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Abstract

High fi delity Finite Element models increase demands on 
computer hardware. Different numerical algorithms required 
for multi-discipline analyses increase the complexity of system 
choice. We examine the resource usage and performance of 
solvers in the context of Multi-Discipline Nastran on SGI Altix® 
IPF and XPF systems. We report issues that can arise in solving 
industry strength problems. We discuss the merits of different 
computer architectures for explicit dynamics, NVH, linear and non-
linear static analysis methods as well as fi le system performance.
 
1.0 Introduction

Simulations of complex engineering systems such as aerospace 
or automotive vehicles require modeling the important interactions 
between the physical phenomena and the vehicle. These inter-
actions make the vehicle a synergistic whole. Taking advantage 
of that synergy is the mark of good design. However the web of 
interactions is diffi cult to untangle effectively in the time constraints 
of product development. Multi-Discipline (MD) Nastran is intended 
for the synthesis of complex engineering systems. 
 
MD Nastran R2 release introduces powerful new multidiscipline 
simulation features and enhancements to address challenges in 
the areas of: 

• Automatic sub-structuring methods ACMS for NVH
• Interior and exterior acoustics incorporating MSC Actran 
 infi nite elements
• Impact, crashworthiness and occupant safety with explicit 
 fi nite element analysis incorporating LS-DYNA’s Largrangian 
 and MSC Dytran’s Eulerian forumaltions
• Contact and nonlinear analysis using MSC Marc
• Aeroelasticity and rotordynamics with MSC Nastran
• Process simplifi cations to speed modeling work fl ow
• Multidiscipline design optimization 

With the increasing model sizes generated by engineering 
teams, performance of MD Nastran for very large scale NVH and 
impact models continues to be critical. Total system superiority 
is mandatory to obtain effi cient solutions. Achieving scalable 
parallel processing (DMP, SMP), true 64-bit addressing and 
fl oating point performance, and solver robustness is imperative. 
In this context, it is important to emphasize that application 
productivity is not tied to parallel capability or other standard 
compute metrics but is also closely related to fi le system.
 
The last decade saw the commoditization of both the computer 
hardware and the operating system software. According to 
the Dresden IDC report dated June 2007, 66% of today’s high 
performance servers are running a variant of Linux, followed 
by proprietary UNIX software and Windows. On top of the 
commercial Linux distributions such as RedHat and SuSe, some 
system vendors provide additional features. SGI supports the 

XFS (Reference 1) journal fi le system, DLPACE (Reference 2), 
and FFIO (Reference 3) as well as other useful management 
features in the Propack series of releases for Linux.

Server architecture is currently dominated by the x86-64 
processor families (63%) which include both Intel Xeon 5100 
and AMD Opteron series. The remaining servers are RISC 
or EPCI (Intel Itanium2) processor based. The x86-64 based 
systems are either dual-core or quad-core processors. The 
multi-core processors may not necessarily provide the right 
balance between CPU processing and memory bandwidth for 
running specifi c high performance engineering applications. 
As a result, system vendors, such as SGI, offer both ‘density’ 
and ‘bandwidth’, and ‘super bandwidth’ confi gurations to meet 
customer solution requirements.

In this paper, we compare MD Nastran performance on an 
Itanium2 A450 and a cluster of Xeon 5160 based SGI Altix® XE’s. 
These are two very different architectures – VLIW vs superscalar 
processors and ccNUMA SSI vs cluster. On paper, the Xeon have 
much higher clock speed, twice bandwidth per memory controller, 
and signifi cantly better SPEC 2006 integer performance. Yet the 
A450 offers a large amount of shared memory and matured, well 
tuned, MD Nastran application software. The storage options 
on A450 and XE also are very different to make the comparison 
interesting. 

2.0 Size Matters

Small models, can fi t better in the memory on the processor 
chip (cache), and therefore benefi t directly from an increase in 
processor speed, regardless of the solver used. With a smaller 
number of fi nite elements, the interior fl oating point dominated 
processing loops are short and the integer requirements 
proportionally balanced. This combination fi ts the Intel Xeon 
processor architecture. This is demonstrated by the performance 
illustrated in Figure 2-1. These examples of small models run 
with several different MSC Software Nastran and Marc solvers 
run faster on the SGI Altix® XE Intel Xeon based system.

1

1 1 1 1

1.58
1.66

1.78

1.08

0

0.4

0.8

1.2

1.6

2

2.4

Marc SOL101 SOL111 SOL103

A450 Performance

XE Performance

N
or

m
al

iz
ed

 S
pe

ed
 

Figure 2-1. Small Model Comparisons
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The Marc model in the chart has about 12000 elements and 
nodes. The SOL101 job consists of only shell elements and is 
restricted to 989K degrees of freedom. SOL111 is a 2 Million 
degree of freedom shell element model that computes 1000 
nodes and 1000 frequency points. SOL103, which uses the same 
model as the SOL101 example, only solves for 15 eigenmodes.

As the model size increases beyond the limits of effective 
caching, more complex system operations including the 
memory controller, RAM, disc, and interconnections, the quality 
of the compiler, application specifi c source code tuning, and 
solution algorithms would play a more prominent role in the job 
performance. Comparisons in the following sections will consider 
these factors using the A450 Intel EPIC processor based systems 
and the SGI Altix® XE Intel Xeon processor based architecture. 

Due to internal book-keeping, Nastran and Marc with 32bit 
integers (i4) are limited to 8GB memory per domain. Large 
problems encourage the use of 64 bit integer (i8) versions of 
Nastran and MARC for larger addressable memory. Today’s 
industry strength models and systems need the i8 codes to run 
effi ciently. However, it is determined in this and previous work 
that some of the solution sequences do not run as effi ciently with 
the i8 code compared with the i4 counterpart due to compiler 
maturity. For these incidences, MSC has identifi ed and fi xed 
i4 integer overfl ow problems in some ‘hot spot’ areas, which 
are mainly related to global data structure manipulations, such 
as matrix re-ordering and domain decomposition. The METIS 
re-ordering code in Nastran also has a path to allow i4 code to 
temporarily use more than 8GB memory for the duration of the 
METIS execution. This is typically insignifi cant in comparison to 
the overall run time. 

Marc has a similar issue with the i8 codes, but due to the 
resource usage scale-down from domain decomposition that is 
often used by Marc, the problem is not as signifi cant.

3.0 Linear Equation Solvers

The solution of a linear system of equations, for example: 
[A]*{X} = {B}, is one of the basic tasks in FEA. In most cases 
[A] is the global stiffness array, {B} is either a force vector or 
a block of force vectors and {X} is the solution corresponding 
to {B}. The choices of linear equation solvers in MD v2007R2 
Nastran include the conventional MSC LDLT sparse direct solver, 
the CASI iterative solver, a new TAUCS symmetric and a new 
UFMPACK asymmetric sparse direct solver. The sparse direct 
solvers are basically stable due to numeric pivoting in the code, 
however the iterative solver has its limitations, per Nastran 
release guide (Reference 4). 

For optimal performance, a sparse direct solver is implemented 
with a matrix multiplier like a BLAS3 type math kernels, whereas 
an iterative solver is typically done with a matrix-vector multiplier 
like BLAS2 type kernels. Matrix multiplier kernels are stable and 
easily blocked for better data reuse and thus better performance. 
However, matrix-vector kernels are memory and bandwidth 
intensive and resemble a bcopy/memcpy code. 

To illustrate the pros and cons of the differing linear equation 
solvers on the two hardware architectures, we ran three SOL 101 
jobs. The fi rst job is an 1.92 mil DOF engine block of only solid 
elements. The second job is also solid element dominant but has 
3.33M DOFs and roughly 10 percent of the elements are shells. 
The third job is a trimmed car body that is made up mostly of shell 
elements and 1.83M DOFs. Multiple force vectors (i.e. Nastran 
load sub-cases) are also tested to demonstrate how the CASI 
solver time increases with the number of loads, since an iterative 
solver would handle only one right hand side vector at a time. 

The results of these three tests are shown in Figures 3-1, 3-2, 
and 3-3. Note that the CASI solver fails to converge for the 3rd 
test, and the iterative solver is most effective with the pure solid 
element job. The i4 and i8 codes are roughly equal in speed for 
the Nastran SOL101 linear static analysis, and the shell element 
job with 1.83M unknowns is still not large enough to make A450 
run faster, even though the A450 has faster BLAS3-like kernels 
for the sparse direct solvers. 

Figure 3-1. SOL101 of Solid Elements
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4.0 Non-linear Equation Solvers

A non-linear problem arises when the global stiffness matrix no 
longer represents a linear relation between the force and the 
displacement vectors. In this instance, a Newton-Raphson method 
or a method akin to it is necessary to bring the imbalanced force 
down to equilibrium. The numerical procedure is similar to that 
of linear static problems, except that the solution of the system 
of equations, [A] * {X} = {B}, is repeated as many times as is 
required to reach equilibrium. Moreover, a non-linear solution 
would be capable of dealing with only one load vector at a time. 

MSC.Marc has solvers 2, 6, 8, and 9. We test all the solvers 
against a bio-engineering model that has very high fl oating point 
content, (i.e. about 700 Gfl ops per solver pass) for up to 16 cores 
on A450 and XE. To use solver 6 with domain decomposition, 
the grid points in the model have to be numbered sequentially. 

If there are contact bodies in the model, the element IDs need 
to be numbered contiguously as well. These requirements can 
generally be met by reading the non-contiguously numbered 
model into MSC Mentat fi rst, then hitting the ‘RENUMBER 
ALL’ button and writing out the new input fi le, followed by minor 
tweaking. Note that solvers 2 and 8 are not subject to these 
restrictions and solver 9 is subject to restrictions for the CASI 
iterative solver. 

Our test results are shown in Figures 4-1, 4-2, and 4-3. The 
solver 9 results are not shown since they are too far behind 
those of the other solvers. The solver 2 fails to converge on 
1 core, thus, that case is not shown. 
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Figure 3-2. SOL101 of Mixed Elements

Figure 4-1. Marc Solver2 Results

Figure 4-2 Marc Solver6 Results

Figure 3-3. SOL101 of Shell Elements
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5.0 Lanczos Eigenvalue Solver

The Lanczos eignevalue solution in Nastran, which traces its 
roots to the BCSLIB-EXT Lanczos solver, has been widely 
implemented to perform vibration and NVH analyses for all 
types of structures. The Lanczos method operates on blocks of 
long and thin matrices that resemble vectors. Due to this, and 
the limited memory of Nastran HI-Core, the Lanczos solution is 
typically memory bandwidth and IO intensive. 

Due to the unique shape of the Lanczos blocks, writing effi cient 
BLAS kernels for Lanczos block operations can be challenging. 
To date, the A450, or rather, the Itanium 2 processor, is more 
adept for running Nastran Lanczos analysis jobs due to better-
optimized BLAS kernels. 

Figures 5-1 and 5-2 show the performance of the a.m. 3.33M 
DOF trimmed body model for both NVH (to 250HZ) and 
vibration (to 20HZ) tests on one core. For these Lanczos jobs, 
A450 is signifi cantly faster than XE, however, the i8 code also 
slows signifi cantly for the NVH case. Further examples of the 
sluggishness of the i8 can be seen in Table 5-1, which shows 
the timing results of a 34M DOF car body for about 2000 modes 
that is run on an A450 cpuset with 16GB physical memory and 
a 24 SAS disks fi le system. 

6.0 Explicit Dynamics Solvers

MD Nastran SOL 700 is a general purpose, transient dynamic, 
non-linear, explicit (with implicit capability), fi nite element analysis 
software based on LS-DYNA and MSC Dytran solvers. John 
Hallquist originally wrote DYNA-3D for Lawrence Livermore 
National Laboratory, which was subsequently released to the 
public domain. MD Nastran SOL 700 features include:

• Highly nonlinear:
 – Changing boundary conditions with time 
  such as contacts between parts
 – Large deformations
 – Nonlinear (non elastic) materials

• Transient dynamics
• Important inertial forces
• Finite element analysis
• Explicit time integration

SOL 700 is used in many industries:
• Automotive
• Aerospace
• Manufacturing and
• Bioengineering
• Consumer

and disciplines:
• Crash, impact
• Metal forming
• Blade containment
• Bird strikes
• Drop testing
• Plastic, glass forming
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Figure 4-3. Marc Solver8 Results
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Figure 5-2 20HZ Lanczos Analysis

Nastran Elapsed Sec CPU Sec IO Wait Utilization %

i4 code 180125 160002 20123 88

I8 code 235306 218771 16535 92

Table 5-1. Very Large Lanczos  Analysis

Figure 5-1. 250HZ Lanczos Analysis
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Explicit Nonlinear Dynamics was introduced in MD R1 Nastran 
as an executive control statement SOL700. It activates an explicit 
nonlinear transient analysis integration scheme using dytran-
lsdyna. It may also be used for implicit static analyses using MD 
Nastran nonlinear implicit solver such as SOL 400 or SOL 700 
implicit solver based on LS-DYNA double precision version. In 
MD R2 Nastran, the nastran input undergoes a fi ltering process 
for model accuracy and then is directly mapped into LS-DYNA 
memory by means of a structured neutral fi le. The SOL 700 
implicit and explicit solvers will streamline complex, multi-
discipline sequential simulations such as pre-stress analysis 
(implicit to explicit), springback effects (explicit to implicit) or other 
simulations that will require switching between solvers.

SOL700 is intended for engineers and analysts who have 
constructed an MSC Nastran fi nite element model for a purpose 
other than impact. This avoids having to read the MSC Nastran 
model into a GUI, translate it to LS-DYNA or MSC Dytran, and 
thus risk losing or not properly translating some MSC Nastran 
input data. Once one has completed the explicit simulation, 
standard LS-DYNA results fi les such as d3plot as well as 
standard MD Nastran fi les are available for post processing.

SOL700 has three ways of solving static problems:
• Dynamic relaxation: The input is applied as a step function and 

large damping is added. The solution is run until approximate 
steady-state values are obtained. (classic method) 

• Slow buildup: The static load is ramped slowly from zero to 
full value over a period of time long enough that no important 
natural frequencies are excited. No extra damping is added. 
(for exact results) 

• Slow buildup with extra damping: This method is like the previous 
method except that some extra damping is added; thus, the fi nal 
run time can often be reduced.

Unless explicitly specifi ed, SOL 700 will be executed from MD 
Nastran on any computer system where it is installed, licensed, 
and accessible from the directory where the MD Nastran input 
data resides as prescribed on the fi rst line in a fi le named sol700.
pth. Using this fi le, MD Nastran will create a command line to 
start the SOL 700 explicit solver.

For customers comparison, standard benchmarks have been 
developed over the last twenty years and are available on 
http://www.topcrunch.org. Figures 6.1 and 6.2 illustrate the 
models discussed in this paper.

With the advent of multi-core processors, new rules were 
developed and as of May 7, 2007, all cores for each processor 
must be fully utilized. Benchmarks of multi-core processors using 
only a core subset per processor will no longer be posted.
The objective is to reduce clutter on the site so that end-users 
will not have to sort through every permutation of core usage for 
a fi xed number of cores, and try to understand which cores are 
idle, and which are not.

SOL 700 sequentially goes through the following phases:

   1. Initialization:
         1.1 reading input fi le[s],
         1.2 allocating memory
         1.3 initializing variables
         1.4 domain decomposition
   2. Element-processing
   3. Contacts
   4. Rigid bodies

The explicit time integration computation kernels used in 
SOL 700 involve less round-off errors than implicit solver 
computations. Consequently, either Double or Single Precision 
may be used for short simulations where these round-off errors 
do not accumulate over many time steps. Double Precision is 
necessary for models with more than 5 million elements which 
cannot be resolved by single precision fl oating point numbers.
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Figure 6.1. Neon refi ned revised 

Figure 6. 2. 3 Vehicle Collision



Resource requirements are dependent on problem size and 
complexity of the physics simulated:

• RAM: Total usage is proportional to the square of 2D shell elements 
(SP GB=1*E^2, DP GB=4*E^2) resulting in the 2GB limit of 32 bit OS 
memory addressability reached with 1M elements in Single Precision 
and 700k elements in Double Precision.

• RAM per process decreases as the number of processes increases 
potentially leading to super-linear speedup opportunities as the 
computational domain matches the size of the on-chip memory.

• IO storage: dependent on user options on SOL 700 output fi les and 
restart specifi cations.

• Communication bandwidth: SOL 700 DMP (Distributed Memory 
Parallel) has small and decreasing message sizes as the number of 
processes increases and is communication latency limited.

Platforms attributes have complex effects on SOL 700 benchmarks:
SOL 700 and SOL 700 DMP are respectively OpenMP and 
MPI parallel capable and, as other Computational Structural 
Mechanics explicit CAE applications, are very sensitive to SMP 
and DMP technologies and their assorted interconnects.

Figure 6.3 and Figure 6.4 show for both neon refi ned revised and 
3 Vehicle collision how for high process counts IA64 processors 
with NUMAlink outperform x86_64 with Infi niband.

Figure 6.5 shows how GigE under-performs Infi niband on 
the neon_refi ned_revised benchmark on the same x86_64 
processors. 

Double Precision processing involves more registers, cache 
space and memory bandwidth than Single Precision processing. 
Therefore the infl uence of processor, processor Chipset, FSB in 
addition to DMP and interconnects is greater.

Figure 6.6 shows for x86_64 processor ratios of Double Precision 
to Single Precision elapsed times as high as 1.95 for the neon 
refi ned revised benchmark whereas Figure 6.7 for IA64 processor 
shows ratios as low as 1.16 even in the case of the larger 3 
Vehicle collision benchmark. The ratios also get lower as the 
number of processes increases.

Process placement on cores within processors affects Front 
Side Bus, cache and socket use. For example, the Woodcrest 
processor/socket has 2 cores sharing 4Mb of cache. The 
Clovertown socket is not native quad-core but has 2 Woodcrest 
processors combined on the same socket for a total of 4 Cores, 
2 x 4Mb L2 caches and 1 FSB. 2 processes placed on the 
same processor may therefore share or not share a single L2 
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Figure 6.5. Neon refi ned revised elapsed times vs process count

Figure 6.6. Neon refi ned revised elapsed times vs process count

Figure 6.7. 3 Vehicle Collision elapsed times vs process count



cache and 4 of them on a dual processor may or may not share 
the same FSB. With appropriate process pinning, for cache 
sensitive applications 4 threads per node on Clovertown may be 
better than 4 threads per node on Woodcrest system offsetting 
frequency difference.

Figure 6.8 shows for the neon refi ned revised benchmark the 
trade offs which can be made between core utilization and 
performance in the case of the Clovertown processor for three 
different systems. The ratios in the legend document how many 
cores out of 8 are used per node. Performance is evidently higher 
with more nodes and less cores per node utilized to run a job with 
a given number of processes.

7.0 ACMS Solver

MSC has implemented ACMS (Reference 5) as a complement 
to the Lanczos eigensolver for modal analysis. This is the latest 
product in a long evolution from the Subspace eigenvalue solver. 
The ACMS solver uses a component mode synthesis technique 
to approximate the global eigenvalues and modes, and is able to 
achieve effi cient resource usage and better performance over the 
Lanczos method, with acceptable numerical accuracy. 

In addition to ACMS, for frequency response calculation in modal 
analysis, MSC also has implemented a FASTFR (Reference 6) 
method as a complement to the sparse direct solver. In Figure 
7-1, we compare ACMS performance with both the fastfr, which 
works best with a low structural damping and a large frequency 
range, and the direct methods. The model that is tested has 6.3 
Million degrees of freedom, 3600 eigenmodes, 130 load sub-
cases, and 700 frequency points. Both ACMS and FASTFR use 
BLAS3 style matrix multiply kernels extensively. 
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The results in Figure 7-1 represent the 1 core execution times. 
The 2 core performance is compared in Figure 7-2. We have 
run the 2 core job on a XE240 twice and placed the 2 threads 
on either 1 or 2 sockets to show the Xeon cache sensitivity. The 
A450 job is run on only 1 socket. Only the direct method and 
the i4 codes are used. As a reference, we have left the 1 core 
performance in the chart. 
 
*This 2 core test is done on a 1.67ghz dual core Montvale 
processor.

8.0  Multi-Discipline (MD) Considerations

The synergistic integration of linear and nonlinear analysis, 
implicit and explicit methods, design optimization methods and 
high performance computing in MD Nastran provides for superior 
value in multiple ways including:

• Ability to chain various analysis types in a single job through multiple 
sub-cases in case control – fi rst sub-case could be nonlinear static 
followed by a second sub-case with nonlinear transient – the initial 
condition from a previous static analysis for the current nonlinear 
transient analysis step;

• Effi cient transition from linear to nonlinear solutions exploiting the 
contact defi nitions that are universal across solution sequences; This 
is critical to address the constraint of a linear solution such as NVH 
(SOL 103 and SOL 111) cannot have nonlinear contact modeling that 
is used with a nonlinear explicit solution (SOL 700);

• Improved ability to simulate complex interactions in product designs 
(such as between NVH and crashworthiness in a vehicle system 
design); and,

• Reducing the number of interdisciplinary design iterations through 
a tighter and more accurate coupling of disciplines that drive the 
design process.

The above benefi ts are exploited with the multidiscipline analysis 
and design optimization process with MD Nastran, shown in 
Figure 8-1, for a vehicle system that involves multiple discipline 
considerations including structural stresses, dynamics, acoustics 
(NVH), and crashworthiness.

Figure 8-1: MDO Process with MD Nastran involving NVH and Safety
 
Until recently such complex MDO simulations where performed 
by chaining several point solutions in a sequential manner 
and using process integration and design optimization tools 
(Reference 7). 
 
Clearly, the value that MD Nastran brings to the forefront is to 
couple various disciplines into a single simulation environment 
that enables more realistic and accurate simulations as well as 
faster solution time thus facilitating true multidiscipline analysis 
and design optimization. Due to the level of complexity and 
dimensionality associated with such MDO simulations, high 
performance computing with high throughput is essential to solve 
such problems in a realistic time so as to impact the product 
development cycle. 
 
Further, the heterogeneous mix of simulations in MD Nastran 
exhibit a range of HPC resource demands. The implicit linear 
analysis solvers for dynamic NVH response requires high rates of 
memory and IO bandwidth with processor speed as a secondary 
concern while explicit dynamics solvers for impact crash 
simulation benefi ts from a combination of fast processors for the 
required element force calculations and a high rate of memory 
bandwidth necessary for effi cient contact resolution. Hence the 
realistic need for “balanced” HPC environments to support the 
variety of multidiscipline simulations within MD Nastran. For 
today’s economics, these HPC resources such as CPU cycles, 
memory, system bandwidth and scalability, storage, fi le and data 
management – must deliver the highest levels of engineering 
productivity and HPC reliability that is possible from a platform 
environment. 
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9.0 Input and Output Economy

Large Nastran jobs read and write large fi les. According to some 
compiled FFIO exit statistics on A450, a Nastran IO stream 
typically has an average IO bandwidth consumption of 50 - 250 
MB/s over the lifetime of the job. Therefore, for a Nastran server, 
storage hardware usually is a signifi cant part of the system cost. 
On a large SSI machine the choice for storage hardware is 
obvious. That is, a locally attached fi le system is the logical way to 
go, and the fi le system can be shared by many jobs that are run 
on the SSI to amortize its cost. 

On a cluster, however, it would be impractical to confi gure a 
high-bandwidth fi le system for each of the nodes due to the small 
number of jobs that will utilize the fi le system. The alternative 
would be to have a globally shared fi le system. To share a fi le 
system, each compute node needs to confi gure extra interconnect 
cards to sustain the desired IO bandwidth, and the storage 
hardware can be concentrated in an IO ‘head’ node, or distributed 
over a number of nodes. In any case, a shared fi le system is 
more expensive than the equivalent local fi le system due to the 
interconnectivity and the global fi le serving overhead.

In the following paragraphs, we perform a simple analysis of 
the local storage option for its cost effectiveness. With some 
experiments, we’d like to prove the following:
 

• A single standalone job would run ‘at speed’ if sustained bandwidth 
of the fi le system, say, as measured by lmdd, exceeds a certain 
threshold. 

• Simultaneous jobs would run ‘at speed’ if the sum of the average Io 
bandwidth of each individual job in the through-put mix is signifi cantly 
less than the sustained bandwidth of the fi le system. 

• N fi le systems with the threshold bandwidth, where N is the number 
of jobs in the through-put mix, are more expensive than 1 shared fi le 
system with a large bandwidth. 

 
In Table 9-1, we determine the ‘threshold’ fi le system confi guration 
for a SOL106 Nastran job that has roughly 700K degrees of 
freedom, and consists of mostly CTETRA solid elements. This 
job is run on fi le systems of 2, 4, 8 and 16 disks sequentially, 
with 200Mw Nastran HI-CORE memory and a FFIO cache of 
2.5GB. The 16 disk fi le system sustains an IO bandwidth of about 
900MB/s for both read and write, and the 2 disk fi le system gets 
about 150MB/s.

According to the FFIO exit stats, the average IO bandwidth 
consumption of the job is only 55MB/s. However, while the job is 
running on the 16 disk confi guration, SGI PCP, ie. Performance 
Co-Pilot, tool (Reference 8) shows there are a few burst periods 
that consume 400MB/s or 750MB/s IO bandwidth. Therefore, it is 
no surprise that there is almost no IO wait time for the 16 disk job, 
and the 8 disk job is pretty good and the 4 disk job is almost ‘good 
enough’, as far as IO wait is concerned.

For effi cient throughput, we run 8 identical copies of the job 
on 8 different CPU nodes on the 16 disk fi le system fi rst. With 
a dedicated node per job, there would be no memory bus 
contention, and the throughput performance degradation would be 
largely due to Linux scheduling and fi le system contention issues. 
For the second test, we run the 8 copies on 4, instead of 8, nodes.  
Therefore, in addition to scheduling and fi le system contention, 
the two jobs on a node need to fi ght for the memory bandwidth, 
and that result in an increase in CPU as well as IO wait times. 
The throughput results are shown in Tables 9-2 and 9-3. Note that 
we have used the DPLACE tool to ease the scheduling problem in 
these tests. 

The average elapsed time of the 8 on 8 node throughput jobs is 
roughly equal to the standalone time on 4 disks. Therefore, for this 
particular example, a SSI with a 16 disk fi le system that is shared 
by 8 jobs is roughly equivalent to 8 separate nodes with a 4 disk 
fi le system each. In other word, the SSI needs only half the IO 
hardware to perform at the same level. 

File

System Elapsed Sec CPU Sec IO Wait Utilization %

   2  disks 6028 5236 792 87

   4  disks 5643 5241 402 93

   8  disks 5413 5242 171 97

 16  disks 5323 5255   68 99

Table 9-1. Threshold Performance

Throughput  

Job Elapsed Sec CPU Sec Utilization %

     Copy #1          5734         5326            93

     Copy #2             5501         5239            95

     Copy #3          5710         5260            92

     Copy #4                5678              5244            92

     Copy #5                5675         5263            93

     Copy #6            5537         5243            95

     Copy #7          5709         5258            92

     Copy #8          5469         5246            96

Table 9-2. 8 on 8  Throughput Test
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10.0  Conclusions

We have discussed the merits of multi-discipline analysis and 
examined performance of various MD Nastran solvers on both 
SGI Altix® IPF and XE. At this point in time, there is no clear 
performance winner. Even though XE always wins for small 
problems, and certain solver types, the scale would tilt toward 
IPF for very large problems and other types of solvers. A shared 
fi le system also provides a signifi cant cost advantage for running 
IO intensive job mixes on IPF, since a high performance shared 
fi le system for clusters still would be a very expensive acquisition 
today. Therefore, the user should carefully examine all variables 
- performance, user needs, throughput requirements, price of the 
system, system administration work loads, power and cooling 
costs, and software license fees, etc - and select the computer 
system accordingly.
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Throughput  

Job Elapsed Sec CPU Sec Utilization %

     Copy #1          6030         5586            93

     Copy #2             6027         5583            93

     Copy #3          5931         5574            94

     Copy #4                5824              5570            96

     Copy #5                6007         5579            93

     Copy #6            5887         5568            95

     Copy #7          5973         5570            93

     Copy #8          5782         5548            96

Table 9-3. 8 on 4  Throughput Test


