
White Paper

OpenGL Performer™
Real-Time 3D Rendering for High-Performance and Interactive
Graphics Applications

Table of Contents

1 Introduction..1
2 Toolkit Overview..1
3 Write Once, Deploy Anywhere:

The Perfect Fit for Your Software Development Workflow ..2
4 Rendering Architecture: App, Cull, and Draw..2

4.1 Running Real Time ..2

4.2 Performance Monitoring ..2

5 The Scene-to-Screen Path: Scene Graph, Channels, Pipes, Windows3
6 Multichannel and Multipipe Flexibility at Peak Performance ..3

6.1 Increasing Frame Rate by Using DPLEX (IRIX Operating System Only)4

6.2 Compositor Control for Scalable Performance..4

7 Increasing Visual Fidelity with Image-Based Rendering ..4
8 Enhanced Realism through GPU Programming..5
9 Curves and Surfaces ..6
10 Culling in OpenGL Performer: Powerful, Flexible, and Programmable6
11 Real-Time Shadows ..6
12 Frame and Load Management: LOD and DLB ..6
13 Texturing with Large Imagery: Virtual Clip-Texturing ..6
14 Rendering Large Geometric Surfaces: Active Surface Definition7
15 Dynamic Data Buffers: Engine and Flux ..7
16 Double-Precision Coordinate Systems ..7
17 Rendering Features for Realistic Visual Simulation ..7
18 API Interoperability..8
19 Scene Graph Types and Selected Objects of Interest ..9

19.1 Libpf Node Types ..9

19.2 Additional Libpf Objects ..9

19.3 Libpr Objects..9

19.4 Libpfv Objects ..10

19.5 Libpfv Sample Modules ..10

19.6 Supported Curves and Surfaces Types ..10

20 OpenGL Performer and the Silicon Graphics Prism™ Family:
A Powerful Combination for Real-Time Rendering ..10

21 Release and Compatibility Information ..11
22 Further Information ..11

1.0 Introduction
OpenGL Performer is a powerful and comprehensive program-
ming interface for developers of real-time performance-oriented
3D graphics applications. OpenGL Performer dramatically sim-
plifies development of complex applications made for visual
simulation, virtual reality, simulation-based design, interactive
entertainment, broadcast video, manufacturing, scientific visuali-
zation, architectural walk-through, and computer-aided design.

OpenGL Performer provides the advanced features and innova-
tive techniques that enable you to achieve peak performance
and make optimal use of system capabilities and sophisticated
3D graphics features. It gives you the capability to scale easily
to multiple processors and multiple graphics pipelines, deploy
to a wide range of systems and price points, and be ready-
made for the graphics systems of today and the future.

2.0 Toolkit Overview
The basis of OpenGL Performer is the performance-rendering
library libpr, a low-level, object-oriented library providing high-
speed rendering functions, efficient graphics state control, and
other application-neutral 3D graphics functions.

Layered above libpr is libpf, a real-time visual simulation envi-
ronment providing a high-performance scene graph and
extensible multiprocess rendering system designed to take best
advantage of SGI® scalable graphics systems.

The modular libpfv library provides a high-level infrastructure for
rapid construction and extension of OpenGL Performer applica-
tions. It is based on the pfvViewer interface and ships with an
extensible collection of ready-to-use modules for display control,
model manipulation, navigation, picking, and customization.

The database utility library libpfdu provides powerful functions
for defining both geometric and appearance attributes of three-
dimensional objects, encourages sharing of state and materials,
generates efficient triangle strips from independent polygonal
input, and can merge, strip, and spatialize data sets.

The database library libpfdb contains file importers for many
popular industry-standard database formats including Alias®

Maya®, Dassault CATIA®, OpenFlight™, Open Inventor™ .iv,
OpenGL Optimizer™ .csb, and more than 70 others. A run-time
look-up mechanism is used to invoke loaders for requested files
that, on loading, can be combined into a single database.
Additionally, OpenGL Performer provides the fast-loading PFB
file format for use in run-time database paging. These loaders
also serve as a guide to developers creating new database
importers.

The libpfui library contains user interface building blocks for cre-
ating manipulators and user-interface components common to
many interactive applications.

1

Completing the suite of libraries is libpfutil, the OpenGL
Performer utility library. It provides a collection of convenience
routines implementing tasks such as multiprocessing configura-
tion, multichannel support, texture management, graphical user
interface tools, input event collection and management, and
scene graph traversal functions.

For aid in application development, OpenGL Performer includes
example source code ranging from simple programs to illustrate
particular features to the comprehensive, GUI-driven file viewer
perfly.

3.0 Write Once, Deploy Anywhere: The Perfect Fit for Your
Software Development Workflow
OpenGL Performer supports the IRIX® operating system and
both 32-bit and 64-bit versions of the Linux® operating system,
as well as Microsoft® Windows® 2000 and Windows® XP. The API
is built atop the industry-standard OpenGL® graphics library,
includes both ANSI C and C++ bindings, and is completely
source-code compatible across all platforms.

4.0 Rendering Architecture: App, Cull, and Draw
OpenGL Performer provides a pipelined rendering architecture
designed to detect and take full advantage of the capabilities of
the underlying system. At its core lie high-performance, multi-
threaded, parallel rendering stages for per-frame scene
management and image generation output to one or more
graphics pipelines. The software architecture is split into three
major stages to handle critical path operations:

• APP: Simulation processing, which includes reading input from
control devices, simulating the dynamics of moving models,
updating the visual database, and interacting with other libraries
or simulation stations.

• CULL: Traverses the visual database and determines which por-
tions of it are potentially visible (a procedure known as culling),
selects a level of detail (LOD) for each model, sorts objects and
optimizes state management, and generates a display list of
objects to be rendered.

• DRAW: Traverses the display list and issues graphics library
commands to a geometry pipeline in order to create an image
for subsequent display. The user has full control over the config-
uration of the App, Cull, and Draw tasks, including the ability to
combine multiple tasks into a single process or divide them
among multiple processes and processors on the system.
OpenGL Performer can also automatically make process config-
uration decisions at run time based on the hardware platform.

In addition to the main App/Cull/Draw pipeline, several asyn-
chronous processes are available for user customization and
optional tasks such as:

• DDBBAASSEE:: database paging, for asynchronously loading files and
adding data to or deleting data from the scene graph

• IISSEECCTT:: intersection testing, to intersect line segments with the
database for operations such as collision detection and line-of-
sight determination

• CCOOMMPPUUTTEE:: general asynchronous computations, such as those
used for dynamic geometry evaluation and morphing

• IINNPPUUTT:: input handling

• CCUULLLL__SSIIDDEEKKIICCKK:: advanced culling modes, for per-polygon cull
operations and occlusion culling tests

The multiprocess pipeline of OpenGL Performer is largely trans-
parent to the user because the toolkit manages the difficult
multiprocessing issues for you, such as interprocess communi-
cation, process timing, synchronization, data exclusion,
coherence, and real-time control.

4.1 Running Real Time
In situations where a guaranteed fixed frame rate is required,
OpenGL Performer uses extensions to the operating system to
control process scheduling and process priority management,
as well as real-time system profiling. This guarantees real-time
predictable behavior from the IRIX operating system by restrict-
ing and isolating processes to specific processors and
maintaining nondegrading priorities.

4.2 Performance Monitoring
OpenGL Performer provides a full suite of diagnostic statistics,
including graphics pipeline hardware statistics for extremely
accurate measurements of rendering time. These statistics are
used for tuning and real-time monitoring of full system perform-
ance for load management and for direct use with other system
monitoring tools.

OpenGL Performer also includes an event analysis tool called
EventView, which traces events generated internally by the
toolkit as well as user-generated time events on a logic-analyzer-
style display. EventView is particularly useful for measuring how
the duration of various OpenGL Performer execution blocks
varies across time and as a function of user application events.

2

5.0 The Scene-to-Screen Path: Scene Graph, Channels,
Pipes, Windows
The OpenGL Performer scene graph holds the data that defines
your scene or virtual world. The scene graph includes low-level
descriptions of object geometry and their appearance, as well
as higher-level, spatial information, such as transformations, ani-
mations, levels of detail, environmental elements, and special
effects, as well as additional application-specific data. OpenGL
Performer and your application act on the scene graph to per-
form rendering, culling, paging, intersection, and other
functions.

A channel is equivalent to a camera moving about the scene.
Whereas the scene graph encapsulates all of the visual data in
the scene, the channel sees only the visual information that is
visible to the viewer; the channel shows a slice of the scene
from a specified perspective. Each channel is associated with a
single viewport in the final display configuration.

The pfPipe is the heart of all processing done by OpenGL
Performer. It performs the per-frame App/Cull/Draw stages,
thereby rendering each channel to the windows on the display.
Under the hood, the pfPipe is a high-performance abstraction of

the graphics pipeline, designed to manage performance, real-
ism, image quality, and the sense of immersion for the end user;
while ensuring that the system hardware and operating system
capabilities are fully and efficiently utilized.

The pfPipeWindow is the mechanism by which a pfPipe man-
ages the windows to which it is to render, the size of the render
area, and the configuration of the frame buffer. OpenGL
Performer uses this information for proper viewport and frustum
management and for any features affected by frame buffer con-
figuration, such as anti-aliasing, transparency for fade LOD,
layers for decal geometry, and so on.

6.0 Multichannel and Multipipe Flexibility at Peak
Performance
Multiple channels can be arranged side-by-side with multiple
offset views for fully synchronized panoramic and tiled displays
with optional overlap for insets and edge blending. Performance
can be scaled even further with the use of multiple synchronized
InfiniteReality®, InfinitePerformance™, UltimateVision™, or
Silicon Graphics Prism™ graphics pipelines. OpenGL Performer
maximizes multipipe throughput by assigning a dedicated
Cull/Draw pair for each hardware pipeline and automatically
manages stress for each channel.

3

Scene graph

pfChannel

pfPipe

pfPipeWindow

Display system

Fig. 1. The scene-to-screen path

6.1 Increasing Frame Rate by Using DPLEX (IRIX Operating
System Only)
On InfiniteReality systems with multiple rendering pipes and a
Digital Video Multiplexer Option (DPLEX), OpenGL Performer
provides support for time-multiplexing the output of the different
pipes into a single screen. For example, a five-pipe system that
could render a complex model at 12 Hz can render the same
model at 60 Hz with DLPEX. Each one of the five pipes starts
drawing its frame at a different time, and the resulting images
are multiplexed into the output screen. The result is that the out-
put screen sees a new image 60 times per second even though
each one of the pipes can produce only 12 new images per
second.

6.2 Compositor Control for Scalable Performance
Using the Scalable Graphics Compositor option on Silicon
Graphics Prism™, Onyx4™ UltimateVision™, and Onyx
InfinitePerformance systems, the output from multiple graphics
pipelines can be directed into a single composite output. Each
pipe renders only a portion of the overall display, thereby
directly scaling performance. The composition can be tiled spa-
tially on the final display or blended for anti-aliasing and other
effects. OpenGL Performer also performs cross-pipe load bal-
ancing on a frame-by-frame basis by adjusting the relative size
and position of all pipes using the compositor.

7.0 Increasing Visual Fidelity with Image-Based Rendering
One of the major challenges in the creation of visually realistic
scenes is the rendering of organic forms such as trees and peo-
ple. A single tree, for example, can require thousands of
polygons, and a forest can overload the real-time rendering
capabilities of even the fastest graphics system. Traditional
visual simulation systems provide a partial solution with billboard
objects or by neglecting the use of rich scene elements alto-
gether.

OpenGL Performer provides a technique called image-based
rendering (IBR) to dramatically increase the photographic real-
ism of a scene while simultaneously freeing polygonal rendering
power to increase scene complexity. Instead of creating an
image from geometric primitives or rendering a billboard that
always shows the same texture, IBR combines a series of
images of the desired form into a seamless depiction of the
object that can be viewed from any angle or from any distance.

Image-based rendering can also be applied to the texture maps
of arbitrary geometric figures, enabling a simple object with a
low polygon count to appear to be an extremely complex model
with features that correlate with the view angle. OpenGL
Performer takes this idea even further with the inclusion of a
simplification utility that preprocesses complex models into a set
of IBR textures and an IBR proxy containing only a fraction of
the polygon count of the original.

4

Fig. 2. Image-based rendering of a human figure

8.0 Enhanced Realism through GPU Programming
The ability to reprogram sections of the graphics pipeline gives
users far greater flexibility in producing dramatically compelling
scene content. For example, shaders can be created to resem-
ble real-world materials ranging from highly realistic metals,
wood, plastics, skin, leather, and cloth to water, glass, dirt, dust,
and smoke (see Figure 3). OpenGL Performer takes much of the
complexity out of GPU programming by encapsulating the low-
level number crunching and enabling users to work at a higher
level with simpler-to-use interfaces.

OpenGL Performer provides direct support for vertex programs,
which enable the customization of geometry transforms, lighting,
and other texture coordinate-generation functions. It also sup-
ports a fragment programs, which enable users to replace

texturing and atmospheric effects functions in the graphics
pipeline with a user-defined program that performs special or
unusual tasks. These can include advanced pixel shaders that
render fog effects in a specific way. Additionally, OpenGL
Performer provides two new classes, pfShaderProgram and
pfShaderObject, which encapsulate the functionality associated
with the vertex and fragment programs used by the GL Shading
Language from OpenGL 2.0.

Another high-level rendering feature supported by OpenGL
Performer GPU programming is the ability to emulate clip texture
functionality. This feature enables users to implement clip-textur-
ing [see Section 13.0] on hardware systems that do not provide
native support for it. Developers can also use GPU programma-
bility to process subdivision surfaces within the graphics
pipeline and render them directly to the window.

5

Fig. 3. Examples of programmable shading

Fig. 4. Example of clip texture emulation

Small feature culling can automatically remove scene objects
below a user-defined visibility threshold so that these objects are
not sent to the graphics hardware for processing. This feature is
particularly useful for models composed from many smaller
objects, such as automobiles.

11.0 Real-Time Shadows
OpenGL Performer provides the facility to visualize the projec-
tion of an object’s true shadow on any and all other objects in
the scene, in real time. Each shadow is generated by projecting
the objects as seen from one or more light sources and perform-
ing Image-Based Rendering to visualize the result. The user can
specify any number of objects that cast shadows and can even
perform image-processing operations before rendering to create
soft shadow edges.

12.0 Frame and Load Management: LOD and DLB
OpenGL Performer provides two mechanisms for automated
real-time load management. The first mechanism, level-of-detail
(LOD) control, adjusts object complexity in accordance with
scene quality and performance considerations set by the data-
base or user. This mechanism allows objects with low
contribution to scene quality (far from the eye point, small in
scene, low in priority, or based on custom parameters) to be
rendered at a lower level of complexity—thus reducing polygo-
nal and graphics state loads. The second mechanism is
targeted at pixel-fill or raster-load management. To manage the
raster load, each display channel can be rendered with fewer
pixels (determined on a per-frame basis based on per-channel
load) using dynamic video resize (DVR) on the InfiniteReality
series of graphics subsystems, or dynamic load balancing
(DLB) on Onyx4 UltimateVision and Silicon Graphics Prism
graphics systems using the SGI Scalable Graphics Compositor.
The resulting image is displayed at full output resolution through
bilinear interpolation, without added latency or loss of perform-
ance.

13.0 Texturing with Large Imagery: Virtual Clip-Texturing
Traditionally, large geographic areas were textured with separate
tiled textures. This required significant modeling effort, complex
application management of the texture paging, and a substantial
amount of texture memory. Supported by OpenGL Performer on
the InfiniteReality and Prism series of graphics subsystems, clip-
texturing (clipmapping) is a superior alternative because it
virtualizes the texture and allows the entire texture to be speci-
fied in a single coordinate system. Only a small fixed amount of
these virtualized textures, called clipmaps, need to be kept in
hardware texture memory. OpenGL Performer provides function-
ality that can map texture coordinates from the original virtual

9.0 Curves and Surfaces
OpenGL Performer incorporates the parametric curves and sur-
faces features of OpenGL Optimizer, widely used in the
manufacturing industry. They can be used to describe a variety
of 2D and 3D curves and surfaces, including plane, sphere,
cone, torus, or NURBS surfaces. In all cases users are able to
apply crack-free surface tessellation.

OpenGL Performer supports loop subdivision and Catmull-Clark
subdivision algorithms to subdivide coarser surface structures
into finer, more smoothly curved surfaces. Loop subdivision can
be programmed into the GPU, which enables users to send
coarse data to the graphics pipe for very fast rendering into
smooth surfaces.

10.0 Culling in OpenGL Performer: Powerful, Flexible, and
Programmable
The culling operations done by OpenGL Performer process the
scene graph to construct a list of visible objects, which is then
used to render the scene. By eliminating objects that are
occluded or outside the user’s field of view, the load on the
underlying graphics hardware is greatly reduced, thereby
enabling all of the rendering power of the system to be directed
to those objects that do contribute to the final display. OpenGL
Performer also provides the facility to use spare CPU resources
to perform extra culling operations such as per-polygon culling,
backface removal on the host, and occlusion culling.

The OpenGL Performer culling operations are fully programma-
ble. Many custom rendering tasks and advanced multipass
special effects, for example, require certain elements of the
scene to be reprocessed several times per frame with different
appearances, environmental effects, and rendering modes. The
user can use the built-in flexibility of programmable culling to
facilitate all of these operations.

6

Fig. 5. Example of a real-time shadow

space into this “clipped” texture space. This allows texture and
geometry of large textures to be defined more independently
than is possible with texture paging. With clipmapping, large-
area geospecific imagery, such as satellite and aerial
photographs, can be easily mapped onto terrain geometry with
minimal database-creation effort. This clipped part of the texture
is actually a subset of the clipmapping pyramid usually associ-
ated with MIPmapping and is centered at a point of interest in
the virtual texture.

The size of the clipped area needs to be only as big as the
number of high-resolution texels that can fit on the screen at one
time and is completely decoupled from the size of the virtual
texture. For a virtual texture of size 8 million x 8 million texels,
typically less than .0000003% (under 45MB) of the actual poten-
tial full virtual texture is kept in hardware texture memory. The
user can choose a smaller clipped space and thus use even
less hardware texture memory. The virtual texture space can
also be very sparsely populated with high-resolution insets.
Lower-resolution versions of the image data will automatically be
used where high-resolution data is unavailable.

OpenGL Performer manages the virtualization of clip-mapped
textures, the update of the center of interest based on viewer
position, and the automatic paging of texture data to keep the
clipped space up-to-date. A two-level look-ahead caching
scheme is employed in order to minimize disk-paging latency
and improve download bandwidth into texture. Load manage-
ment controls are provided to control the texture and paging
resources. Utilities are provided to convert image data to
clipmapped texture files for optimal texture paging speed.

14.0 Rendering Large Geometric Surfaces: Active Surface
Definition
The rendering of very large or heavily tessellated surfaces pres-
ents many image-quality and load-management challenges.
OpenGL Performer solves these problems using an approach
called active surface definition (ASD). ASD provides an efficient,
multiprocessed framework for the evaluation and paging of
geometry over precomputed levels of detail based on user-
specified evaluation, quality, and load-management constraints.
Transitions between different levels of detail are made smoothly,
on a per-triangle basis, eliminating spatial and temporal arti-
facts.

15.0 Dynamic Data Buffers: Engine and Flux
OpenGL Performer includes several features for the representa-
tion and evaluation of dynamic data. Engines allow the
description of operations, such as morphing, blending, and
bounding box computation, to be performed on specific objects
or buffers of data. Fluxes are dynamic evaluated objects, the
contents of which can be computed by engines and used as
geometry or transformations any place where fluxed data is
allowed. Asynchronously generated data is rendered when
available in a frame-accurate manner.

16.0 Double-Precision Coordinate Systems
The use of standard single-precision floating-point numbers pro-
vides the best performance but sometimes does not provide
enough precision to represent position information for objects at
an extreme distance from the origin of the database. This is a
problem when rendering very large scenes (e.g., terrain of the
whole earth). Current OpenGL hardware does not support dou-
ble-precision values for vertex coordinates and matrices;
therefore, the solution to the precision problem must come from
a higher-level layer.

OpenGL Performer provides the ideal solution to this problem by
allowing a double-precision transformation to be used to repre-
sent the camera position and overall transformation of each
scene graph subbranch (e.g., a single terrain tile), while main-
taining the use of high-performance single-precision values in
the rest of the scene graph. This enables the correlation of the
origin of the database to the camera position, thereby eliminat-
ing any precision artifacts.

17.0 Rendering Features for Realistic Visual Simulation
OpenGL Performer includes a large number of environmental
and other advanced special effects for use in virtual reality and
visual simulation systems. One of these features is the high-per-
formance atmospheric model that includes fog, haze, and an
earth/sky model with graduated sky color and horizon glow.
OpenGL Performer also implements high-fidelity and volumetri-
cally accurate layered fog, ground fog, and patchy fog and
clouds effects.

7

Clip region

Entire level in
texture memory

Mem region

Tex region

Fig. 6. Clipmapping pyramid

Such features can also be combined for specific simulation
effects such as light shafts, with a patchy fog defining the shape
of the light cone, and a layered fog modulating the cone density
and color with elevation (see Figure 6). The use of programma-
ble culling in OpenGL Performer further enables these
advanced multipass features to operate at peak performance.

OpenGL Performer also offers sophisticated lighting effects,
including projected shadows, image-based rendering shadows,
and local projected lights to simulate objects such as landing
lights and vehicle headlights.

OpenGL Performer also supports a rotorwash effect for helicop-
ter simulation applications. The effect is overlaid upon the
geometry of the scene graph and may vary its appearance
depending on the material properties of the geometry. By auto-
matically detecting the underlying material properties and
geometry, the rotor-wash effect adjusts the color and appear-
ance of the dynamic texture to achieve the appropriate visual
effect.

OpenGL Performer incorporates wide support for visible, nonillu-
minating light points—essential for accurate renderings of a
given view that might include such lights as stars, runway lights,
visual approach slope indicators, precision approach path indi-
cators, and even street lights when viewed from a great
distance. The computation for these lights can be done in a

separate process in parallel with the main rendering process,
which can be multithreaded. OpenGL Performer contains full
support for calligraphic light points and the management of cal-
ligraphic hardware.

18.0 API Interoperability
OpenGL Performer is interoperable with each of the advanced
rendering toolkits and utilities created by SGI, enabling you to
share data with programs using these tools and, in many cases,
to directly utilize the features and capabilities of the tools in your
own application based on OpenGL Performer.

OOppeennGGLL®®—The industry-standard high-performance 3D graph-
ics interface. OpenGL Performer uses OpenGL for all of its
rendering functions and enables users to customize their appli-
cation with objects and callbacks, where they can invoke
OpenGL functions directly.

OOppeennGGLL VVoolluummiizzeerr™™—A volume-rendering API that targets the
needs of the sciences and oil and gas markets, supports vol-
ume roaming, TLUTs, clip planes, volume paging, and many
other volume-visualization operations. OpenGL Volumizer opera-
tions are supported in OpenGL Performer via the pfVolume
object.

OOppeennGGLL VViizzsseerrvveerr™™—A tool that enables Visual Area
Networking and allows universal access to applications based
on OpenGL Performer from any IRIX, Linux, Solaris™, or
Microsoft Windows client. OpenGL Vizserver is directly compati-
ble with OpenGL Performer applications.

OOppeennGGLL MMuullttiippiippee™™ SSDDKK—A software toolkit for creating
OpenGL API-based multichannel and multi-pipe applications.
OpenGL Performer can import OpenGL Multipipe SDK configu-
ration files and use them to configure its own pipes and
channels.

OOppeennGGLL OOppttiimmiizzeerr—A scene graph library that targets the
needs of CAD and manufacturing applications; also includes the
Cosmo3D™ library. OpenGL Performer can directly import
OpenGL Optimizer and Cosmo3D .csb data sets.

OOppeenn IInnvveennttoorr—A popular object-oriented toolkit and scene
graph library for interactive 3D graphics applications. OpenGL
Performer can directly import Open Inventor .iv datasets.

IImmaaggee FFoorrmmaatt LLiibbrraarryy—IRIX OS-based 2D image and texture file
loaders for a variety of industry-standard formats including RGB,
GIF, JPEG, TIFF, and many others. Use of the Image Format
Library enables OpenGL Performer for IRIX to load these for-
mats directly.

8

Fig. 7. Examples of a light shaft

19.0 Scene Graph Types and Selected Objects of Interest

19.1 Libpf Node Types
AASSDD Active surface definition evaluates continuous level

of detail of terrain

BBiillllbbooaarrdd Rotates geometry to face the viewer for efficient
rendering of symmetric geometry

DDCCSS Dynamic coordinate system: applies transformation
to its children

FFCCSS Fluxed coordinate system: for asynchronous
(fluxed) transformations

GGeeooddee Contains geometry described with GeoArrays,
GeoSets, GeoStates, or Shaders

GGrroouupp Groups with zero or more children

IIBBRRNNooddee Contains the textures and geometry to enable
image-based rendering

LLaayyeerr Renders co-planar geometry (e.g., stripes on a road
or pictures on a wall)

LLiigghhttSSoouurrccee
Light source to illuminate geometry in the scene

LLOODD Level of detail: selects one or more children based
on distance from viewer

SScceennee Root node of a visual database

SSCCSS Static coordinate system: applies static
transformation to its children

SSeeqquueennccee Sequences through its children for sequenced
animation effects

SSwwiittcchh Enables/disables traversal of children nodes in a
group

19.2 Additional Libpf Objects
CChhaannnneell Camera moving about the scene, defining which

objects are visible

CCoommppoossiittoorr
Controller for multipipe composite displays

FFrraammeeSSttaattss
Holds per-frame timing, computation, and rendering
statistics

LLiigghhttSShhaafftt A light shaft cone special effect with volumetrically
correct attenuation

LLOODDSSttaattee Represents custom LOD parameters and priority
classes for LOD nodes

MMPPCClliippTTeexxttuurree
Manages the paging of a clip-texture for a
graphics pipe

PPiippee Software rendering pipeline implementing the
App/Cull/Draw stages

PPiippeeWWiinnddooww
Controls the configuration and behavior of a window
on the screen

RRoottoorrwwaasshh Encapsulates the helicopter rotor wash effect

SShhaaddeerr Containers for multipass rendering specifications

SShhaaddooww Real-time shadows projected on the scene

VVoollFFoogg Encapsulates layered and patchy fog rendering
algorithms

19.3 Libpr Objects
CCaalllliiggrraapphhiicc

Configures/manages a calligraphic channel for
rendering calligraphic light points

EEnnggiinnee Encodes a standard or custom user-defined
operation on a fluxable object

FFlluuxx An object or buffer for dynamic and optionally
asynchronous update

GGeeooAArrrraayy && GGeeooSSeett
The containers for all geometric primitives in
OpenGL Performer

GGeeooSSttaattee Holds state description for geometry: texture,
material, lighting, transparency, and fog

LLppooiinnttSSttaattee Holds description of light-point illumination behavior

9

19.4 Libpfv Objects
VViieewweerr Modular execution structure for easy construction of

OpenGL Performer applications

WWoorrlldd Representation of the visual database with
associated modules

VViieeww Encapsulation of camera positions and associated
modules

DDiissppllaayyMMaannaaggeerr
Manages the configuration of pipes, windows, and
channels

IInnppuuttMMaannaaggeerr
Manages keyboard, mouse, and other input

19.5 Libpfv Sample Modules
TTrraacckkbbaallll Module for trackball-like on-screen model navigation

LLooaaddeerr Module for model loading and placement

LLooggoo Module to add a logo overlay to the display

WWoorrllddSSwwiittcchheerr
Module to enable seamless transitions from one
world to another

EEaarrtthhsskkyy Module to control the earth and sky backdrop

DDrraawwSSttyyllee Module to control the render mode of objects in
the world

NNaavviiggaattoorr Module to navigate the eyepoint within the world

PPiicckkeerr Module for picking and selection of objects in
the world

SSnnaappsshhoott Module to capture screen snapshots of the scene

MMoottiiff®® Module for GUI integration with applications based
on Motif

19.6 Supported Curves and Surfaces Types
BBaassee CCllaasssseess

pfRep, pfCurve2d, pfCurve3d, pfParaSurface,
pfDVector

SSuurrffaaccee CCllaasssseess
pfPlane, pfSphere, pfCone, pfCylinder, pfTorus,
pfNurbSurface, pfPieceWisePolySurface, pfRuled,
pfCoons, pfHsplineSurface, pfSweptSurface,
pfFrenetSweptSurface

22DD CCuurrvveess pfLine2d, pfNurbCurve2d,
pfPieceWisePolyCurve2d, pfCircle2d,
pfHsplineCurve2d, pfSuperQuadCurve2d

33DD CCuurrvveess pfLine3d, pfNurbCurve3d,
pfPieceWisePolyCurve3d, pfCircle3d,
pfHsplineCurve3d, pfSuperQuadCurve3d,
pfCompositeCurve3d

UUnnttrriimmmmeedd SSuurrffaaccee AAccttiioonnss
pfTesselateAction, pfTessParaSurfaceAction,
pfTessNurbSurfaceAction

TTrriimmmmeedd SSuurrffaaccee OObbjjeeccttss
pfEdge, pfDisCurve2d, pfDisCurve3d, pfDisSurface

SSttiittcchheedd TTrriimmmmeedd SSuurrffaaccee OObbjjeeccttss
pfBoundary, pfJunction, pfTopo, pfSolid

20.0 OpenGL Performer and the Silicon Graphics Prism™
Family: A Powerful Combination for Real-Time Rendering
OpenGL Performer and the Prism family of visualization systems
combine to provide the features, tools, and capabilities you
need to build a complete real-time solution, including:

• Unsurpassed performance, optimized to achieve peak system
throughput—by the company that invented OpenGL

• Flexible multiprocessor and multichannel system management,
with the automatic use of multiple CPUs, video channels, and
graphics pipelines

10

11

• Fully configurable for any display environment, including head-
mounted, walk-in, desktop, flat and curved wall, or dome
displays

• Image-based rendering for dramatically increased image quality,
realism, and performance

• Volume rendering using OpenGL Volumizer, and Visual Area
Networking using OpenGL Vizserver

• GPU programmability, including custom shaders, custom
effects, clip-texturing, and GLSL support

• The ability to spatialize arbitrary data sets to improve the effi-
ciency of operations such as culling and drawing

• Support for composite combined output on Prism systems to
scale multipipe performance into a single display

• Low-latency, real-time fixed frame-rate control to maximize
immersion

• Automatic scene and load management features, view frustum
culling, level of detail evaluation, and dynamic video resolution

• Per-polygon frustum culling, backface removal, and occlusion
culling

• Run-time and real-time profiling for use in debugging, load man-
agement, and performance tuning

• Real-time fly-through of geospecific terrain, database geometry,
and imagery

• Active surface definition for automatic paging of terrain with con-
tinuous LOD evaluation

• Asynchronous database intersection and user data-base pro-
cessing

• Dynamic animated geometry and morphing

• Atmospheric effects for visual simulation, including fog and
haze, and support for range/angle-correct layered fog and
patchy fog

• Visual simulation effects, including real-time shadows, light
shafts, light points, rotor wash, and calligraphic lights

• Double precision coordinate systems for large area database
support

• Interoperability with more that 70 industry-standard data storage
formats

21.0 Release and Compatibility Information

3322--bbiitt LLiinnuuxx::
Qualified for Red Hat® Linux® versions 8.0 and above and SuSE®

Linux version 9.1

6644--bbiitt LLiinnuuxx::
Qualified for SGI ProPack™ for Linux®

IIRRIIXX::
All SGI systems running IRIX® 6.5 and later
Supports O32, N32, and N64 MIPS® ABIs
Includes backwards-compatibility environment for OpenGL
Performer™ 2.0 and above

WWiinnddoowwss::
Microsoft Windows 2000
Microsoft Windows XP

22.0 Further Information
For additional information on OpenGL Performer, visit the Web
site at www.sgi.com/software/performer/.

© 2005 Silicon Graphics, Inc. All rights reserved. Silicon Graphics, SGI, IRIX, Onyx, OpenGL, InfiniteReality, the SGI logo and the SGI cube are registered trademarks and OpenGL Performer, OpenGL
Optimizer, OpenGL Volumizer, OpenGL Vizserver, OpenGL Multipipe, Open Inventor, REACT, IRIXview, InfinitePerformance, Onyx4, UltimateVision and The Source of Innovation and Discovery are trade-
marks of Silicon Graphics, Inc., in the U.S. and/or other countries worldwide. Maya is a registered trademark of Silicon Graphics, Inc., in the United States and/or other countries worldwide, exclusively used
by Alias Systems, a division of Silicon Graphics Limited. Linux is a registered trademark of Linus Torvalds in several countries. Microsoft and Windows are registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc. in the United States and other countries. All
other trademarks mentioned herein are the property of their respective owners.
3637 [10.05.2005] J15003

Corporate Office
1500 Crittenden Lane
Mountain View, CA 94043
(650) 960-1980
www.sgi.com

North America +1 800.800.7441
Latin America +55 11.5509.1455
Europe +44 118.912.7500
Japan +81 3.5488.1811
Asia Pacific +1 650.933.3000

