
Bioinformatics Benchmarks on the
SGI Altix XE Cluster

Prepared by:

Christopher Dwan

Principal Investigator

Primary Contact:

Stan Gloss

Managing Director

The BioTeam, Inc.

Cambridge, MA

http://www.bioteam.net

This report was prepared under contract to SGI Inc.

Copyright © The BioTeam, Inc. 2007

White Paper

Table of Contents

1.0 Executive Summary ... 1

2.0 Test Methodology ... 1

 2.1 Evaluation Hardware .. 1

 2.1.1 Portal .. 1

 2.1.2 Compute Nodes... 1

 2.1.3 Network .. 1

 2.1.4 Cluster Confi guration ... 2

 2.1.5 Software Versions ... 2

3.0 Test Scripts .. 2

 3.1 Measurement Error ... 2

 3.2 Test suites available .. 2

4.0 Test .. 2

 4.1 BLAST ... 2

 4.1.1 BLAST Test: 1,000 proteins, BLASTP vs. NR 2

 4.2 CLUSTALW MPI ... 3

 4.2.1 CLUSTALW MPI Test 1: Nucleic Sequence Alignment 4

 4.2.2 CLUSTALW MPI Test 2: Protein Sequence Alignment 4

5.0 MRBAYES ... 5

 5.1 MRBAYES Test: ... 5

6.0 Summary and Conclusion ... 6

7.0 References and Further Reading:... 6

 7.1 NCBI and BLAST ... 6

 7.2 CLUSTALW ... 7

 7.3 MRBAYES: ... 7

 7.4 Other Software... 7

1.0 Executive Summary

This report presents a set of bioinformatics benchmark results
on an SGI Altix XE cluster. Three common algorithms were used
to exercise the systems: BLAST, ClustalW-MPI, and MrBayes.
The performance of each tool scaled smoothly across the
system, all of which showed excellent scaling performance.

Benchmarks in bioinformatics are complex, primarily because
no two labs are doing precisely the same task at any given
time. Traditional metrics of system performance, including
clock speed, memory and IO bandwidth, are useful as broad
quantifi ers. Performance as perceived by any particular end-user
is intimately tied to the architecture and design of the system as
a whole, as well as to the specifi c use case. Computing systems
for use in genomic biology must be usable across a broad range
of skill sets. They must support users with a wide variety of skill
sets. Perhaps most important, they must support both relatively
static “production” workloads, as well as smaller research and
development tests.

Any cluster is composed of a set of individual systems. The
performance of the system as a whole will be effected by two
primary factors: The performance of the algorithms in question
on a single one of those systems, and the parallelization used
to spread those algorithms across the cluster. In this set of
benchmarks, we focused primarily on the scaling characteristics
of the three algorithms.

2.0 Test Methodology
2.1 Evaluation Hardware

The evaluation system was an SGI “Altix XE Cluster.” It consists
of eight independent Linux systems: 1 portal (XE 240) and 7
compute nodes (XE 210). The system arrived pre-wired in a
half height rolling rack, and we transferred the servers and
network switches to the installed racks in our collocation facility
for the duration of the tests, re-connecting all wiring to match
the original confi guration.

2.1.1 Portal

Model: SGI Altix XE 240
Form Factor: 2U rack-mount server
CPU: 2x Intel dual core Xeon 5160 - 3.0GHz
RAM: 16GB (expandable to 32GB)
Network: – Dual Gigabit Ethernet

 – Infi niband
Disk: 5x disk drives confi gured as a RAID 5
 with nearly 0.5TB of usable space.

2.1.2 Compute Nodes

Model: SGI Altix XE 210
Form Factor: 1U high density rack-mount server
CPU: 2x Intel Xeon 5160 - 3.0GHz
RAM: 8GB (expandable to 32GB)
Network: – Dual gigabit Ethernet
 – Infi niband
Disk: 1 disk drive with 200GB of usable space.

2.1.3 Network

The systems were confi gured with two private networks, both
of which are entirely dedicated to internal cluster traffi c. The
Gigabit Ethernet network used an SMC “TigerConnect” switch,
while the high speed, low latency Infi niband network used a
Voltaire 9024 switch.

The gigabit ports on the Altix servers implement a network
management protocol named “IPMI,” which stands for the
“Intelligent Platform Management Interface.” IPMI provides
utilities for monitoring and simple manipulation of the system
independent of the operating system. Specifi cally, it is possible
to power the chassis on and off without any additional serial or
management connections. This proved remarkably useful for
remotely powering the compute nodes down when they were
not in use.

1

 Figure 1: Altix XE Cluster

2

2.1.4 Cluster Confi guration

Operating System: The sytems were pre-confi gured with SUSE
Linux version 9. In addition, SGI provided the SCALI cluster
management software for remote management of the systems.
In performing these benchmarks we used the pre-installed
software to the extent possible.

Distributed Resource Management: Sun Grid Engine version
6.0u9. Because these benchmarks were run by hand, by a single
user, with the cluster in an un-loaded condition, there would
be no appreciable advantage to be found in one scheduler or
queuing system over another. It was simply a way to run the jobs
on the machines.

Shared Filesystems: The primary RAID partition on the portal
(/data1) was exported via NFS over the ethernet network.

The cluster was pre-confi gured using the cluster confi guration
tools from Scali. These proved quite useful, since pre-built
versions of the MPI and Infi niband tools were available simply by
changing environment variables. In addition, succinct hardcopy
system documentation including critical passwords and network
addresses was provided, which made it simple to get the cluster
up and running. The system was operational literally minutes
after we completed re-wiring it. This will provide a great deal of
value in environments where system administration expertise is
in short supply.

2.1.5 Software Versions

All software was built from source, using the default confi guration
parameters.

• BLAST, version 2.2.15 obtained from the NCBI toolkit
• CLUSTALW_MPI: version 0.13, obtained from the author
• MrBayes: version 3.1.1, obtained from the project website
• MPICH 2; version 1.0.3, pre-installed on the system.

3.0 Test Scripts

System tests were run via a PERL script that uses a system
fork to start and monitor process execution. Wall clock time for
completion is the primary metric used in this report.

All tests were run with the systems in a near idle, multi-user
confi guration. While tests were in progress, no other processing
was performed except for that required for monitoring progress
through a terminal session.

3.1 Measurement Error

Each experimental test was executed at least twice, and some
individual tests were executed many. In every case, there was
a high level of agreement (within 0.1%) between the execution

runtimes of equivalent tests. The benchmarks reported in this
document are averages of the observed runtimes.

3.2 Test Suites Available

The code and data used to execute these tests is available
for download from the BioTeam web server: http://bioteam.net/
sgi_benchmarks.

4.0 Tests
4.1 BLAST

BLAST (Basic Local Alignment Search Tool), from the National
Center for Biological Information (NCBI) is the most popular
piece of software ever developed for genetic sequence analysis.
Biologists use BLAST to analyze DNA or protein sequence data.
BLAST performs a similarity search in which a dataset of genome
or protein sequence (the “target” set) is scanned for sequences
similar to some other set of sequences provided by the user (the
“query” set). BLAST searches are screening tests for sequence
similarity. These similarities are a starting point for understanding
potential biological signifi cance.

BLAST is trivially parallelizable, assuming that there are many
searches to run. One simply runs each search independent of the
others, on a totally separate machine, if possible. Bioteam uses
a script named “btbatchblast” to accomplish this parallelization.
There is no optimization or parallel communication in the script.
It counts the number of query sequences, divides by the desired
number of chunks, and submits the appropriate number of
subordinate tasks. The scheduler decided which system should
run any particular unit of work, until all the cores were occupied.
On this particular system, when less than 28 tasks available,
some CPU cores sat idle. When more than 28 tasks were in
the system, the extras waited in the queue until earlier ones
completed, and were run in turn. There was no oversubscription
of CPUs in this test. Instead, a queuing system was used to
manage up to 28 concurrent tasks on the CPUs.

4.1.1 BLAST Test: 1,000 Proteins, BLASTP vs. NR

For the BLAST test, we selected the fi rst 1,000 protein
sequences from the E. Coli dataset from NCBI as the query,
and the “NR” dataset from NCBI as the target. The NR dataset
consists of approximately 2GB of amino acid sequences, and
should fi t easily into the RAM of the compute nodes. Since the
search is protein vs. protein, we used the “BLASTP” algorithm.
BLASTP provides the most interesting balance of IO and CPU
load. The BLAST variants which compare in DNA “space” tend
to be more limited by RAM and data IO than anything else. To
prevent the common bottleneck at the NFS shared fi lesystem,
the BLAST target fi les were copied to the local disks directly
attached to the compute nodes.

Figure 1 shows both the time and speedup from running this
test, varying the number of “task” subdivisions to be used. It
shows clearly that both the number of available CPUs and the
confi guration of the test itself are important to the performance of
a computing system on a particular job. Performance increases
smoothly until the number of tasks equals the number of CPU
cores available to do the work. After that point, we see a dis-
continuity. This is not due to oversubscription or contention for
resources, since the scheduler prevented more than four tasks
starting on any particular chassis at any time. The simplest
explanation for the discontinuity is that, when the number of
tasks equals the number of CPUs, each CPU is allotted one task.
Adding a small number of tasks reduces the size of each task,
but means that some small number of tasks will remain to be
done, after the fi rst 28 complete. This means that we incur a cost
of the time required to run a whole extra task. The fact that the
CPUs that fi nish fi rst had the shortest original piece of work
mitigates this somewhat. In Figure 1, we see that the two best
choices for number of tasks are 28 and 56: One and two times
the number of CPUs, respectively. Continuing to increase the
number of tasks past 56 again incurs a penalty, but a smaller
one. This is because the individual units of work are smaller, with

more subdivisions. This speaks well to the ability of the system to
be further tuned for high throughput bioinformatics environments.

The following defi nitions apply in all of the tables and plots.

Runtime: The runtime in seconds
Speedup: Serial runtime divided by parallel runtime

4.2 CLUSTALW MPI

CLUSTALW is a program that performs alignments of multiple
sequence alignments. Biologists use CLUSTALW to fi nd the
portions of a set of related sequences that have been conserved
during evolution, and also to determine subtle patterns of
similarity among a set of sequences. These patterns might not
be obvious from the pairwise similarities returned by BLAST.

Unlike BLAST, CLUSTALW does not search a large set of
data. Instead, CLUSTALW evaluates a huge space of possible
gapped alignments based on a relatively small set of input data.
It fi nds the best answer out of a large set of possible answers.
Computational jobs requiring hours, days, or weeks of CPU time
can be defi ned fairly easily based on small groups of sequences.

3

0

500

1000

1500

2000

2500

3000

3500

4000

0

5

10

15

20

25

30

5 10 15 20 25 30 35 4540 50 55 60 70650

23.623.423.426.122.420.618.319.525.221.919.31713.711.87.26Sp eedup

881888888797928101011351067826950107712281515176629013470Run Time

706463564942353228242116141276# of Subtasks

BLASTP: 1,000 Protein Sequences vs

Figure 1

4

This means that the performance characteristics should be
determined more by CPU characteristics than by memory or I/O.

The parallel / MPI implementation of CLUSTALW was developed
at the Bioinformatics Institute in Singapore (http://www.bii.a-star.
edu.sg/). It is a re-write of the original code to parallelize and
accelerate processing.

The CLUSTALW source code includes performance tests to
verify that the code is functional, and to provide performance
benchmarks. We used two of these for our tests, a moderate
sized alignment in both DNA and protein.

4.2.1 CLUSTALW MPI Test 1: Nucleic Sequence Alignment

The fi rst performance benchmark provided with the CLUSTALW
software distribution is a DNA alignment of 17 sequences of
different variants of HIV. This is the sort of analysis that might
be performed by a researcher trying to determine if a set of
infections has a common source, or to track the difference
between lethal and non-lethal variants of a disease.

Figure 2 shows the results of 10 runs of CLUSTALW, using up
to 32 processes spread across the machines in the cluster. The
diminishing returns at the higher numbers of CPUs are to be
expected, since with only 17 input sequences there is little that
increased parallelism can accomplish. The task requires the
same amount of time to complete with two threads as with one.
This is also true in the other CLUSTALW test, shown in fi gure 3
and has been observed with MPI-CLUSTALW running on other
systems. It is not clear why this is the case, but it appears to be
application dependent.

4.2.2 CLUSTALW MPI Test 2: Protein Sequence Alignment

The second test provided with the CLUSTALW software is a
protein alignment of 469 protein sequences from the PFam
database. These are the variants of a protein called Peptidase.
The number of sequences is much higher, but each individual
sequence is much shorter: The sequences average 280 letters
per sequence compared with 10,000 for the entire virus in
the previous test. This is the sort of analysis that a biologist
might perform in order to better understand the functional

CLUSTALW MPI - DNA Alignment

0

100

200

300

400

500

600

Threads

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Runtime Speedup

Runtime 553 556 215 120 99 90 84 80 78 77

Speedup 1.00 0.99 2.57 4.63 5.62 6.18 6.62 6.95 7.13 7.22

1 2 4 8 12 16 20 24 28 32

Figure 2

relationships within a family of similar molecules. Any features
which are preserved across more than 400 proteins are most
likely of interest.

Figure 3 shows the timing results when this CLUSTALW job
was run with up to 32 parallel processes on the cluster. We
see steady performance gains until the number of processes
equals the number of CPU cores in the cluster, at which point
no further improvement is to be had. While the wall clock
difference between the performance with 24 and 28 threads
is not great, there is clearly still room within this data set for
further parallelization.

5.0 MRBAYES

MrBayes performs Bayesian inference of phylogeny. This
means that it computes the most probable evolutionary history
that could have led to a set of observed sequences. It uses a
technique called “Markov Chain Monte Carlo.” MrBayes was

explicitly designed for use in parallel environments, using the
MPI standard for inter-process communication. Understanding
the most likely relationships between a set of samples is
incredibly valuable in understanding both the differences and
the similarities in that data.

5.1 MRBAYES Test:

The MrBayes test is a phylogenetic analysis of 243 different DNA
sequeneces., each approximately 800 base pairs in length. The
sequences are derived from African vegetables, including sweet
potato, cassava, bean, and others. The analysis performed is
the “MCMC” algorithm, running for 5,000 generations, and using
32 “chains” to ensure that the number of threads of work to be
done equals or exceeds the number of CPUs doing the work. In
practice, scientists run this sort of algorithm until it “converges”
on a solution, or until they run out of time on the computing
resource. The generation and chain counts were selected to
show a spread of runtimes on the available machines.

5

CLUSTALW MPI - Protein Alignment

0

50

100

150

200

250

300

Threads

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Runtime Speedup

Runtime 257 262 93 42 29 22 19 17 15 15

Speedup 1.00 0.98 2.76 6.12 8.86 11.68 13.53 15.12 17.13 17.13

1 2 4 8 12 16 20 24 28 32

 Figure 3

Figure 4 shows that performance continued to improve with each
added set of CPUs, all the way to utilization of the entire system.
The performance difference between 28 and 32 threads is small
in terms of raw seconds, but we clearly had not reached the point
of diminishing returns in terms of the scaling of the problem.

6.0 Summary and Conclusion

This paper explores the scaling performance of three popular
algorithms in bioinformatics on a cluster of SGE Altix XE systems.
The cluster was extremely easy to set up and get running in
our lab, and showed good performance across the breadth of
sequence based bioinformatics tasks.

7.0 References and Further Reading:
7.1 NCBI and BLAST

• NCBI: http://www.ncbi.nih.gov
• BLAST Tutorial: http://www.ncbi.nlm.nih.

 gov/blast/producttable.shtml
• NCBI FTP Site: ftp://ftp.ncbi.nih.gov/pub/blast
• NCBI Toolkit Archive: ftp://ftp.ncbi.nih.gov/toolbox/

 old/20050828
• Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman,

D.J. (1990) “Basic local alignment search tool.” J. Mol. Biol.
215:403-410.

• Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang,
Z., Miller, W. & Lipman, D.J. (1997) “Gapped BLAST and
PSI-BLAST: a new generation of protein database search
programs.” Nucleic Acids Res. 25:3389-3402.

MrBayes

0

1000

2000

3000

4000

5000

6000

7000

8000

Threads

0.00

5.00

10.00

15.00

20.00

25.00

Runtime Speedup

Runtime 6971 1975 1058 769 555 531 439 429 359

Speedup 1.00 3.53 6.59 9.07 12.56 13.13 15.88 16.25 19.42

1 4 8 12 16 20 24 28 32

 Figure 4

6

7

 The BioTeam, Inc.
7 Derosier Drive,
Middleton,
MA 01949
(978) 304-1222

 COPYRIGHT © THE BIOTEAM, INC. 2007. All rights reserved. Features and specifi cations subject to change without notice. All other trademarks mentioned herein are the property of their respective
owners.
4005 [06.011.2007] J15288

7.2 CLUSTALW

• CLUSTALW at the EBI: http://www.ebi.ac.uk/clustalw/
• CLUSTALW MPI: http://web.bii.a-star.edu.sg/

 ~kuobin/clustalg/
• Thompson JD, Higgins DG, Gibson TJ: “CLUSTAL W:

improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specifi c gap
penalties and weight matrix choice”. Nucleic Acids Res 1994,
22:4673-4680.

• Kuo-Bin Li, “ClustalW-MPI: ClustalW Analysis Using
Distributed and Parallel Computing”, Bioinformatics, 2003,
19(12), 1585--1586.

7.3 MRBAYES:

• MrBayes Project: http://mrbayes.csit.fsu.edu/
 index.php

• Sourceforge Page: http://sourceforge.net/projects/
 mrbayes

• Huelsenbeck, J. P., F. Ronquist, R. Nielsen and J. P.
Bollback. 2001. “Bayesian inference of phylogeny and its
impact on evolutionary biology”. Science 294: 2310-2314.

• Ronquist, F. and J. P. Huelsenbeck. 2003. “MRBAYES 3:
Bayesian phylogenetic inference under mixed models”.
Bioinformatics 19:1572-1574.

7.4 Other Software

 • GCC: http://gcc.gnu.org
 • Intel Compilers: http://www.intel.com/cd/software/products/

 asmo-na/eng/compilers/index.htm
 • IPMI: http://en.wikipedia.org/wiki/Intelligent_

 Platform_Management_Interface
 • Fedora Linux: http://fedora.redhat.com
 • MPI: http://www.mpi-forum.org
 • MPICH: http://www-unix.mcs.anl.gov/mpi/mpich/
 • SGE: http://gridengine.sunsource.net/
 • SUSE Linux: http://www.novell.com/linux/suse/

