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Abstract
This paper will explore interconnect latency and bandwidth, processor, memory and file system requirements to 

establish guidelines for running MD Nastran on advanced SGI computer hardware systems. The scope of the 

capabilities used covers Normal Mode Analysis using Shared Memory Parallelism (SMP) and Distributed Memory 

Parallelism (DMP) and their combination (Hybrid Mode) through geometry and frequency domain decomposition on 

Shared and Distributed Memory systems ranging from single node multicore workstations through multiple nodes 

clusters to single image many-core systems addressing very large memory space.
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Introduction 
How to use SGI OctaneTM III, Altix®, Altix XE, Altix ICE and SGI UV embodying multiple computer 
technologies (Figure 1) is described in Ref [1]. They can all run MD Nastran solvers such as normal 
modes analysis. Software capabilities employed by MD Nastran to utilize this hardware include 
Shared Memory Parallel (SMP), Distributed Memory Parallel (DMP) and their combination (Hybrid 
Mode) as described in Ref [2]. This paper will present an overview of the two sides of these activities 
and how to adapt them to each other.

Figure 1:  New hardware technologies

1.0  SGI hardware overview
Various systems comprised in SGI product line and available through SGI Cyclone™, HPC on-demand 
Cloud Computing (see section 1.7) were used to run the benchmarks described in section 3.1. 

1.1  SGI Octane III 
Scalable desk side multi-node system with GigE or Infiniband interconnects, up to 10 nodes, 
120 cores with SUSE® Linux® Enterprise Server 10 SP2, SGI ProPack™ 6SP3. 

•	 Dual-socket nodes of 2.93GHz six-core Xeon®X5670, 12MB cache 

•	 Dual-socket nodes of 2.93GHz quad-core Xeon®X5570, 8MB cache 

•	 Dual-socket nodes of 2.53GHz quad-core Xeon®E5540, 8MB cache 

•	 RAM: 48, 72, 96GB/node 1066, 1333MHz DDR3 ECC 

Figure 2: SGI Octane III
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1.2    SGI Altix XE 1300 cluster
Highly scalable and configurable rack-mounted multi-node system with GigE  
and/or Infiniband interconnects.

Figure 3:  SGI Altix XE 1300 cluster

•	 SGI XE250 or XE270 Administrative/NFS Server node 

•	 SGI XE340 Dual-socket compute nodes of 2.93GHz six core Xeon X5670 12MB Cache 

•	 SGI XE340 Dual-socket compute nodes of 2.93GHz quad core Xeon X5570 8MB Cache 

•	 �SGI XE250 Dual-socket compute nodes of 3.0GHz quad core Xeon X5472 12MB Cache,  
1600MHz Front Size Bus. 

•	 32GB 1333MHz RAM(max 96GB/node) 

•	 SUSE Linux Enterprise Server 11 SP2, SGI ProPack 6SP3 

•	 SGI Foundation Software 1SP5 

•	 Infiniband ConnectX QDR PCIe Host Card Adapters 

•	 Integrated GigE dual port Network Interface Cards 
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SGI Altix XE 1300 cluster with dual Ethernet and Infiniband switch is illustrated in Figure 4.

Figure 4:  Dual Ethernet and Infiniband switch cluster configuration example
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1.3   SGI Altix ICE cluster 
Highly scalable, diskless, integrated cable-free Infiniband interconnect rack mounted multi-node system. 

Figure 5:  SGI Altix ICE cluster and IRU 

•	 Intel Xeon 5500 2.93GHz quad-core or 5600 3.46GHz six-core 

•	 Two single-port ConnectX-2 IB HCA 

•	 12 DDR3 1066 MHz or 1333 MHz ECC DIMM slots per blade 

•	 SGI Tempo management tools 

•	 SGI ProPack™ for Linux®

•	 Altair® PBS Professional™ workload manager 

1.4   SGI Altix 450 and Altix 4700 (SMP) 
A highly scalable Shared Memory Parallel (SMP) system allows flexibility of sizing memory allocated  
to a job independently from the core allocation. In a multi-user, heterogeneous workload environment,  
this prevents jobs requiring a large amount of memory to be starved for cores. For example, a job 
requiring 128GB to run in-core could be broken up through domain decomposition into 8 parallel 
MPI processes needing only 16GB so one could run it on 8 24GB cluster nodes. But these 8 cluster 
nodes may not be available in a busy environment so the job would be waiting in the queue, effectively 
starved for nodes. On the Shared Memory Parallel system, one can always find 8 free cores and there 
is at worst the option to run the job serially on 1 core with 128GB RAM allocation.
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Figure 6:  SGI Altix 4700, 450 SMP  

•	 SGI Altix 4700 1.669GHz dual core Itanium® 9150M 24MB Cache processors, SGI NUMAlink® 4

•	 SUSE Linux Enterprise Server 11 SP2, SGI® ProPack 6SP3 for Linux®

1.5   SGI Altix UV 10, UV 100, UV 1000 SMP 
Highly scalable latest generation x86-based Shared Memory Parallel system. Affords the same 
flexibility as the architecture of 1.4.

Figure 7:  SGI Altix UV 10, UV 100, UV 1000 SMP

•	 6-core Intel Xeon 7542 2.66GHz

•	 NUMAlink® 5

•	 SUSE Linux Enterprise Server 11 SP2, SGI(c) ProPack 6SP3 for Linux®

                                                   ANSYS® on Advances SGI® Architectures 

• SGI Altix 4700 128 1.669GHz dual core Itanium
 

9150M 24MB cache processors, 

512GB RAM NUMAlink®
 

4  

 

1.5 SGI Altix UV 10, UV 100, UV 1000 SMP  

Highly scalable latest generation x86-based Shared Memory Parallel system. A�ords the 

same flexibility as the architecture of 1.4.  

 

Figure 7: SGI Altix UV 10, UV 100, UV 1000 SMP 

• 122.66Ghz6-core Xeon® X7542 (72 cores)  

• 192GB RAM  

• NUMAlink® 5  

• SGI Foundation Software, SGI ProPack 7  

 

1.6 Altix XE, Altix ICE are Intel Cluster Ready Certified  

Altix XE, Altix ICE are Intel® Cluster Ready Certified (figure8).  
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1.6  Altix XE, Altix ICE are Intel Cluster Ready Certified 
Altix XE, Altix ICE are Intel® Cluster Ready Certified (Figure 8). 

Figure 8:  Intel Cluster Ready Certification  

1.7  Cloud access to benchmark systems: SGI Cyclone™ 
SGI offers Cyclone, HPC on-demand computing resources of all SGI advanced architectures  
aforementioned (Figure 9). There are two service models in Cyclone: Software as a Service (SaaS)  
and Infrastructure as a Service (IaaS) (Figure 10). With SaaS, Cyclone customers can significantly  
reduce time to results by accessing leading-edge open source applications and best-of-breed  
commercial software platforms from top Independent Software Vendors (ISV’s). 
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Figure 9:  SGI Cyclone – HPC on-demand Cloud Computing

Figure 10:  SGI Cyclone – Service Models
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The physical elements of Cyclone features: 

•	 Pre-configured, pre-certified applications and tools 

•	 High speeds Scale-Up, Scale-Out and Hybrid( GPU/Graphics) platforms 

•	 High speed processors 

•	 High speed networking (NUMAlink, InfiniBand) 

•	 Non-virtualized environments 

•	 Dedicated management node for security 

•	 SSH or Virtual Private Network(VPN) access 

•	 From scratch storage to long-term storage 

•	 Data exchange service 

•	 24 x 7 x 365 monitoring and support 

•	 Dedicated customer accounts 

•	 SGI professional services also available 

2.0   MD Nastran Usage for the study 

2.1   Parallelism 
To avoid confusion with the concepts involving various computer systems, a specific nomenclature 
is used here for clarity. A node or host means a computer system associated with one network in-
terface and its address, implemented on a board enclosed in a rack-mounted chassis or blade. This 
board comprises two sockets (most common) or more receiving the processor with the 4, 6, 8 or 12 
cores constituting the actual Central Processing Units (CPU’s). Shared Memory Parallelism (SMP) 
appeared in the 1980’s for ‘DO Loop’ processing strip mining or subroutine spawning via memory-
sharing threads. In the late 1990’s Domain Decomposition Parallel (DMP) Processing appeared and 
revealed itself more suitable for performance gains because of coarser grain parallelism. In the mean 
time, Shared Memory Parallelism was maintained as is but saw the adjunction of mathematical libraries 
already parallelized using efficient implementation of Shared Memory Parallelism API OpenMP™ (Open 
Multi-Processing). Both parallel computing methods can run on Shared Memory systems like a single 
host or distributed memory systems like clusters but the constraints are different: Shared Memory 
Processing cannot span cluster nodes both communication and memory-wise. The two methods can 
be combined together in what is called ‘Hybrid Mode’. However, performance gains may not always be 
realized without attention to the many ways to combine these methods.

2.2  Shared Memory Parallel Processing 
Shared Memory Parallelism (SMP)–meaning memory shared by all cores of each node– uses OpenMP 
Application Programming Interface™ (Open Multi-Processing) or Pthreads and is simply activated by 
invoking smp=<value> on the command line.

2.3  Distributed Memory Parallel Processing
These methods are activated by invoking dmp=<value> on the command line, and as many MPI pro-
cesses are distributed in ‘rank’ or round-robin allocation across all hosts=<host:host:...> designated 
nodes on the multiple cores.
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2.3.1 Geometry Domain Decomposition 

In this method activated by simply invoking dmp=<value> on the command line, the finite element 
domain or global matrices is partitioned into as many MPI processes.

2.3.2 Frequency Domain Decomposition 
This method, activated by invoking numseg=<dmparallel_value> on the command line, partitions the 
frequency domain into as many MPI processes. 

2.4 Execution 
Submittal procedure must ensure:

• Placement of processes and threads across nodes and sockets within nodes

• Control of process memory allocation to stay within node capacity

• Use of adequate scratch files across nodes or network

Batch schedulers/resource managers dispatch jobs from a front-end login node to be executed on one or 
more compute nodes. To achieve the best runtime in a batch environment disk access to input and output 
files should be placed on the high performance file system closest to the compute node. The high perfor-
mance file system could be in-memory file system (/dev/shm), a Direct (DAS) or Network (NAS) Attached 
Storage file system. In diskless computing environments in-memory file system or network attached stor-
age are the only options.  This file system nomenclature is illustrated in Figure 11.

Figure 11:  Example file systems for scratch space

Following is the synoptic of a job submission script.

1.	�Change directory to the local scratch directory on the first compute node allocated by the batch scheduler.

2.	Copy all input files over to this directory.

3.	�Create parallel local scratch directories on the other compute nodes allocated by the batch scheduler.

4.	�Launch application on the first compute node. The executable may itself carry out propagation and collection 
of various files between launch and the other nodes at start and end of the main analysis execution.

                                                   ANSYS® on Advances SGI® Architectures 

Care must be taken to minimize the boundary sizes between partitions to decrease inter-

process communication. Load balancing is just as important as minimizing the 

communication costs. Workload for each MPI process is balanced so that each process does 

roughly the same number of computations during the solution and therefore finishes at the 

same time. Allocation of the total number of MPI processes over the nodes may be made by 

filling up each node’s cores designated for processing first (‘rank’ allocation) or by 

distributing them in round-robin fashion across all the nodes.  
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2.5 Software Environment 

MSC.Nastran 2008 and MD Nastran 2010.1 were used.

3.0  Results 

3.1  Benchmark example 
The benchmark used is a Car Body model similar to Figure 12. It has approximately 268,000 Grids, 
275,000 Elements, 1,584,000 degrees of freedom. The solution sequence performed is solution 103 
with all roots requested in the frequency range of 0 to 200Hz and 0 to 400Hz, that is approximately 
1000 and 3000 modes, respectively. 

Figure 12:  Car Body Model

3.2   Benchmark Results 

3.2.1   Scaling on 1 node 
Figure 13 shows scaling within one 12-core X5670/2.93GHz node in configurations similar to 1.1  
or 1.2 for this standard benchmark run in DMP (MPI) mode parallelism using two different domain 
decompositions, namely Geometry Domain Decomposition (2.2.3) and Frequency Domain Decomposition 
(2.2.1). One can see that the optimal number of processes is different for the two methods and an 
anomaly exists for a 6-way Geometry Domain Decomposition. Beyond 8-way decomposition, elapsed 
times increase and therefore Hyperthreading, i.e. using more than the number (12) of physical cores 
available would not be beneficial. (Hyper-Threading (HT) is a feature which can increase performance 
for multi-threaded or multi-process applications. It allows a user to run twice the number of OpenMP 
threads and Pthreads or MPI processes than available physical cores per node.) The domain decomposition 
used does not necessarily cause a proportional division of the memory and I/O bandwidth requirements 
on the individual cores processing each domain. Indeed, Geometry Domain Decomposition (2.2.3) and 
Frequency Domain Decomposition (2.2.1) are different in this regard and the solution sequence used 
also affects the resource requirements changes. Moreover, the user can modify with a posteriori knowledge 
of the changed resource requirements the explicit memory allocation and/or usage of MSC Nastran 
I/O buffering and therefore change the performance of execution and optimal number of processes. 
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The trend, though is that beyond a certain number of processes, the aggregate memory and memory 
bandwidth demand will grow beyond that which is available from the node. In addition, communication 
needs increase between the different domains and further slow down the potential speedup. 

Figure 13:  Scaling 1 node

3.2.2  Scaling on multiple nodes 
To overcome the limitation shown in 3.2.1, one can resort to using multiple nodes. Choosing  
the Geometry Domain Decomposition method (2.2.3) as an example, figure 14 shows how scaling 
can be increased beyond 8 processes with a corresponding reduction of elapsed time on 12-core 
X5670/2.93GHz nodes in configurations similar to 1.1 or 1.2. Beyond 16 processes for this data set 
and decomposition method, one finds that scaling will not continue, regardless of the number of nodes 
used as can be seen by increased elapsed times for 32 processes. 

Figure 14: Scaling on multiple nodes
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3.2.3  Influence of Communication Protocol and Interconnect 
When using more than 1 node for a Distributed Memory Parallel (MPI) computation, the choice  
of Interconnect is available between GigE and Infiniband. It is also possible to run TCP/IP protocol  
on Infiniband. Figure 15 shows that performance difference can be dramatic for 4 nodes in 
configurations similar to 1.1 or 1.2. 

Figure 15:  Influence of Communication Protocol and Interconnect

3.2.4  SGI Message Passing Toolkit (MPT) MPI library through PerfBoost 
An MPI library capability to bind an MPI rank to a processor core is key to control performance  
because of the multiple node/socket/core environments. From [3], 3.1.2 ‘Computation cost-effects  
of CPU affinity and core-placement [...] HP-MPI currently provides CPU-affinity and core-placement 
capabilities to bind an MPI rank to a core in the processor from which the MPI rank is issued. Children 
threads, including SMP threads, can also be bound to a core in the same processor, but not to a different 
processor; additionally, core placement for SMP threads is by system default and cannot be explicitly  
controlled by users.[...]’. In contrast, MPT, through the omplace command uniquely provides convenient 
placement of hybrid MPI/OpenMP processes and threads and Pthreads within each node. This MPI 
library is linklessly available through the PerfBoost facility bundled with SGI ProPack. PerfBoost  
provides a Platform-MPI, IntelMPI, OpenMPI, HP-MPI ABI-compatible interface to MPT MPI. Figure 16 
shows that without the comparative advantage in handling hybrid mode, MPT is on par or better  
than competing MPI libraries in various MPI runs in Geometry Domain Decomposition method (2.2.3)  
in configurations similar to 1.1 or 1.2. 
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Figure 16:  SGI Message Passing Toolkit (MPT) MPI library through PerfBoost 

3.2.5  Effect of core frequency and Intel Turbo Boost Technology 
Figure 17 plots elapsed times for increasing core frequencies starting from a base of 2.53GHz up  
to 2.93GHz for the serial run case and 8-way parallel Geometry Domain Decomposition method (2.2.3) 
in configurations similar to 1.1 or 1.2. A reference plot is drawn for what the elapsed time should have 
been, ideally, had it been inversely proportional to the frequency. It is apparent that MD Nastran in 
these two cases at least is not core processing speed bound and therefore, a trade off may exist  
between faster cores and how many can be procured, considering their cost. 

An additional data point regards the added performance gained through Turbo Boost. Intel Turbo Boost 
is a feature first introduced in the Intel Xeon 5500 series, for increasing performance by raising the core 
operating frequency within controlled limits depending on thermal envelope. The mode of activation is 
a function of how many cores are active at a given moment as maybe the case when OpenMP threads 
or Pthreads or MPI processes are idle under their running parent. For example, for a base frequency 
of 2.93GHz, when 1-2 cores active, their running frequencies will be throttled up to 3.3GHZ, but with 
3-4 cores active only to 3.2GHz. For most computations, utilizing Turbo Boost technology can result 
in improved runtimes, but the overall benefit may be mitigated by the presence of other performance 
bottlenecks than pure arithmetic processing. The performance gain is predictably higher for the serial 
run (3%) than for the 8-way parallel run (.5%). 
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Figure 17:  Effect of core frequency and Turbo Boost

3.2.6  Effect of the scratch space file system 
An I/O dominated application relies on a high performance file system for best performance. The I/O  
subsystem either being DAS or NAS needs to be configured to support fast I/O sequential transactions 
as illustrated in section 2.3.1 by Figure 11. In cluster computing environments with a common scratch 
location, such as a Network Attached File system (NAS), isolating application MPI communications  
and NFS traffic will provide the best NFS I/O throughput for scratch files.

Figure 18 shows changing scratch space file system location may have dramatic effect on performance 
in any run case situation as in Geometry Domain Decomposition method (2.2.3) in configurations similar  
to 1.1 or 1.2. The case of 1 node run did not allow scratch space to fit into RAM.
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Figure 18:  Effect of scratch space file system

3.2.7  Effect of libFFIO (Flexible File I/O)
SGI’s FFIO is a linkless library (which does not need to be linked to the application) bundled with  
ProPack which implements user defined I/O buffer cache to avoid memory buffer cache thrashing 
when running multiple I/O intensive jobs or processes in Shared Memory Parallel systems or cluster 
computing environments using DAS or NAS storage subsystems. FFIO isolates user page caches  
so jobs or processes do not contend for Linux Kernel page cache. Hence, FFIO minimizes the number 
of system calls and I/O operations (as echoed back by the eie_close sync and async values reflecting 
synchronous calls to disk and which should be as close to 0 as possible) to and from the storage  
subsystem and improves performance for large and I/O intensive jobs. (Ref [2], Chapter 7 Flexible File 
I/O). Figures 19 and 20 show that whereas libFFIO may not provide a benefit for Geometry Domain  
Decomposition method (2.2.3) runs on a Direct Attached file system (DAS) on configurations similar 
to 1.1 or 1.2, it does improve performance on a Network Attached file system (NAS). The strategy to 
employ is to use the static mem= memory allocation for Nastran to run in-core and then allocate what 
is left over for libFFIO. This needs to be done per process. 
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Figure 19:  Effect of LibFFIO

Figure 20:  Effect of libFFIO with Network Attached File system (NAS) 
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3.2.8  Effect of RAM available on node 
For a Distributed Memory Parallel (DMP) job (MPI), using a given Decomposition Method on 1 node, 
the aggregate memory and disk usage requirements will be approximately constant with varying number 
of processes used. However, Figures 21 and 22 show that because Geometry Domain Decomposition 
(2.2.3) has a high water mark for scratch space usage almost fitting within 48GB Linux buffer cache but 
Frequency Domain Decomposition (2.2.1) has a high water mark for scratch space usage which is twice 
the former, additional RAM in the second case will allow Linux Buffer cache to accommodate more I/O, 
resulting in increased performance. (The configuration is similar to 1.1 or 1.2). 

Figure 21:  Effect of RAM available on node for Geometry Decomposition Method
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Figure 22:  Effect of RAM available on node for Frequency Decomposition Method

3.2.9  Effect of memory speed 
To isolate the effect of memory speed, the ACMS method was run with 2 processes on 1 node so that 
RAM could be used to accommodate the smaller scratch space file system requirements. No discernable 
performance was found between 800MHz and 1333MHz rated memory. The explanation is that core  
to RAM bandwidth is the limiting factor in this case as opposed to RAM latency. 

Figure 23:  Effect of memory speed
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3.2.10 Combining SMP with DMP or hybrid mode using PerfBoost and MPT 
Shared Memory Parallelism mode is implemented with threads through OpenMP API or directly with 
Pthreads, outside I/O processing regions so parallel efficiency is limited because of the fine parallel 
granularity but I/O requirements do not rise. Therefore combining advantages of both paradigms by 
running SMP simultaneously with DMP using SGI’s MPT and omplace as outlined in 3.2.4 yields valuable 
performance gains as shown in Figure 24 on configurations similar to 1.5.

Figure 24:  Combining SMP with DMP or hybrid mode using PerfBoost and MPT

Conclusions
Interconnect and associated libraries, core frequency, Turbo Boost, Hyper-Threading, file system, 
memory and memory speed, parallelism effects on performance can be gauged for a given dataset.  
In particular one observed:

•	 Infiniband can be twice as fast as GigE interconnect.

•	 MPT (through PerfBoost) compares favorably to other MPI’s in all cases.

•	 Effect of Frequency and Turbo Boost are weak as this is not the only limiting factor for performance.

•	 HyperThreading does not help because of communication costs beyond 8 processes.

•	 DAS or even RAM is always faster than NAS.

•	 libFFIO to be used only when I/O and RAM constrained as in small DAS or NAS.

•	 More RAM accommodates avails more Linux buffer cache

•	 DIMM speed effect is negligible in the particular case which was studied.

•	 Good scaling for SMP and DMP beyond one node/16 cores.

All these effects are definitely dependent on the dataset and solution methods used. Procurement  
of the right mix of resources should therefore be tailored to the range of datasets envisaged. Moreover, 
the metric to minimize could be one of many such as turnaround time or throughput or cost–itself  
comprised of acquisition cost, licenses, energy, facilities and services. 
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Attributions
MD Nastran is a registered trademark of MSC.Software Corporation. SGI, Octane, Altix, ProPack and  
Cyclone are registered trademarks or trademarks of Silicon Graphics International Corp. or its subsidiaries 
in the United States or other countries. Xeon and Itanium are trademarks or registered trademarks of Intel 
Corporation or its subsidiaries in the United States and other countries. Linux is a registered trademark 
of Linus Torvalds in several countries. SUSE is a trademark of SUSE LINUX Products GmbH, a Novell 
business. All other trademarks mentioned herein are the property of their respective owners. 
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