.3) and
Frequency Domain Decomposition (2.2.1) are different in this regard and the solution sequence used
also affects the resource requirements changes. Moreover, the user can modify with a posteriori knowledge
of the changed resource requirements the explicit memory allocation and/or usage of MSC Nastran
I/O buffering and therefore change the performance of execution and optimal number of processes.

MD Nastran on Advanced SGI Architectures

Figure 12: Car Body Model

3.2 Benchmark Results

3.2.1 Scaling on 1 node

Figure 13 shows scaling within one 12-core X5670/2.93GHz node in configurations similar

to1.1 or1.2 for this standard benchmark run in DMP (MPI) mode parallelism using two

di�erent domain decomposition, namely Geometry Domain Decomposition (2.2.3) and

Frequency Domain Decomposition (2.2.1). One can see that the optimal number of processes

is di�erent for the two methods and an anomaly exists for a 6-way Geometry Domain

Decomposition. Beyond 8-way decomposition, elapsed times increase and therefore

Hyperthreading, i.e. using more than the number (12) of physical cores available would not

be beneficial. (Hyper-Threading (HT) is a feature which can increase performance for multi-

threaded or multi-process applications. It allows a user to run twice the number of OpenMP

threads or MPI processes than available physical cores per node.) The domain decomposition

used does not necessarily cause a proportional division of the memory and I/O bandwidth

requirements on the individual cores processing each domain. Indeed, Geometry Domain

Decomposition (2.2.3) and Frequency Domain Decomposition (2.2.1) are di�erent in this

regard and the solution sequence used also a�ects the resource requirements changes.

Moreover, the user can modify with a posteriori knowledge of the changed resource

requirements the explicit memory allocation and/or usage of MSC Nastran I/O bu�ering and

therefore change the performance of execution and optimal number of processes. The trend,

though is that beyond a certain number of processes, the aggregate memory and memory

bandwidth demand will grow beyond that which is available from the node. In addition,

communication needs increase between the di�erent domains and further slow down the

potential speedup.

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 13

The trend, though is that beyond a certain number of processes, the aggregate memory and memory
bandwidth demand will grow beyond that which is available from the node. In addition, communication
needs increase between the different domains and further slow down the potential speedup.

Figure 13: Scaling 1 node

3.2.2 Scaling on multiple nodes
To overcome the limitation shown in 3.2.1, one can resort to using multiple nodes. Choosing
the Geometry Domain Decomposition method (2.2.3) as an example, figure 14 shows how scaling
can be increased beyond 8 processes with a corresponding reduction of elapsed time on 12-core
X5670/2.93GHz nodes in configurations similar to 1.1 or 1.2. Beyond 16 processes for this data set
and decomposition method, one finds that scaling will not continue, regardless of the number of nodes
used as can be seen by increased elapsed times for 32 processes.

Figure 14: Scaling on multiple nodes

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 14

3.2.3 Influence of Communication Protocol and Interconnect
When using more than 1 node for a Distributed Memory Parallel (MPI) computation, the choice
of Interconnect is available between GigE and Infiniband. It is also possible to run TCP/IP protocol
on Infiniband. Figure 15 shows that performance difference can be dramatic for 4 nodes in
configurations similar to 1.1 or 1.2.

Figure 15: Influence of Communication Protocol and Interconnect

3.2.4 SGI Message Passing Toolkit (MPT) MPI library through PerfBoost
An MPI library capability to bind an MPI rank to a processor core is key to control performance
because of the multiple node/socket/core environments. From [3], 3.1.2 ‘Computation cost-effects
of CPU affinity and core-placement [...] HP-MPI currently provides CPU-affinity and core-placement
capabilities to bind an MPI rank to a core in the processor from which the MPI rank is issued. Children
threads, including SMP threads, can also be bound to a core in the same processor, but not to a different
processor; additionally, core placement for SMP threads is by system default and cannot be explicitly
controlled by users.[...]’. In contrast, MPT, through the omplace command uniquely provides convenient
placement of hybrid MPI/OpenMP processes and threads and Pthreads within each node. This MPI
library is linklessly available through the PerfBoost facility bundled with SGI ProPack. PerfBoost
provides a Platform-MPI, IntelMPI, OpenMPI, HP-MPI ABI-compatible interface to MPT MPI. Figure 16
shows that without the comparative advantage in handling hybrid mode, MPT is on par or better
than competing MPI libraries in various MPI runs in Geometry Domain Decomposition method (2.2.3)
in configurations similar to 1.1 or 1.2.

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 15

Figure 16: SGI Message Passing Toolkit (MPT) MPI library through PerfBoost

3.2.5 Effect of core frequency and Intel Turbo Boost Technology
Figure 17 plots elapsed times for increasing core frequencies starting from a base of 2.53GHz up
to 2.93GHz for the serial run case and 8-way parallel Geometry Domain Decomposition method (2.2.3)
in configurations similar to 1.1 or 1.2. A reference plot is drawn for what the elapsed time should have
been, ideally, had it been inversely proportional to the frequency. It is apparent that MD Nastran in
these two cases at least is not core processing speed bound and therefore, a trade off may exist
between faster cores and how many can be procured, considering their cost.

An additional data point regards the added performance gained through Turbo Boost. Intel Turbo Boost
is a feature first introduced in the Intel Xeon 5500 series, for increasing performance by raising the core
operating frequency within controlled limits depending on thermal envelope. The mode of activation is
a function of how many cores are active at a given moment as maybe the case when OpenMP threads
or Pthreads or MPI processes are idle under their running parent. For example, for a base frequency
of 2.93GHz, when 1-2 cores active, their running frequencies will be throttled up to 3.3GHZ, but with
3-4 cores active only to 3.2GHz. For most computations, utilizing Turbo Boost technology can result
in improved runtimes, but the overall benefit may be mitigated by the presence of other performance
bottlenecks than pure arithmetic processing. The performance gain is predictably higher for the serial
run (3%) than for the 8-way parallel run (.5%).

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 16

Figure 17: Effect of core frequency and Turbo Boost

3.2.6 Effect of the scratch space file system
An I/O dominated application relies on a high performance file system for best performance. The I/O
subsystem either being DAS or NAS needs to be configured to support fast I/O sequential transactions
as illustrated in section 2.3.1 by Figure 11. In cluster computing environments with a common scratch
location, such as a Network Attached File system (NAS), isolating application MPI communications
and NFS traffic will provide the best NFS I/O throughput for scratch files.

Figure 18 shows changing scratch space file system location may have dramatic effect on performance
in any run case situation as in Geometry Domain Decomposition method (2.2.3) in configurations similar
to 1.1 or 1.2. The case of 1 node run did not allow scratch space to fit into RAM.

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 17

Figure 18: Effect of scratch space file system

3.2.7 Effect of libFFIO (Flexible File I/O)
SGI’s FFIO is a linkless library (which does not need to be linked to the application) bundled with
ProPack which implements user defined I/O buffer cache to avoid memory buffer cache thrashing
when running multiple I/O intensive jobs or processes in Shared Memory Parallel systems or cluster
computing environments using DAS or NAS storage subsystems. FFIO isolates user page caches
so jobs or processes do not contend for Linux Kernel page cache. Hence, FFIO minimizes the number
of system calls and I/O operations (as echoed back by the eie_close sync and async values reflecting
synchronous calls to disk and which should be as close to 0 as possible) to and from the storage
subsystem and improves performance for large and I/O intensive jobs. (Ref [2], Chapter 7 Flexible File
I/O). Figures 19 and 20 show that whereas libFFIO may not provide a benefit for Geometry Domain
Decomposition method (2.2.3) runs on a Direct Attached file system (DAS) on configurations similar
to 1.1 or 1.2, it does improve performance on a Network Attached file system (NAS). The strategy to
employ is to use the static mem= memory allocation for Nastran to run in-core and then allocate what
is left over for libFFIO. This needs to be done per process.

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 18

Figure 19: Effect of LibFFIO

Figure 20: Effect of libFFIO with Network Attached File system (NAS)

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 19

3.2.8 Effect of RAM available on node
For a Distributed Memory Parallel (DMP) job (MPI), using a given Decomposition Method on 1 node,
the aggregate memory and disk usage requirements will be approximately constant with varying number
of processes used. However, Figures 21 and 22 show that because Geometry Domain Decomposition
(2.2.3) has a high water mark for scratch space usage almost fitting within 48GB Linux buffer cache but
Frequency Domain Decomposition (2.2.1) has a high water mark for scratch space usage which is twice
the former, additional RAM in the second case will allow Linux Buffer cache to accommodate more I/O,
resulting in increased performance. (The configuration is similar to 1.1 or 1.2).

Figure 21: Effect of RAM available on node for Geometry Decomposition Method

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 20

Figure 22: Effect of RAM available on node for Frequency Decomposition Method

3.2.9 Effect of memory speed
To isolate the effect of memory speed, the ACMS method was run with 2 processes on 1 node so that
RAM could be used to accommodate the smaller scratch space file system requirements. No discernable
performance was found between 800MHz and 1333MHz rated memory. The explanation is that core
to RAM bandwidth is the limiting factor in this case as opposed to RAM latency.

Figure 23: Effect of memory speed

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 21

3.2.10 Combining SMP with DMP or hybrid mode using PerfBoost and MPT
Shared Memory Parallelism mode is implemented with threads through OpenMP API or directly with
Pthreads, outside I/O processing regions so parallel efficiency is limited because of the fine parallel
granularity but I/O requirements do not rise. Therefore combining advantages of both paradigms by
running SMP simultaneously with DMP using SGI’s MPT and omplace as outlined in 3.2.4 yields valuable
performance gains as shown in Figure 24 on configurations similar to 1.5.

Figure 24: Combining SMP with DMP or hybrid mode using PerfBoost and MPT

Conclusions
Interconnect and associated libraries, core frequency, Turbo Boost, Hyper-Threading, file system,
memory and memory speed, parallelism effects on performance can be gauged for a given dataset.
In particular one observed:

•	 Infiniband can be twice as fast as GigE interconnect.

•	 MPT (through PerfBoost) compares favorably to other MPI’s in all cases.

•	 Effect of Frequency and Turbo Boost are weak as this is not the only limiting factor for performance.

•	 HyperThreading does not help because of communication costs beyond 8 processes.

•	 DAS or even RAM is always faster than NAS.

•	 libFFIO to be used only when I/O and RAM constrained as in small DAS or NAS.

•	 More RAM accommodates avails more Linux buffer cache

•	 DIMM speed effect is negligible in the particular case which was studied.

•	 Good scaling for SMP and DMP beyond one node/16 cores.

All these effects are definitely dependent on the dataset and solution methods used. Procurement
of the right mix of resources should therefore be tailored to the range of datasets envisaged. Moreover,
the metric to minimize could be one of many such as turnaround time or throughput or cost–itself
comprised of acquisition cost, licenses, energy, facilities and services.

W H I T E P A P E R

MD NASTRAN™ on Advanced SGI® Architectures 22

Attributions
MD Nastran is a registered trademark of MSC.Software Corporation. SGI, Octane, Altix, ProPack and
Cyclone are registered trademarks or trademarks of Silicon Graphics International Corp. or its subsidiaries
in the United States or other countries. Xeon and Itanium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries. Linux is a registered trademark
of Linus Torvalds in several countries. SUSE is a trademark of SUSE LINUX Products GmbH, a Novell
business. All other trademarks mentioned herein are the property of their respective owners.

References
[1] C. Liao, O. Schreiber, S. Kodiyalam, and L. Lewis. “Solving Large Problems on Large Computer
Systems. Hardware Considerations for Engineering Productivity Gains with Multi-Discipline MSC NASTRAN
Simulations”. Presented at MSC.Software® VPD Conference, October 11-12 2007.

[2] SGI Linux Application Tuning Guide, Silicon Graphics International, Fremont, California, 2009.

[3] Yih-Yih Lin and Jason Wang. “Performance of the Hybrid LS-DYNA on Crash Simulation with the
Multicore Architecture”. In 7th European LS-DYNA Conference, 2009.

©2011-2012 Silicon Graphics International Corp. All rights reserved. SGI and the SGI logo are registered trademarks or trademarks
of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. 10012012 4262

Global Sales and Support: sgi.com/global

