
Solving Large Problems on Large Computer Systems
Hardware Considerations for Engineering Productivity Gains

with Multi-Discipline Nastran Simulations

White Paper

Table of Contents

 Abstract ... 1

1.0 Introduction .. 1

2.0 Size Matters .. 1

3.0 Linear Equation Solvers .. 2

4.0 Non-linear Equation Solvers ... 3

5.0 Lanczos Eigenvalue Solver ... 4

6.0 Explicit Dynamics Solvers ... 4

7.0 ACMS Solver ... 8

8.0 Multi-Discipline (MD) Considerations ... 9

9.0 Input and Output Economy ... 10

10.0 Conclusions ..11

Abstract

High fi delity Finite Element models increase demands on
computer hardware. Different numerical algorithms required
for multi-discipline analyses increase the complexity of system
choice. We examine the resource usage and performance of
solvers in the context of Multi-Discipline Nastran on SGI Altix®
IPF and XPF systems. We report issues that can arise in solving
industry strength problems. We discuss the merits of different
computer architectures for explicit dynamics, NVH, linear and non-
linear static analysis methods as well as fi le system performance.

1.0 Introduction

Simulations of complex engineering systems such as aerospace
or automotive vehicles require modeling the important interactions
between the physical phenomena and the vehicle. These inter-
actions make the vehicle a synergistic whole. Taking advantage
of that synergy is the mark of good design. However the web of
interactions is diffi cult to untangle effectively in the time constraints
of product development. Multi-Discipline (MD) Nastran is intended
for the synthesis of complex engineering systems.

MD Nastran R2 release introduces powerful new multidiscipline
simulation features and enhancements to address challenges in
the areas of:

• Automatic sub-structuring methods ACMS for NVH
• Interior and exterior acoustics incorporating MSC Actran
 infi nite elements
• Impact, crashworthiness and occupant safety with explicit
 fi nite element analysis incorporating LS-DYNA’s Largrangian
 and MSC Dytran’s Eulerian forumaltions
• Contact and nonlinear analysis using MSC Marc
• Aeroelasticity and rotordynamics with MSC Nastran
• Process simplifi cations to speed modeling work fl ow
• Multidiscipline design optimization

With the increasing model sizes generated by engineering
teams, performance of MD Nastran for very large scale NVH and
impact models continues to be critical. Total system superiority
is mandatory to obtain effi cient solutions. Achieving scalable
parallel processing (DMP, SMP), true 64-bit addressing and
fl oating point performance, and solver robustness is imperative.
In this context, it is important to emphasize that application
productivity is not tied to parallel capability or other standard
compute metrics but is also closely related to fi le system.

The last decade saw the commoditization of both the computer
hardware and the operating system software. According to
the Dresden IDC report dated June 2007, 66% of today’s high
performance servers are running a variant of Linux, followed
by proprietary UNIX software and Windows. On top of the
commercial Linux distributions such as RedHat and SuSe, some
system vendors provide additional features. SGI supports the

XFS (Reference 1) journal fi le system, DLPACE (Reference 2),
and FFIO (Reference 3) as well as other useful management
features in the Propack series of releases for Linux.

Server architecture is currently dominated by the x86-64
processor families (63%) which include both Intel Xeon 5100
and AMD Opteron series. The remaining servers are RISC
or EPCI (Intel Itanium2) processor based. The x86-64 based
systems are either dual-core or quad-core processors. The
multi-core processors may not necessarily provide the right
balance between CPU processing and memory bandwidth for
running specifi c high performance engineering applications.
As a result, system vendors, such as SGI, offer both ‘density’
and ‘bandwidth’, and ‘super bandwidth’ confi gurations to meet
customer solution requirements.

In this paper, we compare MD Nastran performance on an
Itanium2 A450 and a cluster of Xeon 5160 based SGI Altix® XE’s.
These are two very different architectures – VLIW vs superscalar
processors and ccNUMA SSI vs cluster. On paper, the Xeon have
much higher clock speed, twice bandwidth per memory controller,
and signifi cantly better SPEC 2006 integer performance. Yet the
A450 offers a large amount of shared memory and matured, well
tuned, MD Nastran application software. The storage options
on A450 and XE also are very different to make the comparison
interesting.

2.0 Size Matters

Small models, can fi t better in the memory on the processor
chip (cache), and therefore benefi t directly from an increase in
processor speed, regardless of the solver used. With a smaller
number of fi nite elements, the interior fl oating point dominated
processing loops are short and the integer requirements
proportionally balanced. This combination fi ts the Intel Xeon
processor architecture. This is demonstrated by the performance
illustrated in Figure 2-1. These examples of small models run
with several different MSC Software Nastran and Marc solvers
run faster on the SGI Altix® XE Intel Xeon based system.

1

1 1 1 1

1.58
1.66

1.78

1.08

0

0.4

0.8

1.2

1.6

2

2.4

Marc SOL101 SOL111 SOL103

A450 Performance

XE Performance

N
or

m
al

iz
ed

 S
pe

ed

Figure 2-1. Small Model Comparisons

2

The Marc model in the chart has about 12000 elements and
nodes. The SOL101 job consists of only shell elements and is
restricted to 989K degrees of freedom. SOL111 is a 2 Million
degree of freedom shell element model that computes 1000
nodes and 1000 frequency points. SOL103, which uses the same
model as the SOL101 example, only solves for 15 eigenmodes.

As the model size increases beyond the limits of effective
caching, more complex system operations including the
memory controller, RAM, disc, and interconnections, the quality
of the compiler, application specifi c source code tuning, and
solution algorithms would play a more prominent role in the job
performance. Comparisons in the following sections will consider
these factors using the A450 Intel EPIC processor based systems
and the SGI Altix® XE Intel Xeon processor based architecture.

Due to internal book-keeping, Nastran and Marc with 32bit
integers (i4) are limited to 8GB memory per domain. Large
problems encourage the use of 64 bit integer (i8) versions of
Nastran and MARC for larger addressable memory. Today’s
industry strength models and systems need the i8 codes to run
effi ciently. However, it is determined in this and previous work
that some of the solution sequences do not run as effi ciently with
the i8 code compared with the i4 counterpart due to compiler
maturity. For these incidences, MSC has identifi ed and fi xed
i4 integer overfl ow problems in some ‘hot spot’ areas, which
are mainly related to global data structure manipulations, such
as matrix re-ordering and domain decomposition. The METIS
re-ordering code in Nastran also has a path to allow i4 code to
temporarily use more than 8GB memory for the duration of the
METIS execution. This is typically insignifi cant in comparison to
the overall run time.

Marc has a similar issue with the i8 codes, but due to the
resource usage scale-down from domain decomposition that is
often used by Marc, the problem is not as signifi cant.

3.0 Linear Equation Solvers

The solution of a linear system of equations, for example:
[A]*{X} = {B}, is one of the basic tasks in FEA. In most cases
[A] is the global stiffness array, {B} is either a force vector or
a block of force vectors and {X} is the solution corresponding
to {B}. The choices of linear equation solvers in MD v2007R2
Nastran include the conventional MSC LDLT sparse direct solver,
the CASI iterative solver, a new TAUCS symmetric and a new
UFMPACK asymmetric sparse direct solver. The sparse direct
solvers are basically stable due to numeric pivoting in the code,
however the iterative solver has its limitations, per Nastran
release guide (Reference 4).

For optimal performance, a sparse direct solver is implemented
with a matrix multiplier like a BLAS3 type math kernels, whereas
an iterative solver is typically done with a matrix-vector multiplier
like BLAS2 type kernels. Matrix multiplier kernels are stable and
easily blocked for better data reuse and thus better performance.
However, matrix-vector kernels are memory and bandwidth
intensive and resemble a bcopy/memcpy code.

To illustrate the pros and cons of the differing linear equation
solvers on the two hardware architectures, we ran three SOL 101
jobs. The fi rst job is an 1.92 mil DOF engine block of only solid
elements. The second job is also solid element dominant but has
3.33M DOFs and roughly 10 percent of the elements are shells.
The third job is a trimmed car body that is made up mostly of shell
elements and 1.83M DOFs. Multiple force vectors (i.e. Nastran
load sub-cases) are also tested to demonstrate how the CASI
solver time increases with the number of loads, since an iterative
solver would handle only one right hand side vector at a time.

The results of these three tests are shown in Figures 3-1, 3-2,
and 3-3. Note that the CASI solver fails to converge for the 3rd
test, and the iterative solver is most effective with the pure solid
element job. The i4 and i8 codes are roughly equal in speed for
the Nastran SOL101 linear static analysis, and the shell element
job with 1.83M unknowns is still not large enough to make A450
run faster, even though the A450 has faster BLAS3-like kernels
for the sparse direct solvers.

Figure 3-1. SOL101 of Solid Elements

0

200

400

600

800

1000

1200

1400

1600

mscldlt mscldlt 3lds taucs casi casi 3lds

A450 i4 Performance
A450 i8 Performance
XE i4 Performance
XE i8 Performance

El
ap

se
d

Ti
m

e
(S

ec
)

4.0 Non-linear Equation Solvers

A non-linear problem arises when the global stiffness matrix no
longer represents a linear relation between the force and the
displacement vectors. In this instance, a Newton-Raphson method
or a method akin to it is necessary to bring the imbalanced force
down to equilibrium. The numerical procedure is similar to that
of linear static problems, except that the solution of the system
of equations, [A] * {X} = {B}, is repeated as many times as is
required to reach equilibrium. Moreover, a non-linear solution
would be capable of dealing with only one load vector at a time.

MSC.Marc has solvers 2, 6, 8, and 9. We test all the solvers
against a bio-engineering model that has very high fl oating point
content, (i.e. about 700 Gfl ops per solver pass) for up to 16 cores
on A450 and XE. To use solver 6 with domain decomposition,
the grid points in the model have to be numbered sequentially.

If there are contact bodies in the model, the element IDs need
to be numbered contiguously as well. These requirements can
generally be met by reading the non-contiguously numbered
model into MSC Mentat fi rst, then hitting the ‘RENUMBER
ALL’ button and writing out the new input fi le, followed by minor
tweaking. Note that solvers 2 and 8 are not subject to these
restrictions and solver 9 is subject to restrictions for the CASI
iterative solver.

Our test results are shown in Figures 4-1, 4-2, and 4-3. The
solver 9 results are not shown since they are too far behind
those of the other solvers. The solver 2 fails to converge on
1 core, thus, that case is not shown.

3

261

312

226

248

0

50

100

150

200

250

300

350

400

mscldlt taucs

A450 i4 Performance

XE i4 Performance

El
ap

se
d

Ti
m

e
(S

ec
)

2119

1113

677

2117

1394

711

1190 1128

739

0

1000

2000

3000

4000

5000

6000

1 core 4 cores 8 cores 16 cores

A450 i4 Performance
A450 i8 Performance
XE i4 Performance

El
ap

se
d

Ti
m

e
(S

ec
)

1936

5254

2343

3123

730

1949

2941

0

1000

2000

3000

4000

5000

6000

casi casi 3lds mscldlt taucs

A450 i4 Performance

XE i4 Performance

El
ap

se
d

Ti
m

e
(S

ec
)

9520

2937

1950

1383

9433

2911

2067

1501

0

2000

4000

6000

8000

10000

1 core 4 cores 8 cores 16 cores

A450 i4 Performance

A450 i8 Performance

El
ap

se
d

Ti
m

e
(S

ec
)

Figure 3-2. SOL101 of Mixed Elements

Figure 4-1. Marc Solver2 Results

Figure 4-2 Marc Solver6 Results

Figure 3-3. SOL101 of Shell Elements

4

5.0 Lanczos Eigenvalue Solver

The Lanczos eignevalue solution in Nastran, which traces its
roots to the BCSLIB-EXT Lanczos solver, has been widely
implemented to perform vibration and NVH analyses for all
types of structures. The Lanczos method operates on blocks of
long and thin matrices that resemble vectors. Due to this, and
the limited memory of Nastran HI-Core, the Lanczos solution is
typically memory bandwidth and IO intensive.

Due to the unique shape of the Lanczos blocks, writing effi cient
BLAS kernels for Lanczos block operations can be challenging.
To date, the A450, or rather, the Itanium 2 processor, is more
adept for running Nastran Lanczos analysis jobs due to better-
optimized BLAS kernels.

Figures 5-1 and 5-2 show the performance of the a.m. 3.33M
DOF trimmed body model for both NVH (to 250HZ) and
vibration (to 20HZ) tests on one core. For these Lanczos jobs,
A450 is signifi cantly faster than XE, however, the i8 code also
slows signifi cantly for the NVH case. Further examples of the
sluggishness of the i8 can be seen in Table 5-1, which shows
the timing results of a 34M DOF car body for about 2000 modes
that is run on an A450 cpuset with 16GB physical memory and
a 24 SAS disks fi le system.

6.0 Explicit Dynamics Solvers

MD Nastran SOL 700 is a general purpose, transient dynamic,
non-linear, explicit (with implicit capability), fi nite element analysis
software based on LS-DYNA and MSC Dytran solvers. John
Hallquist originally wrote DYNA-3D for Lawrence Livermore
National Laboratory, which was subsequently released to the
public domain. MD Nastran SOL 700 features include:

• Highly nonlinear:
 – Changing boundary conditions with time
 such as contacts between parts
 – Large deformations
 – Nonlinear (non elastic) materials

• Transient dynamics
• Important inertial forces
• Finite element analysis
• Explicit time integration

SOL 700 is used in many industries:
• Automotive
• Aerospace
• Manufacturing and
• Bioengineering
• Consumer

and disciplines:
• Crash, impact
• Metal forming
• Blade containment
• Bird strikes
• Drop testing
• Plastic, glass forming

10567

3489 3210
3575

10617

3565 3315

7714

2909 2672 2998

0

2000

4000

6000

8000

10000

12000

14000

1 core 4 cores 8 cores 16 cores

A450 i4 Performance
A450 i8 Performance
XE i4 Performance

El
ap

se
d

Ti
m

e
(S

ec
)

20323

10896

21345

14244

0

4000

8000

12000

16000

20000

24000

XE A450

i4 Nastran Code

i8 Nastran Code

El
ap

se
d

Ti
m

e
(S

ec
)

Figure 4-3. Marc Solver8 Results

1075

843

1083

842

0

200

400

600

800

1000

1200

1400

XE A450

i4 Nastran Code

i8 Nastran Code

El
ap

se
d

Ti
m

e
(S

ec
)

Figure 5-2 20HZ Lanczos Analysis

Nastran Elapsed Sec CPU Sec IO Wait Utilization %

i4 code 180125 160002 20123 88

I8 code 235306 218771 16535 92

Table 5-1. Very Large Lanczos Analysis

Figure 5-1. 250HZ Lanczos Analysis

1

Explicit Nonlinear Dynamics was introduced in MD R1 Nastran
as an executive control statement SOL700. It activates an explicit
nonlinear transient analysis integration scheme using dytran-
lsdyna. It may also be used for implicit static analyses using MD
Nastran nonlinear implicit solver such as SOL 400 or SOL 700
implicit solver based on LS-DYNA double precision version. In
MD R2 Nastran, the nastran input undergoes a fi ltering process
for model accuracy and then is directly mapped into LS-DYNA
memory by means of a structured neutral fi le. The SOL 700
implicit and explicit solvers will streamline complex, multi-
discipline sequential simulations such as pre-stress analysis
(implicit to explicit), springback effects (explicit to implicit) or other
simulations that will require switching between solvers.

SOL700 is intended for engineers and analysts who have
constructed an MSC Nastran fi nite element model for a purpose
other than impact. This avoids having to read the MSC Nastran
model into a GUI, translate it to LS-DYNA or MSC Dytran, and
thus risk losing or not properly translating some MSC Nastran
input data. Once one has completed the explicit simulation,
standard LS-DYNA results fi les such as d3plot as well as
standard MD Nastran fi les are available for post processing.

SOL700 has three ways of solving static problems:
• Dynamic relaxation: The input is applied as a step function and

large damping is added. The solution is run until approximate
steady-state values are obtained. (classic method)

• Slow buildup: The static load is ramped slowly from zero to
full value over a period of time long enough that no important
natural frequencies are excited. No extra damping is added.
(for exact results)

• Slow buildup with extra damping: This method is like the previous
method except that some extra damping is added; thus, the fi nal
run time can often be reduced.

Unless explicitly specifi ed, SOL 700 will be executed from MD
Nastran on any computer system where it is installed, licensed,
and accessible from the directory where the MD Nastran input
data resides as prescribed on the fi rst line in a fi le named sol700.
pth. Using this fi le, MD Nastran will create a command line to
start the SOL 700 explicit solver.

For customers comparison, standard benchmarks have been
developed over the last twenty years and are available on
http://www.topcrunch.org. Figures 6.1 and 6.2 illustrate the
models discussed in this paper.

With the advent of multi-core processors, new rules were
developed and as of May 7, 2007, all cores for each processor
must be fully utilized. Benchmarks of multi-core processors using
only a core subset per processor will no longer be posted.
The objective is to reduce clutter on the site so that end-users
will not have to sort through every permutation of core usage for
a fi xed number of cores, and try to understand which cores are
idle, and which are not.

SOL 700 sequentially goes through the following phases:

 1. Initialization:
 1.1 reading input fi le[s],
 1.2 allocating memory
 1.3 initializing variables
 1.4 domain decomposition
 2. Element-processing
 3. Contacts
 4. Rigid bodies

The explicit time integration computation kernels used in
SOL 700 involve less round-off errors than implicit solver
computations. Consequently, either Double or Single Precision
may be used for short simulations where these round-off errors
do not accumulate over many time steps. Double Precision is
necessary for models with more than 5 million elements which
cannot be resolved by single precision fl oating point numbers.

5

Figure 6.1. Neon refi ned revised

Figure 6. 2. 3 Vehicle Collision

Resource requirements are dependent on problem size and
complexity of the physics simulated:

• RAM: Total usage is proportional to the square of 2D shell elements
(SP GB=1*E^2, DP GB=4*E^2) resulting in the 2GB limit of 32 bit OS
memory addressability reached with 1M elements in Single Precision
and 700k elements in Double Precision.

• RAM per process decreases as the number of processes increases
potentially leading to super-linear speedup opportunities as the
computational domain matches the size of the on-chip memory.

• IO storage: dependent on user options on SOL 700 output fi les and
restart specifi cations.

• Communication bandwidth: SOL 700 DMP (Distributed Memory
Parallel) has small and decreasing message sizes as the number of
processes increases and is communication latency limited.

Platforms attributes have complex effects on SOL 700 benchmarks:
SOL 700 and SOL 700 DMP are respectively OpenMP and
MPI parallel capable and, as other Computational Structural
Mechanics explicit CAE applications, are very sensitive to SMP
and DMP technologies and their assorted interconnects.

Figure 6.3 and Figure 6.4 show for both neon refi ned revised and
3 Vehicle collision how for high process counts IA64 processors
with NUMAlink outperform x86_64 with Infi niband.

Figure 6.5 shows how GigE under-performs Infi niband on
the neon_refi ned_revised benchmark on the same x86_64
processors.

Double Precision processing involves more registers, cache
space and memory bandwidth than Single Precision processing.
Therefore the infl uence of processor, processor Chipset, FSB in
addition to DMP and interconnects is greater.

Figure 6.6 shows for x86_64 processor ratios of Double Precision
to Single Precision elapsed times as high as 1.95 for the neon
refi ned revised benchmark whereas Figure 6.7 for IA64 processor
shows ratios as low as 1.16 even in the case of the larger 3
Vehicle collision benchmark. The ratios also get lower as the
number of processes increases.

Process placement on cores within processors affects Front
Side Bus, cache and socket use. For example, the Woodcrest
processor/socket has 2 cores sharing 4Mb of cache. The
Clovertown socket is not native quad-core but has 2 Woodcrest
processors combined on the same socket for a total of 4 Cores,
2 x 4Mb L2 caches and 1 FSB. 2 processes placed on the
same processor may therefore share or not share a single L2

6

Altix 4700

100000

10000

1000

100
1 2 4 8 16 32 64 128 256

XE1200 DDR
XE1200 SDR

Figure 6.3. Neon refi ned revised elapsed times vs process count

Altix 4700

1000000

100000

10000

1000
1 2 4 8 16 32 64 128 256

XE1200 DDR
XE1200 SDR

Figure 6.4. 3 Vehicle Collision elapsed times vs process count

10000

1000

100
1 2 4 8 16 32 64

XE1200 SDR
XE1200 GigE

10000

1000

100
1 2 4 8 16 32 64

XE1200 SDR
DP XE1200 SDR

1000000

10000

100000

1000
1 2 4 8 16 32 64 128 256

Altix 4700
DP Altix 4700

7

Figure 6.5. Neon refi ned revised elapsed times vs process count

Figure 6.6. Neon refi ned revised elapsed times vs process count

Figure 6.7. 3 Vehicle Collision elapsed times vs process count

cache and 4 of them on a dual processor may or may not share
the same FSB. With appropriate process pinning, for cache
sensitive applications 4 threads per node on Clovertown may be
better than 4 threads per node on Woodcrest system offsetting
frequency difference.

Figure 6.8 shows for the neon refi ned revised benchmark the
trade offs which can be made between core utilization and
performance in the case of the Clovertown processor for three
different systems. The ratios in the legend document how many
cores out of 8 are used per node. Performance is evidently higher
with more nodes and less cores per node utilized to run a job with
a given number of processes.

7.0 ACMS Solver

MSC has implemented ACMS (Reference 5) as a complement
to the Lanczos eigensolver for modal analysis. This is the latest
product in a long evolution from the Subspace eigenvalue solver.
The ACMS solver uses a component mode synthesis technique
to approximate the global eigenvalues and modes, and is able to
achieve effi cient resource usage and better performance over the
Lanczos method, with acceptable numerical accuracy.

In addition to ACMS, for frequency response calculation in modal
analysis, MSC also has implemented a FASTFR (Reference 6)
method as a complement to the sparse direct solver. In Figure
7-1, we compare ACMS performance with both the fastfr, which
works best with a low structural damping and a large frequency
range, and the direct methods. The model that is tested has 6.3
Million degrees of freedom, 3600 eigenmodes, 130 load sub-
cases, and 700 frequency points. Both ACMS and FASTFR use
BLAS3 style matrix multiply kernels extensively.

8

ICE Clovertown 2/8 2.66GHz IntelMPI
ICE Clovertown 8/8 2.66GHz IntelMPI
XE310 Clovertown 4/8 2.66GHz IntelMPI
Intel Clovertown 4/8 2.66GHz IB ScaliMPI

ICE Clovertown 4/8 2.66GHz IntelMPI
XE310 Clovertown 2/8 2.66GHz IntelMPI
XE310 Clovertown 8/8 2.66GHz IntelMPI

Total Number of Cores Used

Neon Refined Revised Version 7600.2.398 Single Precision
E

la
p

se
d

 t
im

e
in

 s
ec

o
n

d
s

(l
o

g
 s

ca
le

)
10000

1000

100
1 2 4 8 16 32 64

42323

28107

50734

34986 34422

0

8000

16000

24000

32000

40000

48000

56000

Direct Method A450

A450 i4 Performance
XE i4 Performance
A450 i8 Performance

Figure 7-1. SOL111 NVH Analysis

Figure 6.8

The results in Figure 7-1 represent the 1 core execution times.
The 2 core performance is compared in Figure 7-2. We have
run the 2 core job on a XE240 twice and placed the 2 threads
on either 1 or 2 sockets to show the Xeon cache sensitivity. The
A450 job is run on only 1 socket. Only the direct method and
the i4 codes are used. As a reference, we have left the 1 core
performance in the chart.

*This 2 core test is done on a 1.67ghz dual core Montvale
processor.

8.0 Multi-Discipline (MD) Considerations

The synergistic integration of linear and nonlinear analysis,
implicit and explicit methods, design optimization methods and
high performance computing in MD Nastran provides for superior
value in multiple ways including:

• Ability to chain various analysis types in a single job through multiple
sub-cases in case control – fi rst sub-case could be nonlinear static
followed by a second sub-case with nonlinear transient – the initial
condition from a previous static analysis for the current nonlinear
transient analysis step;

• Effi cient transition from linear to nonlinear solutions exploiting the
contact defi nitions that are universal across solution sequences; This
is critical to address the constraint of a linear solution such as NVH
(SOL 103 and SOL 111) cannot have nonlinear contact modeling that
is used with a nonlinear explicit solution (SOL 700);

• Improved ability to simulate complex interactions in product designs
(such as between NVH and crashworthiness in a vehicle system
design); and,

• Reducing the number of interdisciplinary design iterations through
a tighter and more accurate coupling of disciplines that drive the
design process.

The above benefi ts are exploited with the multidiscipline analysis
and design optimization process with MD Nastran, shown in
Figure 8-1, for a vehicle system that involves multiple discipline
considerations including structural stresses, dynamics, acoustics
(NVH), and crashworthiness.

Figure 8-1: MDO Process with MD Nastran involving NVH and Safety

Until recently such complex MDO simulations where performed
by chaining several point solutions in a sequential manner
and using process integration and design optimization tools
(Reference 7).

Clearly, the value that MD Nastran brings to the forefront is to
couple various disciplines into a single simulation environment
that enables more realistic and accurate simulations as well as
faster solution time thus facilitating true multidiscipline analysis
and design optimization. Due to the level of complexity and
dimensionality associated with such MDO simulations, high
performance computing with high throughput is essential to solve
such problems in a realistic time so as to impact the product
development cycle.

Further, the heterogeneous mix of simulations in MD Nastran
exhibit a range of HPC resource demands. The implicit linear
analysis solvers for dynamic NVH response requires high rates of
memory and IO bandwidth with processor speed as a secondary
concern while explicit dynamics solvers for impact crash
simulation benefi ts from a combination of fast processors for the
required element force calculations and a high rate of memory
bandwidth necessary for effi cient contact resolution. Hence the
realistic need for “balanced” HPC environments to support the
variety of multidiscipline simulations within MD Nastran. For
today’s economics, these HPC resources such as CPU cycles,
memory, system bandwidth and scalability, storage, fi le and data
management – must deliver the highest levels of engineering
productivity and HPC reliability that is possible from a platform
environment.

9

System Analysis (NVH – SOL103 &

SOL111, Safety – SOL700)

Convergence

Safety Response Surface Modeling;

Concurrent processing with SOL700

NVH Analysis & Sensitivities (SOL200)

Multidiscipline Optimization

NVH Sensitivities

Safety Response Surface

Update Variables (NVH, Safety)

42323

50734

40146

34079

*23905

0

8000

16000

24000

32000

40000

48000

56000

1 core 2core/1socket 2core/2socket

A450 i4 Performance

XE i4 Performance

Figure 7-2. SOL111 NVH 2 Core Scalability

10

9.0 Input and Output Economy

Large Nastran jobs read and write large fi les. According to some
compiled FFIO exit statistics on A450, a Nastran IO stream
typically has an average IO bandwidth consumption of 50 - 250
MB/s over the lifetime of the job. Therefore, for a Nastran server,
storage hardware usually is a signifi cant part of the system cost.
On a large SSI machine the choice for storage hardware is
obvious. That is, a locally attached fi le system is the logical way to
go, and the fi le system can be shared by many jobs that are run
on the SSI to amortize its cost.

On a cluster, however, it would be impractical to confi gure a
high-bandwidth fi le system for each of the nodes due to the small
number of jobs that will utilize the fi le system. The alternative
would be to have a globally shared fi le system. To share a fi le
system, each compute node needs to confi gure extra interconnect
cards to sustain the desired IO bandwidth, and the storage
hardware can be concentrated in an IO ‘head’ node, or distributed
over a number of nodes. In any case, a shared fi le system is
more expensive than the equivalent local fi le system due to the
interconnectivity and the global fi le serving overhead.

In the following paragraphs, we perform a simple analysis of
the local storage option for its cost effectiveness. With some
experiments, we’d like to prove the following:

• A single standalone job would run ‘at speed’ if sustained bandwidth
of the fi le system, say, as measured by lmdd, exceeds a certain
threshold.

• Simultaneous jobs would run ‘at speed’ if the sum of the average Io
bandwidth of each individual job in the through-put mix is signifi cantly
less than the sustained bandwidth of the fi le system.

• N fi le systems with the threshold bandwidth, where N is the number
of jobs in the through-put mix, are more expensive than 1 shared fi le
system with a large bandwidth.

In Table 9-1, we determine the ‘threshold’ fi le system confi guration
for a SOL106 Nastran job that has roughly 700K degrees of
freedom, and consists of mostly CTETRA solid elements. This
job is run on fi le systems of 2, 4, 8 and 16 disks sequentially,
with 200Mw Nastran HI-CORE memory and a FFIO cache of
2.5GB. The 16 disk fi le system sustains an IO bandwidth of about
900MB/s for both read and write, and the 2 disk fi le system gets
about 150MB/s.

According to the FFIO exit stats, the average IO bandwidth
consumption of the job is only 55MB/s. However, while the job is
running on the 16 disk confi guration, SGI PCP, ie. Performance
Co-Pilot, tool (Reference 8) shows there are a few burst periods
that consume 400MB/s or 750MB/s IO bandwidth. Therefore, it is
no surprise that there is almost no IO wait time for the 16 disk job,
and the 8 disk job is pretty good and the 4 disk job is almost ‘good
enough’, as far as IO wait is concerned.

For effi cient throughput, we run 8 identical copies of the job
on 8 different CPU nodes on the 16 disk fi le system fi rst. With
a dedicated node per job, there would be no memory bus
contention, and the throughput performance degradation would be
largely due to Linux scheduling and fi le system contention issues.
For the second test, we run the 8 copies on 4, instead of 8, nodes.
Therefore, in addition to scheduling and fi le system contention,
the two jobs on a node need to fi ght for the memory bandwidth,
and that result in an increase in CPU as well as IO wait times.
The throughput results are shown in Tables 9-2 and 9-3. Note that
we have used the DPLACE tool to ease the scheduling problem in
these tests.

The average elapsed time of the 8 on 8 node throughput jobs is
roughly equal to the standalone time on 4 disks. Therefore, for this
particular example, a SSI with a 16 disk fi le system that is shared
by 8 jobs is roughly equivalent to 8 separate nodes with a 4 disk
fi le system each. In other word, the SSI needs only half the IO
hardware to perform at the same level.

File

System Elapsed Sec CPU Sec IO Wait Utilization %

 2 disks 6028 5236 792 87

 4 disks 5643 5241 402 93

 8 disks 5413 5242 171 97

 16 disks 5323 5255 68 99

Table 9-1. Threshold Performance

Throughput

Job Elapsed Sec CPU Sec Utilization %

 Copy #1 5734 5326 93

 Copy #2 5501 5239 95

 Copy #3 5710 5260 92

 Copy #4 5678 5244 92

 Copy #5 5675 5263 93

 Copy #6 5537 5243 95

 Copy #7 5709 5258 92

 Copy #8 5469 5246 96

Table 9-2. 8 on 8 Throughput Test

11

10.0 Conclusions

We have discussed the merits of multi-discipline analysis and
examined performance of various MD Nastran solvers on both
SGI Altix® IPF and XE. At this point in time, there is no clear
performance winner. Even though XE always wins for small
problems, and certain solver types, the scale would tilt toward
IPF for very large problems and other types of solvers. A shared
fi le system also provides a signifi cant cost advantage for running
IO intensive job mixes on IPF, since a high performance shared
fi le system for clusters still would be a very expensive acquisition
today. Therefore, the user should carefully examine all variables
- performance, user needs, throughput requirements, price of the
system, system administration work loads, power and cooling
costs, and software license fees, etc - and select the computer
system accordingly.

ACKNOWLEDGEMENTS

The authors would like to thank the following MSC staff in
alphabetic order for making this study possible: Casey Heydari,
Joe Griffi n, Kevin Kilroy, Keith Leung, Peter Schartz,
Paul Vanderwalt, Per Nordlund, Rob Ford, Sanjay Choudhry,
Walter Schrauwen.

REFERENCES:

(1) Chinner, D. and Higdon, J., “Exploring High Bandwidth Filesystems

on Large Systems”, Proceedings of the Linux Symposium, Volume

One, July 19th-22nd, 2006, Ottawa, Ontario, Canada.

(2) SGI Propack man page for “DPLACE”.

(3) SGI Propack man page for “libFFIO”.

(4) MD R2 Nastran Release Guide, The MacNeal-Schwendler

Corporation, Los Angeles, CA, 2007.

(5) Nastran Release Guide, v2001, The MacNeal-Schwendler

Corporation, Los Angeles, CA, 2002.

(6) Nastran Release Guide, v2004r3, The MacNeal-Schwendler

Corporation, Los Angeles, CA, 2004.

(7) Kodiyalam, S., Yang, J., and Gu, L., “Multidisciplinary Optimization

of a Vehicle System in a Scalable, High Performance Computing

Environment”, Structural and Multidisciplinary Optimization, Volume

26, pp. 256-263, 2004.

(8) SGI Propack man page for “PCPIntro”.

 Corporate Offi ce
1140 E. Arques Avenue
Sunnyvale, CA 94085
(650) 960-1980
www.sgi.com

North America +1 800.800.7441
Latin America +55 11.5185.2860
Europe +44 118.912.7500
Japan +81 3.5488.1811
Asia Pacifi c +61 2.9448.1463

 © 2008 SGI. All rights reserved. Features and specifi cations subject to change without notice. Silicon Graphics, SGI, the SGI cube and the SGI logo are registered trademarks, Innovation for Results is a
trademark of SGI in the United States and/or other countries worldwide. Intel and Xeon are trademarks of Intel Corporation in the U.S. and other countries. All other trademarks mentioned herein are the
property of their respective owners.
4085 [03.07.2008] J15363

Throughput

Job Elapsed Sec CPU Sec Utilization %

 Copy #1 6030 5586 93

 Copy #2 6027 5583 93

 Copy #3 5931 5574 94

 Copy #4 5824 5570 96

 Copy #5 6007 5579 93

 Copy #6 5887 5568 95

 Copy #7 5973 5570 93

 Copy #8 5782 5548 96

Table 9-3. 8 on 4 Throughput Test

