
The SGI® Message Passing Toolkit
Optimized Performance Across the Altix Product Line

White Paper

Table of Contents

1.0 Introduction .. 1
2.0 SGI MPT Performance.. 1
 2.1 Message Latency... 1
 2.1.1 Altix Global Shared Memory Systems .. 1
 2.1.2 Altix In niBand Systems .. 2
 2.2 Single Copy Transfers .. 2
 2.3 In niBand Multi-Rail Support ... 3
 2.4 Optimized Collectives ... 3
 2.5 Tunable Environment Variables ... 3
3.0 SGI MPT Features... 3
 3.1 MPI-2 Content .. 3
 3.2 Array Services ... 4
4.0 SGI MPT on Altix NUMAlink Systems ... 4
 4.1 SHMEMTM Programming Model .. 5
 4.2 Global Shared Memory Support .. 5
 4.3 Process Placement ... 5
5.0 Tools .. 6
6.0 Conclusion .. 6

This paper describes the SGI Message Passing Toolkit (MPT),
an MPI implementation tailored to take advantage of the unique
features of SGI Altix hardware. SGI MPT minimizes message
latency and delivers optimized application performance across
the entire Altix product line. SGI MPT performance, SGI MPT
features, as well as some of the available tools for SGI MPT
environments are discussed.

1.0 Introduction
The Message-Passing Interface (MPI) is a library specifi cation
enabling communication between the processors of a multi-
processor computer or the hosts of a compute cluster during the
execution of a parallel application. The SGI® Message Passing
Toolkit (MPT) is an optimized MPI implementation that has
been designed to deliver maximum performance across the
entire SGI Altix product line (SGI Altix 4700, SGI Altix 450,
SGI Altix ICE, SGI Altix XE).

With built-in support for a variety of possible interconnects
including shared memory, NUMAlink, Infi niBand™, and TCP/
IP sockets, SGI MPT automatically chooses the best available
interconnect to achieve maximum performance, and can utilize
more than one interconnect option as appropriate; shared
memory may be used for communication within a host while
communication to other hosts uses Infi niBand.

As a result, applications built with MPT will run correctly
and optimally on different systems and clusters with varying
interconnect confi gurations. On SGI Altix ICE and SGI Altix XE
platforms, SGI MPT communicates over Infi niBand and scales
across clusters of thousands of processor cores.

On the SGI Altix 450 and SGI Altix 4700 systems, MPT can
use SGI NUMAlink to support a maximum of 512 processor
sockets (1,024 processor cores) under one instance of Linux—a
single system image (SSI). Clusters of SSI systems can scale
to thousands of processors using low latency NUMAlink as the
cluster interconnect. Single systems and clusters leverage
global shared memory to keep latencies at a minimum while
providing a streamlined SHMEM API implementation and user
APIs for direct use of global shared memory.

SGI MPT is designed to deliver the highest possible performance
through support for low-latency programming algorithms, targeted
support for important MPI-2 features, and the right toolset for
performance analysis and overall usability.

This white paper explores SGI MPT performance, unique SGI
MPT features, and some of the more valuable tools available for
use with SGI MPT.

2.0 SGI MPT Performance
The primary factor that dictates SGI MPI performance is
message latency—the time required to send a message across
an interconnect to another node. In this section we look at latency
results for SGI Altix systems using SGI MPT, as well as some
of the MPT features that contribute to performance across the
Altix product line. A later section examines some of the unique
features available on Altix systems using SGI NUMAlink.

2.1 Message Latency
2.1.1 Altix Global Shared Memory Systems
SGI Altix 4700 and SGI Altix 450 systems incorporate the
shared-memory NUMAfl ex® architecture-- the industry’s most
scalable memory architecture, offering up to 128TB of globally
addressable memory in a system. Global shared memory
allows access to all data in the system’s memory directly and
effi ciently, without having to move data through I/O or networking
bottlenecks. The impact can be dramatic, including:

• Signifi cantly lower MPI latency on NUMAlink versus
Infi niBand

• Large memory space that allows problems to be solved in
memory instead of out of core

• Direct memory access is orders of magnitude faster than
I/O access to disk

• A larger SSI that enables OpenMP scaling far beyond any
other system

• Support for the low latency SHMEM API via MPT
• Quasi-SMP style programming through global shared

memory segments. SGI MPT supports an allocator that
creates and sets up for sharing a memory segment that MPI
processes can reference much like UNIX System V memory
segments on SMP systems.

The SGI Altix 4700 and SGI Altix 450 are comprised of modular
blades—interchangeable compute, memory, I/O and special
purpose blades for confi guration fl exibility. The innovative blade-
to-NUMAlink™ architecture enables users to mix and match eight
standardized blade choices for system right-sizing.

Observed MPI latencies for Altix NUMAlink systems range
between 1 and 2.3 microseconds. Latency remains low,
even for communication between distant processors. Figure 1
illustrates this point.

1

2

2.1.2 Altix In niBand Systems
The SGI Altix ICE and SGI Altix XE server family utilizes industry-
standard Dual- and Quad-core Intel® Xeon® processors. Either
option is designed to support clusters of thousands of hosts using
Infi niBand as the cluster interconnect.

The SGI Altix ICE platform is an integrated blade cluster
system designed for demanding scale-out workloads. The SGI
Altix ICE platform employs a blade architecture designed by
SGI specifi cally to meet the unique needs of the HPC market.
It delivers scalability, manageability, reliability, and price/
performance.

SGI Altix XE rounds out the Altix family, with a choice of
economical cluster-targeted servers that lead the industry
in price/performance and low TCO (total cost of ownership).
Altix XE extends SGI’s technological innovations to the value-
focused segment of the HPC market.

For small messages (8 bytes) MPT on SGI Altix ICE and SGI
Altix XE achieve a message latency of approximately 3.4
microseconds running the Ohio State University MPI benchmark.
For processors that are far apart, this result peaks at about
4.3 microseconds. For large messages (256KB) latency is
approximately 124 microseconds. These results are consistent

with the best results for other MPI implementations running
on the same hardware and approach the interconnect limits.
With the addition of single copy transfers and multi-rail support,
SGI MPT achieves peak point-to-point bandwidth of 2400 MB/sec
for 100 MB messages versus 900 MB/sec for the MVAPICH MPI
implementation. These enhancements have shown performance
improvements in many industry applications. (Both tests were run
on the same platform: Altix ICE with 3.0GHz Xeon processors.)

2.2 Single Copy Transfers
Single copy transfers, also known as zero copy transfers,
eliminates the extraneous copying that can occur when sending
MPI messages. The process that calls MPI_Send specifi es a
user array that contains the data. The receiving process calls
MPI_Recv and specifi es a data array to receive the data. The
SGI MPI library transfers the data from the sender’s user buffer
to the receiver’s user buffer without any intermediate library
buffering of the data.

The means by which this occurs is implementation specifi c.
On Infi niBand systems, this is accomplished via use of RDMA
functions with memory registration. On NUMAlink systems single
copy transfers are accomplished with an optimized, processor-
driven bcopy that references a mapping to memory that is set
up by use of the XPMEM software stack.

Point-to-Point Latency (8 byte msg)
on a 512p 1.5 GHz Altix BX2

from CPU 0 to Destination CPU

MPI send/recv

MPI_get

SHMEM get

Global Shared Mem

Destination CPU

2.5

2

1

0

1.5

0.5

T
im

e
(u

se
c)

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

50
1

Figure 1. Latencies for various MPI functions versus SHMEM and Global Shared Memory.

2.3 In niBand Multi-Rail Support
A rail is an independent Infi niBand network. Instead of adding
more endpoints to an existing network, a multi-rail system
adds parallel networks to achieve higher bandwidth. Multi-rail
is the standard confi guration for Altix ICE. It is available as an
option with Altix 4700 and Altix XE systems. Most other MPI
implementations do not offer multi-rail support.

SGI MPT utilizes multiple Infi niBand rails to perform message
pathway distribution and message striping. Message pathway
distribution is done by strategically mapping individual routes
(source to destination) to the available rails. Since routes are
mapped to different rails, more aggregate bandwidth is available
in situations where many MPI processes are communicating at
the same time. SGI MPT performs message striping by sending
portions of large messages on each rail in parallel with the effect
of nearly doubling the effective MPI point-to-point bandwidth.

2.4 Optimized Collectives
Both the MPI-1 and MPI-2 specifi cations include collective
functions that provide simultaneous communications between
all processors in a communicator group. SGI has optimized many
of these collective functions to streamline performance:

• Alltoall collective functions and other collectives with large
messages sizes are optimized on both NUMAlink and
Infi niBand via single copy data transfers.

• Barriers are used to synchronize all communicating
processors. Barriers are optimized on NUMAlink systems by
use of a fetchop tree algorithm. On Infi niBand systems they
are optimized by using shared memory to synchronize MPI
processes within the same host.

• Reduction functions are used to perform a global operation
(such as sum, max, etc.) across all members of a group.
These functions are accelerated by combining an optimized
shared memory reduction within the node with a recursive
doubling algorithm for the inter-node phases of the reduction.

2.5 Tunable Environment Variables
SGI MPT includes a large number of tunable environment
variables. While many of these are part of the MPI specifi cation,
SGI has introduced a number of variables that allow you to
control process placement and message buffering to fi ne tune
performance.

Process Placement:

• MPI_DSM_DISTRIBUTE: Activates NUMA job placement
mode. Ensures that each SGI MPI process gets a unique
CPU and physical memory on the node with which that CPU
is associated.

• MPI_DSM_CPULIST: Specifi es a list of CPUs on which to
run an MPI application.

• MPI_DSM_PPM: Sets the number of MPI processes per
memory node.

Message Buffering:

• MPI_DEFAULT_SINGLE_COPY_BUFFER_MAX: If the size
of the cumulative data to be transferred is greater than this
value, then MPI will attempt to send the data directly between
the processes’ buffers and not through intermediate buffers.

• MPI_IB_SINGLE_COPY_BUFFER_MAX: Similar to the
previous variable except applies specifi cally to Infi niBand.

• MPI_BUFFER_MAX: Specifi es a minimum message size,
in bytes, for which the message will be considered a
candidate for single-copy transfer.

• MPI_DEFAULT_SINGLE_COPY_OFF: Disables the
single-copy mode. (By default, single copy is enabled.)

• MPI_BUFS_PER_PROC: The number of 16KB buffers
to allocate for each MPI process.

• MPI_BUFS_PER_HOST: The number of 16KB shared
message buffers to allocate for each host.

3.0 SGI MPI Features
A number of additional features supported by MPT contribute to
the usability of the SGI implementation.

3.1 MPI-2 Content
The SGI MPT implementation is compliant with the 1.0, 1.1,
and 1.2 versions of the MPI Standard specifi cation. In addition,
SGI has implemented a number of frequently requested features
from MPI-2:

• MPI I/O. The optimizations required for effi ciency in a
parallel computing environment (such as grouping, collective
buffering, and disk-directed I/O) can only be implemented
if the parallel I/O system provides a high-level interface
supporting partitioning of fi le data among processes and a
collective interface supporting complete transfers of global
data structures between process memories and fi les. Further
effi ciencies can be gained via support for asynchronous I/O,
strided accesses, and control over physical fi le layout on
storage devices. MPI I/O provides these facilities.

• MPI Thread Compliance and Safety. MPI may be
implemented in environments where threads are not
supported or their use is undesirable. Therefore, MPI
implementations are not required to be thread compliant.
However, MPI-2 defi nes optional thread compliance
functions. When threads are in use, each thread in a
process can issue MPI calls, but threads are not separately
addressable. A message sent to a process may be received

3

4

by any thread in the process. There are four options for the
level of thread support. MPT supports all four options.

 • MPI_THREAD_SINGLE. Only one thread executes
 • MPI_THREAD_FUNNELED. Only the main thread

 will make MPI calls.
 • MPI_THREAD_SERIALIZED. Only one thread at a

 time may make MPI calls.
 • MPI_THREAD_MULTIPLE. Multiple threads may call

 MPI without restriction. (MPT requires libmpi_mt.so for
 this option.)

• MPI Process Spawn. MPI-1 applications are static:
processes can’t be created or deleted after an application
has started. MPT implements features from the MPI-2
specifi cation which allow an application to spawn new
processes as necessary.

• One-sided Communication. Normal send/receive
communication requires matching operations by the sender
and receiver. In some cases, processes may not know which
data in their own memory needs to be accessed or updated
by remote processes. MPT implements the MPI_PUT and
MPI_GET calls of MPI-2, allowing a process to read and
write the memory of another process many times between
synchronization points in a program.

• Language Bindings. The earlier MPI specifi cations did not
include bindings for C++ or Fortran 90. SGI MPT includes
support for C++ (except for C++ interfaces for MPI-2
functions) and partial support for Fortran 90.

• Process Communication via MPI Ports. Establishing
process communication where none existed before and
where there is no parent/child relationship can be complex.
MPT implements the MPI-2 feature which allows a server
process to establish a port to which client processes can
connect.

3.2 Array Services
Secure Array Services which is part of SGI ProPack provides
the same functionality as Array Services, but uses stronger
encryption and security algorithms. It includes administrator
commands, libraries, daemons, and kernel extensions that
simplify the execution, monitoring and control of MPI programs
across a cluster. Array Services provides the notion of an array
session, which is a set of processes that can run on different
cluster nodes. With Array Services, an array session handle
(ASH) is used to logically group related processes that may be
distributed across multiple systems, facilitating accounting and
administration.

Array Services utilities let an administrator query and manipulate
distributed array applications, and dramatically simplify common
operations. For instance, with many MPI implementations,
starting an application on a cluster can be awkward and
complicated. Array Services makes the task simple and
straightforward.

4.0 SGI MPT on Altix NUMAlink Systems
User programs and libraries on SGI Altix 450 and SGI Altix 4700
systems have direct, global access to memory across the whole
system. This feature allows SGI MPI more freedom to implement
effi cient data sharing algorithms. The SGI Altix 4700 system can
be administered as a single large SMP system with up to 2,048
processors, or as a cluster of such hosts.

All hosts in a cluster are individual partitions within a larger
NUMAlink interconnect domain. The Linux software distribution
installed on Altix systems is augmented by SGI software that
provides memory sharing within and across hosts (XPMEM),
as well as optimized libraries and other features. The software
layers related to memory access on NUMAlink are shown in
fi gure 2.

libmpi
MPI

libsma
SHMEM

libxpmen TCP/IP

XPNET

XP/XPC

NUMAflex™ HW: SGI NUMA, BTE, fetchops

XPMEN driver

Figure 2. Software/hardware stack for NUMAlink interconnect.

SGI programs attach all memory in the static and common
blocks segments, the stack segments, and the heap segments
of an MPI process into the virtual address space of every other
MPI process in the job. This allows free access to MPI queues
and data structures, as well as user data areas passed as send
and receive buffers or targeted by put or get operations or
accessed via global pointers into globally shared data regions.

4.1 SHMEM™ Programming Model
MPI extends the explicit parallel programming capabilities of
MPI through the addition of the SHMEM parallel programming
model. The SHMEM library provides the fastest interprocessor
communication using data passing or one-sided communication
techniques. The SHMEM library also contains a facility for
assigning global pointers that allow data in another cooperating
process to be accessed directly via load/store for communication
or synchronization.

In addition, the SHMEM library includes a number of highly
optimized functions for collective operations such as global
reductions. Since it can be implemented very effi ciently on
globally addressable shared- or distributed-memory systems,
use of this library improves communication latency by an order
of magnitude over optimized MPI implementations on SGI
NUMAlink systems. Some of the one-sided communications
concepts introduced in SHMEM have been incorporated into the
MPI-2 specifi cation.

4.2 Global Shared Memory Support
SGI Altix servers have global shared memory. This means that
memory segments can be allocated on or striped across memory
nodes anywhere in the system and be referenced via ordinary

load/store instructions. MPT provides a global shared memory
allocator called GSM_Alloc() that may be called within MPI or
SHMEM programs to allocate remote or distributed memory
segments.

When the ability to directly load and store to remote memory is
correctly exploited, most software overhead is eliminated yielding
substantially reduced effective latencies.

4.3 Process Placement
Other important improvements include memory placement,
process pinning, and CPUset support. When either solving
a complex problem that needs large numbers of CPUs and
memory or when multiple, unrelated problems are running
simultaneously on the same large system, effi cient resource
allocation enables an application or batch job to complete within
a predictable and consistent time period. SGI provides the
commands cpuset, dplace, and omplace to ensure a particular
workload or batch job can effi ciently use the available CPU
and memory resources and to help ensure multiple jobs can
allocate and use the resources they require without interfering
with each other. These tools can also prevent a smaller job from
thrashing across a larger pool of resources than it can effectively
use. Support for the utilities dplace, cpuset, and omplace is
implemented using SGI’s libcpuset library which provides the
kernel support and library calls for implementing this functionality.
Programmers can make explicit calls to the library to incorporate
these functions directly into applications.

0%

NUMAlink

RapidArray (XD 1)

Quadrics

High Perf. Switch (IBM)

Infiniband

Myrinet

Gig Ethernet

20% 40% 60% 80% 100%

Figure 3. Interconnect effi ciency for common MPI applications. Calculated as Linpack NxN Rmax/Rpeak.

5

 Corporate Offi ce
1140 E. Arques Avenue
Sunnyvale, CA 94085
(650) 960-1980
www.sgi.com

North America +1 800.800.7441
Latin America +55 11.5185.2860
Europe +44 118.912.7500
Japan +81 3.5488.1811
Asia Pacifi c +61 2.9448.1463

 © 2008 SGI. All rights reserved. SGI, Silicon Graphics, the SGI logo and Altix are registered trademarks of SGI in the U.S. and/or other countries worldwide. All other trademarks mentioned herein are the
property of their respective owners.
4106 [04.22.2008] J15375

5.0 Tools
A variety of tools are available that can help profi le, debug,
and execute SGI MPI applications. The following subsections
describe several of the more useful ones from SGI and a variety
of other sources.

• Perfcatch. The perfcatch utility is a useful lightweight tool for
fi rst pass MPI performance analysis that SGI provides with
SGI ProPack. It runs an MPI program with a wrapper profi ling
library that prints MPI call profi ling information to a summary
fi le upon program completion.

• TotalView. The TotalView Debugger from TotalView
Technologies is a comprehensive debugger with enhanced
parallel and thread support for use with SGI MPI and other
MPI implementations as well as other parallel programming
models.

• Intel Trace Analyzer and Collector. Intel® Trace Analyzer
and Collector provides information critical to understanding
and optimizing MPI cluster performance by quickly fi nding
performance bottlenecks with MPI communication. Version
7.1 now includes trace fi le comparison, counter data displays,
and an MPI correctness checking library.

• Workload Management. Running MPI applications in
a production environment requires effective workload
management and job scheduling. SGI MPI applications
can be managed by both PBS Professional from Altair
and Platform LSF, the two leading workload management
applications.

6.0 Conclusion
SGI MPT can be used to create parallel applications that make
effi cient use of SGI hardware in both multiprocessor and cluster
environments. MPT delivers superior performance with message
latency ranging from 1 to 2.3 microseconds on the Altix 450
and 4700 systems, and 3.4 microseconds on Altix XE and Altix
ICE. Single copy transfer capabilities eliminate time-consuming
memory copies to enhance bandwidth on all platforms. A targeted
set of MPI-2 features add important capabilities over and above
MPI-1.2.

The NUMAlink interconnect used on all SGI Altix 450 and SGI
Altix 4700 systems makes it possible to share memory between
cooperating hosts in a cluster. The SHMEM programming model
offers an extension to MPT that allows programmers to improve
latency by an order of magnitude relative to standard MPI
communications.

A targeted set of tools for debugging, optimization, and workload
management round out the SGI MPI offering to yield a productive
development environment that streamlines application creation
and execution.

6

