
White Paper

An Ultrahigh Performance MPI Implementation on
SGI® ccNUMA Altix® Systems
Karl Feind and Kim McMahon, SGI

Table of Contents

1 Introduction ..1
2 Altix System Software Overview ..1
3 Message Passing Software Overview ..2
4 The MPI Send/Receive Algorithm ..2
5 The MPI Send/Receive Algorithm on Multi-Cache Coherency Domain Systems2
6 Point-to-Point Communication Performance ..2
7 Conclusions ..4
8 References ..4

Abstract
The SGI® Message Passing Toolkit (MPT) software has imple-
mented algorithms that provide extremely high-performance
message passing on SGI Altix® systems based on the SGI
NUMAlink™ interconnect technology. Using Linux® OS infra-
structure and SGI XPMEM cross-host memory-mapping
software, SGI MPI delivers extremely high MPI performance on
shared-memory single host/SMP Altix systems as well as multi-
host superclusters. This paper outlines the Altix hardware
features, OS features, and library software algorithms that have
been developed to provide the low-latency and high-bandwidth
capabilities. We present high-performance features like direct
copy send/receive, collectives, and the ultralow-latency
SHMEM™ data transfer library. We include MPI benchmark
results, including an MPI ping pong latency that ranges from 1.2
to 2.3 microseconds on a 512-CPU Altix system with 1.5 GHz
Intel® Itanium® 2 Processors.

1.0 Introduction
SGI ccNUMA (known as SGI NUMA) servers, including SGI
Origin® 3000 and SGI Altix 3000 systems, provide many pro-
gramming options for writing extremely scalable parallel
programs. The large number of CPUs per host provide an
opportunity for highly scalable programs to use SMP-like
memory-sharing approaches such as OpenMP, System V
shared-memory segments, and memory-mapped files. However,
the majority of scalable user applications in existence are written
using the MPI parallel programming model, and it is important
for a vendor to provide an MPI environment that delivers on the
scalability opportunities offered by the low latency, high band-
width, and fast synchronization available on such
shared-memory systems. The MPI programming model also
allows these fast communication services to be available
whether the system is a single large host or a supercluster of
hosts connected with the NUMAlink interconnect network.

SGI systems based on the NUMAlink interconnect network have
a unique capacity for ultralow-latency implementations of library-
based send/receive or put/get communication methods.
Because the memory on all hosts in a system connected using
the NUMAlink interconnect can be directly accessed, simple
approaches that utilize load/store and atomic memory opera-
tions (AMOs) may be used to implement ultra-low-latency
communication across the entire system. The advantages of this
load/store/AMO-based implementation are magnified for simpler
communication approaches, such as put/get in the MPI-2[1] and
SHMEM[2][3][4] specifications. In put/get communication, the
library call overhead is very minimal; therefore, the low commu-
nication latency made possible by the hardware maps very
closely to the observed latency of the end user.

In this paper, we present the implementation of fast MPI
send/receive and put/get and SHMEM put/get for Altix systems.
We show an approach for capitalizing on the advantages of SGI
NUMA systems for implementation of library-based message
passing on large collections of Linux hosts connected in the
same NUMAlink interconnect network. We show that an ultrafast
MPI implementation can bring the advantages of systems based
on the NUMAlink interconnect to portable, highly parallel MPI
user applications.

2.0 Altix System Software Overview
User programs and libraries on an SGI Altix 3000 system have
direct access to permitted memory across the whole system.
As we will see, this feature allows the MPI implementation much
freedom for implementation of an efficient message send algo-
rithm. The system is administered as a supercluster of a number
of Linux hosts. All hosts in the supercluster are individual parti-
tions within a larger NUMAlink interconnect domain. The Linux
software distribution installed on Altix systems is augmented by
SGI software that provides memory sharing within and across
hosts (XPMEM[5]), optimized libraries, and other features. The
software layers related to memory access on the NUMAlink
interconnect are shown in figure 1.

The XPMEM kernel module provides kernel call-outs in the key
areas of memory allocation, deallocation, and first-touch. These
capabilities support the user libraries as they attach (map)
memory from throughout the system into each MPI process vir-
tual address space. SGI MPI programs attach all memory in the
static and common blocks segments, the stack segments, and
the heap segments of an MPI process into the virtual address
space of every other MPI process in the job. This allows free
access to MPI queues and data structures, as well as user data
areas passed as send and receive buffers or targeted by put or
get operations.

1

Fig 1. Software/Hardware Stack for NUMAlink Interconnect

libmpi
for MPI

libsma
for SHMEM

libxpmem TCP/IP

XP/XPC module

XPMEM module XPNET module

NUMAlink HW: SGI NUMA, BTE, AMOs

3.0 Message Passing Software Overview
The MPT product contains at its core an efficient message
queuing algorithm, which is described in section 4. The MPI
message queue and algorithms for high bandwidth provide fast
communication for MPI send/receive operations and collective
communication functions defined by MPI-1. These are the most
crucial functions for existing portable MPI applications, which
have predominantly adopted the use of MPI-1 communication
and, to a lesser extent, MPI-2 and SHMEM functions to imple-
ment the needed communication in parallel programs. The
ultralow latency provided by MPT results in measurable scalabil-
ity improvements in MPI applications like the CFD application
FLUENT® [6].

In addition to providing high performance MPI, the MPT pack-
age includes functions that extend MPI and provide convenient
user access to the global shared-memory capabilities of the
system. These capabilities include the SHMEM message pass-
ing API and global pointer interfaces including shmem_ptr() and
MPI_SGI_globalptr()[7]. These global shared-memory extensions
may be used as the primary communication method in a parallel
application. Alternatively, they may be used to augment MPI in
portions of the application that need extremely low communica-
tion latency or as an enabler of advanced dynamic parallel
load-balancing algorithms that can enable an MPI program to
scale to larger numbers of processors.

4.0 The MPI Send/Receive Algorithm
The data structures involved in an MPI send/receive operation
are as follows. Every MPI process has its own outgoing buffer
pool and incoming message header queue. The buffer pool
stores copies of the payload for buffered sends. The message
header queue is a circular queue of entries 128 bytes in size,
which is the cache-line size. Message header queue entries
hold information about the MPI messages—type, size, tag, and
pointers to the buffered data. Using shared-memory program-
ming techniques, message headers are efficiently enqueued
into the message header queue during the processing of an MPI
message send operation. The buffered payload data is pulled
into the user receive buffer by the MPI message receive opera-
tion.

There are two variations of the above algorithm that are worthy
of note. The first is for short messages less than or equal to 64
bytes in length. Short message payloads are placed in the mes-
sage header instead of the outgoing message buffer pool. The
second variation, termed direct copy data transfer, is an opti-
mized way to transfer large messages. The receiving process
copies the message payload directly from the user’s send buffer,
thereby obviating the need to buffer the message in the mes-

sage buffer pool. The direct copy data transfer method is cho-
sen automatically by the MPI library for messages larger than a
user-tunable threshold when processing MPI_Isend,
MPI_Sendrecv, and most MPI collective communication func-
tions.

An important aspect of the buffer pool scheme is that all of
memory is accessible for push or pull operations. Hence, a sin-
gle buffer pool can hold all outgoing messages from a process,
and all remote processes can pull the data out to deliver the
message. This permits linear scaling of the buffer pool space
needed as the number of MPI processes increases, and the
buffer pool space is not at all dependent on the number of
processes per Linux host. Similarly, the generalized push capa-
bility enables the use of a single message header queue per
process where all senders deposit incoming message headers.

5.0 The MPI Send/Receive Algorithm on Multi-Cache
Coherency Domain Systems
The memory controller ASIC developed by SGI and deployed in
Altix systems is known as SHUB. The SHUB extends ccNUMA
capabilities to 512 CPUs. SGI plans to scale ccNUMA features
and performance to larger systems in future generations of the
SHUB ASIC, but in the current generation the message passing
libraries accommodate the transition from hardware-managed
cache coherency to software-managed cache coherency in
global memory accesses. For MPI jobs larger than 512 CPUs or
those that span multiple 512-CPU cache coherency domains,
the message passing library software must assist the hardware
in maintaining cache coherency. In MPI jobs that span multiple
cache coherency domains, the MPI-1 send/receive and collec-
tive communication functions are supported, but the MPI-2 and
SHMEM put/get operations are not currently supported.

6.0 Point-to-Point Communication Performance
Figure 2 shows the latency measured for MPI send/receive,
MPI_get, SHMEM get, and shared-memory references. The
send/receive measurements are half the time to do 8 byte ping
pong message exchanges. The get and shared-memory meas-
urements are for remote cache-miss memory references. The
best latency is seen at the point where the sender and receiver
are on the same memory node. In this case, bus snooping turns
the cache lines around very rapidly. For off-node cases, the
latency is incrementally higher when the number of network
hops and the length of NUMAlink cables increase.

The MPI and SHMEM get latency line has a similar contour as
the MPI send/receive latency line, but two significant effects can
be seen. First of all, the latency for a get operation is about 1.3
microseconds less than the MPI send/receive latency. This is the

2

result of lower library overhead associated with implementing
the semantics of a get operation compared with the semantics
of MPI send/receive. A second effect is that the latency incre-
ments for a get operation are even lower than that for
send/receive as distance and router hop counts increase. This
is because a get operation needs to send fewer hardware proto-
col-level messages between the source and destination than for
a send/receive data transfer.

Figure 3 shows the point-to-point peak bandwidth achieved for
100 MB messages. The SGI message passing libraries include
an optimized bulk data copy function, _fastbcopy(), which maxi-
mizes data transfer bandwidth for block copies when the source
buffer is not in cache. The message passing libraries use this
function to transfer data inside the MPI_recv, MPI get, and
SHMEM get functions. Peak bandwidth measurements for large
message transfers are equal for all the measured data transfer
methods across the entire ccNUMA domain.

3

Fig. 2. MPT Communication Latency

Point-to-Point Latency (8 byte msg) on a 512 CPU 1.5 GHz Altix 3700 from CPU 0 to Destination CPU

Fig. 3. MPT Communication Bandwidth

Point-to-Point Bandwidth (100 MB msg) on a 512 CPU 1.5 GHz Altix 3700 from CPU 0 to Destination CPU

4

7.0 Conclusions
The SGI Altix 3000 system provides global access to memory
distributed across multiple hosts and multiple memory nodes
within hosts. This system’s hardware architecture offers memory
sharing capabilities that permits fast communication and syn-
chronization for parallel programming. For systems up to 512
processors, the cache-coherent memory and system software
layers make the access to shareable memory easy and enable
implementation of highly scalable MPI communication schemes,
as well as a number of extensions like SHMEM programming
and the use of global pointers. The implementation of MPT mes-
sage passing and other communication features is scalable and
fast from the perspectives of latency, point-to-point bandwidth,
and synchronization.

8.0 References
[1] http://www.mpi-forum.org/docs/docs.html
[2] intro_shmem man page at http://docs.sgi.com
[3] http://www.shmem.org
[4] R. Barriuso and A. Knies, SHMEM User’s Guide for Fortran,
Cray Research Inc. (June 1994)
[5] Michael Woodacre, Derek Robb, Dean Roe, and Karl Feind,
The SGI Altix 3000 Global Shared-Memory Architecture,
http://www.sgi.com/pdfs/3474.pdf
[6] Exploiting the Scalability and Power of FLUENT: The SGI
Message Passing Toolkit on the SGI Altix High-Performance
Computing Platform powered by the Intel Itanium 2 Processor;
Whitepaper by Intel, Fluent, and SGI;
http://www.sgi.com/pdfs/3807.pdf
[7] shmem_ptr() and MPI_SGI_globalptr() man pages at
http://docs.sgi.com

© 2005 Silicon Graphics, Inc. All rights reserved. Silicon Graphics, SGI, Origin, Altix and the SGI logo are registered trademarks and SHMEM and NUMAlink are trademarks of Silicon Graphics, Inc., in the
United States and/or other countries worldwide. Intel and Itanium are registered trademarks of Intel Corporation. Linux is a registered trademark of Linus Torvalds. FLUENT is a registered trademark of
Fluent, Inc. All other trademarks mentioned herein are the property of their respective owners.
3875 [11.09.2005] J15067

Corporate Office
1500 Crittenden Lane
Mountain View, CA 94043
(650) 960-1980
www.sgi.com

North America +1 800.800.7441
Latin America +55 11.5509.1455
Europe +44 118.912.7500
Japan +81 3.5488.1811
Asia Pacific +1 650.933.3000

