
White Paper

Linux Scalability for the Altix 3000
A Software Environment for HPC Applications

1 Executive Summary ..3

2 Introduction..3

3 Enhancements to the Linux Kernel ..4

3.1 System Scalability ..4

3.1.1 Big Kernel Lock ..4

3.1.2 Multiqueue CPU Scheduler ..4

3.1.3 Translation Lookaside Buffer (TLB) Flush Bottlenecks ..4

3.1.4 Directory Cache Contention ..5

3.1.5 Least Recently Used List..5

3.1.6 System Clock Contention ..5

3.1.7 Discontiguous Memory ..5

3.1.8 Datastructures in Local Memory ..5

3.2 Additional Tools for Achieving HPC I/O Performance ..5

3.2.1 XSCSI..5

3.2.2 XFS® File System ..6

3.2.3 The Linux Device File System ..6

4 A Complete Environment for HPC ..6

4.1 Advanced Storage Environments ..6

4.1.1 CXFS™..6

4.1.2 SGI® Data Migration Facility (DMF) ..6

4.2 Resource Management Tools ..6

4.2.1 CPUMemSets..7

4.2.2 System Accounting ..7

4.2.3 System Partitioning ..7

4.2.4 Clustering Software ..7

4.3 Development Environment ..7

4.3.1 Message Passing Toolkit ..7

5 Conclusion ..8

6 For More Information ..8

Table of Contents

2

1 Executive Summary
The popularity of Linux OS-based compute clusters has cata-
pulted Linux into the HPC market in recent years. Commodity
and open-source economies make them attractive to even the
most cash-strapped researchers, and they work very well for a
variety of applications. But they lack features that have long
been enjoyed by users of traditional SMP machines, which
employ tuned scalable operating systems on hardware
designed to support big computing as well as big I/O. It
seemed that while clusters could solve some HPC problems,
there was room in the world’s research labs for large scalable
systems.

The SGI® Altix™ system was designed to bring the perform-
ance advantages of a robust shared-memory architecture into
an industry-standard, open-source Linux environment. Built
around SGI’s well-proven NUMAflex™ architecture, the Altix is
based on Intel’s Itanium® 2 processors and a Linux implemen-
tation tuned specifically for applications with big compute and
I/O requirements. With hardware support for transparent
cache-coherency for up to 512 processors, the engineering
team was faced with the challenge of providing the industry’s
most scalable Linux environment. Additionally, the team sought
to allow users to create “superclusters” by combining those
large Single System Image (SSI) nodes across a high-speed
interconnect and supporting shared memory across them.

Of course, clusters can physically grow to include virtually infi-
nite numbers of processors; since each small node runs its
own copy of Linux, large-scale OS scaling isn’t an issue.
Whether or not a user gets desirable performance depends on
the application: can the algorithm and data effectively be split
up into chunks small enough to fit on the cluster’s 2 or 4
processor nodes, and do they require lots of bottleneck-pro-
ducing communication between the nodes? In a shared
memory architecture, no decomposition of the problem or data
is necessary. All of the processors operate on all of the mem-
ory, so there is no need to move data or instructions across a
slow interconnect. And the environment is carefully tuned to
reduce bottlenecks within the node, with constructs ranging
from the cache algorithms to the TLBs examined for opportuni-
ties to streamline multiprocessor performance.

In order to achieve these goals, SGI’s engineering team worked
closely with others in the open-source community to identify or
develop possible solutions for all of the challenges presented by
HPC applications. These challenges go beyond the problem of
scaling Linux to large processor counts. Research labs today face
dramatically growing storage requirements along with larger and
more complex systems management issues, and must often tune

home-grown codes to run well in increasingly complex and flexible
architectures.

In addition to the tools available in the open source community,
SGI was also able to draw on its own extensive experience with
HPC installations, and a number of system management, stor-
age management and development tools used in those
installations were ported to complete the Altix HPC environment.

The purpose of this paper is to describe the features, scalabil-
ity enhancements, and additional tools implemented in SGI’s
Linux Environment for Altix. These include scalability enhance-
ments to the kernel, I/O enhancements, storage and system
management enhancements, and development tools.

2 Introduction

By the late 1990s, computer scientists and engineers had
begun to take Linux seriously as a platform for supercomput-
ing. The fact that Linux and many of its associated applications
and tools are available in the open source community, com-
bined with the economics of commodity hardware, made
“Beowulf” clusters of inexpensive systems attractive test beds
for deploying Linux and open source software in HPC.

While these first generation clusters were well-suited for highly
parallel algorithms with minimal inter-node communication, they
offered limited capabilities for complex problems requiring
large data sets or extensive interprocess communication.
During that time period, SGI began development work with
Linux and released some early Linux OS-based clusters. This
early experience with clusters quickly revealed the limitations of
the Linux cluster approach for complex HPC applications.

In addition to the known issues surrounding commodity clus-
ters, Linux in the late-1990’s also lacked a variety of features
that have proven to be critical for productivity in big-data HPC,
such as native 64-bit journaled file system support, tuned pro-
gramming libraries, and data management tools.

Despite these limitations, it was clear that the open-source, col-
laborative nature of the Linux operating environment could be
of great benefit to scientific users. SGI thus began to work to
deploy scalable Linux on its advanced NUMAflex architecture.
As a member of the Linux community, SGI has undertaken a
significant development effort and worked closely with the
open-source community to make Linux a viable operating envi-
ronment for high performance computing and to help provide
the functionality required by HPC users. SGI is contributing to
key community projects focused on scaling the Linux operating

3

system, such as the “Linux on Large Systems Effort” and the
“Linux Scalability Effort”. Key goals of these activities include:

• Enhancing Linux for improved usability and performance
across a broad spectrum of HPC applications, while utilizing
and contributing to ongoing efforts within the Linux community

• Contributing technology and resources back to the Linux
community

• Maintaining binary compatibility with existing Linux standards

The results of this development effort are showcased in the
SGI® Altix™ 3000 family of servers and superclusters. SGI
leveraged its extensive experience with scalable, shared-mem-
ory NUMA (non-uniform memory access) supercomputers to
enhance Linux capabilities for the Altix platform.

3 Enhancements to the Linux Kernel

The Linux kernel for the Altix platform consists of the standard
2.4.21 kernel for Itanium processors (http://kernel.org) with a
number of enhancements drawn from the open source com-
munity and from SGI’s own development efforts.

The resulting operating system maintains binary compatibility
with existing 64-bit Linux software, enabling Altix users to take
immediate advantage of existing commercial Linux applica-
tions and open source software. The following subsections
detail the specific enhancements that were made to increase
CPU scalability and improve I/O.

3.1 System Scalability
“Perfect scaling” – a linear one-to-one relationship between CPU
count and throughput for all CPU counts – is rarely achieved
because one or more bottlenecks introduce serial constraints into
the otherwise independently parallel CPU execution streams. The
most common Linux bottlenecks, involving contention among
processors for access to shared resources like the kernel or
cache lines, apply to simple two-processor commodity nodes as
well as to NUMA systems such as the Altix 3000 system.They are
usually insignificant on smaller systems, but high processor
counts make the bottlenecks increasingly visible and problematic.

Much of the work required to scale Linux to 64 processors involved
improvements to reduce or eliminate lock contention—a state in
which CPUs sit idle waiting for resources that are locked by
another CPU. Many of the changes required to improve CPU scal-
ing were available from the Linux community and used by SGI
with only minor enhancements.

3.1.1 Big Kernel Lock
Any multiprocessor implementation in which resources are
shared needs a way to lock those resources while they’re in
use in order to guarantee that only one CPU at a time can
update critical shared data. A simple, coarse-grained
approach would be to have a single lock on the kernel, and
require that any processor accessing the kernel first acquire
the lock. Early Linux multiprocessor releases relied on a sin-
gle lock, the Big Kernel Lock (BKL), as the primary
synchronization and serialization lock for the kernel. While this
was not a significant problem for workloads on a 2-CPU sys-
tem, a single coarse-granularity lock is a major scaling
bottleneck for systems with larger CPU counts.

Recently, a number of open-source projects have attempted to
address the BKL bottleneck. SGI applied several of them in its
implementation for Altix. One approach has been the prefer-
ential use of the XFS file system, which uses scalable
fine-grained locking and largely avoids using the BKL alto-
gether. The 2.5/2.6 kernel's algorithm for process accounting,
which uses a new locking mechanism instead of the BKL, was
backported, and a large set of changes was applied from the
Linux Scalability Effort rollup patch. All together, these changes
resulted in a tenfold reduction in some benchmarks in the frac-
tion of CPU cycles spent waiting for the Big Kernel Lock.

3.1.2 Multiqueue CPU Scheduler
The CPU scheduler in the 2.4 and earlier kernels is simple and
efficient for uniprocessor and small multiprocessor platforms,
but is inefficient for large CPU counts and large thread counts.
One scaling bottleneck is due to the use of a single, heavily
contended lock to protect the global runqueue. This scheduler
has been replaced on Altix with the O(1) scheduler of the Linux
2.5/2.6 kernel, which partitions the single global runqueue of
the standard scheduler into multiple runqueues. SGI has
added some "NUMA-aware" enhancements and other changes
that provide additional performance improvements for typical
Altix workloads. SGI continues to track enhancements to the
scheduler, and contributes SGI developments back to the
Linux community.

3.1.3 Translation Lookaside Buffer (TLB) Flush Bottlenecks
A translation lookaside buffer (TLB) is a CPU hardware structure
that maps virtual memory addresses to real physical addresses
for recently referenced memory pages; it serves as a quick-ref-
erence index to the pages the system is most likely to need.
When memory changes make the TLB entries invalid, its con-
tents are flushed and reloaded with current information. Since
all processors have shared memory access, a TLB flush on one
processor must be propagated across the system. This can be

4

5

an expensive operation, particularly on systems with large
processor counts.

Several changes have been incorporated into the Linux kernel
for Altix to reduce the impact of the TLB flush bottleneck.
First, the memory management system is designed to minimize
the frequency of TLB flushes. Once a TLB flush does happen,
the system is able to determine which processors have exe-
cuted code that makes their TLBs invalid, and only include
those TLBs in the flush routine. This can substantially reduce
the time required to complete the system-wide flush operation.

3.1.4 Directory Cache Contention
The directory cache is used to cache information on frequently
accessed filesystem directories in system memory. A lock is
used to synchronize access to this global system resource. In
earlier versions of Linux the contention on this lock was mini-
mal, but the 2.4.18 and later versions of the Linux kernel use
this lock in a frequently used subroutine that made it a major
CPU cycle consumer. This problem was solved by backporting
a version of that subroutine from the 2.5/2.6 kernel that
employed a finer-grained locking strategy. This change
returned contention on the directory cache lock to acceptable
levels.

3.1.5 Least Recently Used List
The Least Recently Used list stores an ordered list of memory
pages for the virtual memory system. Access to this resource
is controlled through a highly contended spinlock. SGI has
made a minor but measurably effective optimization to some of
the VM subroutines to address this contention. This optimiza-
tion takes advantage of the fact that for a highly-contended
resource, it is often better to double the lock’s hold-time than to
release the lock and soon thereafter have to contend for own-
ership a second time. The change produced a 2-3%
improvement in AIM7 peak throughput.

3.1.6 System Clock Contention
As with other resources, access to system time is controlled by
a lock in the Linux kernel, and this lock is a severe bottleneck
to scalability. A mere handful of concurrent user programs
accessing the system timers can result in serious performance
degradation. This problem was eliminated by incorporating an
open-source patch that handles system time locking differently.
Under the new scheme, programs can read the timing informa-
tion without acquiring the lock.

3.1.7 Discontiguous Memory
A significant feature of NUMA architectures like Altix is that
each group of processors has local memory plus direct, high

speed access to memory in other processor groups. This
allows every processor access to all system memory, but also
means that memory is physically discontinuous. An initial step
in adapting Linux to the Altix platform was the inclusion of an
open-source patch called the “discontig” patch, which was
developed as part of the Linux on Large Systems Foundry.
This patch allows Linux to support NUMA systems such as
Altix with discontiguous physical memory.

3.1.8 Data Structures in Local Memory
Because access latencies in a NUMA architecture to remote
memory are greater than for local memory, SGI has taken
steps to ensure that various data structures used by each CPU
are allocated in local memory. The addition of the
CPUMemSets package of library and kernel enhancements
permits applications to control process placement and mem-
ory allocation to obtain similar benefits. This package allows a
process to be pinned to a particular CPU or set of CPUs. This
is particularly useful on NUMA systems with high processor
counts because it allows an application to scale without con-
suming excessive communications bandwidth between nodes.

3.2 Additional Tools for Achieving HPC I/O Performance
Given the very large datasets common in research environ-
ments, efficient data handling and I/O capabilities are critical
to overall HPC productivity; indeed, this is a common failing of
many commodity clusters. Large-scale shared-memory archi-
tectures are designed to handle those requirements well. With
Altix, the challenge was to bring those capabilities into a Linux
os-based environment.

To allow Linux to achieve the I/O performance required by
data-intensive HPC applications, SGI needed to address
issues related to SCSI, the file system, and device handling.

3.2.1 XSCSI
The SCSI subsystem in the 2.4 kernel series has been a signifi-
cant topic of discussion in the Linux development community,
as its performance is limited on an even moderately scaling
system. Early tests of the Linux® 2.4 SCSI I/O subsystem
showed that the demanding I/O needs of HPC could not be
met without a major overhaul in this area. While this issue was
being actively worked on within the community and has been
addressed in the 2.6 kernel, SGI needed an immediate fix for
its 2.4-based kernel. SGI applied its XSCSI infrastructure and
drivers from the SGI® IRIX® operating system as an interim
solution to deliver immediate performance gains.

3.2.2 XFS File System
XFS, an extent-based, 64-bit journaling filesystem that is
extremely well suited to the I/O requirements of HPC cus-
tomers, has been implemented in Linux and is the default
filesystem on Altix. It provides enhanced performance and
robustness, and its fine-grained locking structure eliminates
many of the scaling problems associated with the Big Kernel
Lock. XFS combines the ability to support exceptionally large
disk farms (many petabytes) with rapid failure recovery and
exceptional I/O throughput capabilities.

SGI introduced XFS in 1997, and made a Linux port available
to the open-source community in 1999. In both environments, it
has been widely adopted for research and commercial use,
and has been used for many years in some of the most
demanding HPC environments in the world. XFS configurations
routinely achieve I/O rates of multiple gigabytes per second.

3.2.3 The Linux Device File System
The Linux Device File System helps Altix handle the large num-
bers of disks and I/O buses typical of Altix systems. An
optional enhancement to the Linux 2.4 kernel, this routine
ensures that device pathnames remain persistent across
reboots even after disks or controllers are added or removed.
This makes the system administrator’s job much less compli-
cated, and it is particularly important for systems with many
devices.

4 A Complete Environment for HPC

While scaling the capacity and I/O capabilities of Linux are
important for HPC, they are not sufficient to create a complete
and productive HPC environment. A full suite of development
tools, advanced storage capabilities and other services is
required. SGI has focused significant attention on ensuring that
it can deliver a complete environment to its Linux customers to
enable them to be immediately and maximally productive.

4.1 Advanced Storage Environments
HPC environments often require both huge storage capacity
and high performance shared access to important data.
Through many years of experience with high-performance IRIX
system installations, SGI developed a powerful set of tools for
data-intensive environments. These have now been ported to
Altix, and provide unique capabilities for HPC environments
running Linux.

4.1.1 CXFS
Most HPC environments share the same data between multiple
systems. For instance, scientists and engineers may perform

some aspects of data preparation and analysis using desktop
workstations while using supercomputers for detailed computa-
tions. Because network file systems such as NFS lack the
bandwidth to efficiently handle the huge volumes of data
involved, many organizations resort to painful and time consum-
ing copying to get data where it is needed.

CXFS provides data sharing over a storage area network
(SAN), allowing multiple computers simultaneous direct access
to a common shared filesystem with local filesystem perform-
ance. Multiple systems thus share a single data file, and a
single copy of the data is maintained. This saves disk space,
eliminates the need for expensive network-based file transfers,
and reduces version-control problems. CXFS clients are avail-
able for systems running the Linux, IRIX, Windows NT®,
Windows® 2000 and Solaris™ operating systems.

4.1.2 Data Migration Facility (DMF)
Meeting the growing storage requirements of modern HPC
facilities is a significant challenge that in many cases limits the
size of problems that can be addressed. Keeping all data on
disk can be prohibitively expensive, but archiving data to tape
creates inevitable problems with data access and manage-
ment. SGI’s Data Migration Facility (DMF) is a mature and
proven solution to this problem.

DMF automatically and transparently migrates data from online
storage to less expensive near-line storage according to user-
defined criteria. Files are automatically recalled to online
storage as they are accessed without user or system adminis-
trator intervention, and they always appear as local regardless
of media location.

HPC sites that use DMF typically have a pool of online disk
storage capable of storing the active data set required by their
largest problems. This online storage is backed by DMF to
provide a virtually limitless storage pool. Already in use in hun-
dreds of data centers using SGI and Cray® systems, DMF was
ported to Altix in 2003.

4.2 Resource Management Tools
System administrators and programmers have found value in
controlling and tracking the execution of their jobs since com-
plex multiprocessing systems were first introduced. SGI
began providing these capabilities on its IRIX OS-based
systems in the late 1980s. To support these requirements for
Altix users, SGI leveraged work originally done for IRIX, and
also supported popular third party tools such as LSF® from
Platform Computing.

6

This combination of tools gives administrators and program-
mers flexibility over how and on which system resources their
jobs execute. Programmers who want to insert calls directly
into their applications can do so, and users with black box
binary applications can use runtime tools to control where indi-
vidual threads execute. Third party applications like Platform
LSF provide a global system environment for managing how
the system’s CPUs and memory are allocated to different sets
of users and applications.

4.2.1 CPUMemSets
This kernel facility provides support to SGI provided commands
and libraries to specify on which CPUs processes may be
scheduled and from which nodes processes may allocate
memory. Programmers can make explicit calls to the SGI pro-
vided commands and libraries cpuset, runon, and dplace to
ensure a particular workload or batch job can efficiently use the
available CPU and memory resources, and to help ensure mul-
tiple jobs can allocate the resources they require without
interfering with each other. This gives users maximum flexibility
in resource allocation and can help deliver fast, repeatable run
times on mission-critical jobs.

4.2.2 System Accounting
System accounting capabilities are often important for large
systems, especially when the system is shared between organ-
izations. Since no standard solution existed within Linux, the
Comprehensive System Accounting (CSA) software package
was added to the Altix system software to provide this function-
ality. CSA is an open source collaboration between SGI and
Los Alamos National Laboratory that provides jobs-based
accounting services. CSA provides methods for collecting
per-process resource usage data, monitoring disk usage, and
charging fees to specific login accounts according to config-
urable parameters.

4.2.3 System Partitioning
This capability allows users to partition the system into smaller
CPU/memory subsets, each running its own single system
image. Using partitions, administrators can effectively divide
and isolate resources to maximize resilience and eliminate single
points of failure.

4.2.4 Clustering Software
Parallel workloads, such as MPI jobs, can be launched, moni-
tored, and controlled across a cluster using SGI's Array
Services software. The Array Services software package con-
tains a library, a system daemon, and a set of commands that
enable developers to define and administer cluster configura-
tions and manage the set of jobs running the cluster.

4.3 Development Environment
The development environment for the SGI Altix 3000 system is
designed to ensure that users can get the most out of the
unique capabilities of Linux and the Altix platform. These tools
provide access to global shared memory across cluster nodes,
to the unique capabilities of NUMAflex, and to high-perform-
ance I/O. Existing Linux software will run on Altix without
modification, although a modest optimization effort will allow soft-
ware to get optimal performance from the underlying hardware.

Compilers Intel® compilers for Linux: C, C++, and Fortran

GNU compiler collection: C and Fortran 77

Libraries SGI® Message Passing Toolkit (MPT)

Scientific Computing Software Library (SCSL)

Flexible File Input/Output (FFIO)

CPU sets and memory placement (CpuMemSets)

Intel® Math Kernel Library (MKL)

Intel® Integrated Performance Primitives (IPP)

Code Development Etnus® TotalView® Advanced tool

GNU GDB

Intel® Debugger (IDB)|

Performance and Performance Co-Pilot™

Application Analysis Pfmon performance tuning tool

Tools Intel® VTune™ Performance Analyzer

Pallas Vampir® and Vampirtrace

Table 1. Components of SGI's Development
Environment for Linux.

SGI supports the major programming models for Linux, includ-
ing OpenMP™, MPI, SHMEM, and optimized shared
memory/MPI hybrid programming models. Both MPI and
SHMEM parallel programming models are offered as part of
the Message Passing Toolkit (MPT).

4.3.1 Message Passing Toolkit
MPT provides industry-standard message passing libraries
optimized for the unique capabilities of the Altix hardware. MPT
contains both MPI and SHMEM APIs, which transparently utilize
and exploit the low-level capabilities within Altix hardware.
These libraries implement an innovative “global pointer” con-
struct that allows jobs to address both local and remote mem-
ory regions, crossing node boundaries without a performance
penalty.

7

Development Environment

Tools

©2003 Silicon Graphics, Inc. All rights reserved. Silicon Graphics, SGI, IRIX, XFS and the SGI logo are registered trademarks and Altix, CXFS, NUMAflex, SGI ProPack, SGI Advanced Linux and
Performance Co-Pilot are trademarks of Silicon Graphics, Inc., in the U.S. and/or other countries worldwide. Linux is a registered trademark of Linus Torvalds in several countries, used with permission by
Silicon Graphics, Inc. Intel and Itanium are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Windows, and Windows NT are registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. All other trademarks mentioned herein are the property of their respective owners.
3590 [10.2003] J14418

Corporate Office
1600 Amphitheatre Pkwy.
Mountain View, CA 94043
(650) 960-1980
www.sgi.com

North America 1 (800) 800.7441
Latin America (52)5267.1300
Europe (44)118.925.75.00
Japan (81)3.5488.1811
Asia Pacific (67)6771.0290

5 Conclusion

The result of these efforts is a high-performance implementation
of Linux that—in combination with the Altix hardware—has
demonstrated exceptional scalability and performance, including:

• Scalability to 128 processors in a single system image
• Scalability to 512 processors in a shared memory cluster con-

figuration
• Demonstrated I/O throughput in excess of 2GBs/second
• World record SPECfp® benchmark results for a 64-processor

system
• World record STREAM benchmark results for a microprocessor

based system
• Leading performance on a wide variety of application-specific

benchmarks

To create this implementation, SGI leveraged work from the open
source community, its own IRIX toolset, and new developments.
SGI will continue to partner with the Linux Community to enhance
Linux for the most demanding HPC requirements. At the same
time, SGI will continue to extend the Altix system by scaling Linux
further, increasing supported supercluster configurations, doubling
interconnect performance, and adding graphics capabilities.

As SGI proceeds with additional enhancements, we resolve to
ensure binary compatibility with industry standards, and to con-
tribute critical software technologies back to the open source
community whenever appropriate. Ultimately, robust HPC solu-
tions should be available to all Linux users.

6 For More Information

Bryant, Ray and Hawkes, John; Linux Scalability for Large
NUMA Systems; from the Proceedings of the Linux Symposium,
July 23-26, 2003.

Neuner, Steve; Behind the Altix 3000: SGI’s New 64-processor,
64-bit NUMA System, Linux Journal, February, 2003.

Woodacre, Michael; Robb, Derek; et. al. The SGI® Altix™ 3000
Global Shared Memory Architecture. An SGI White Paper.

8

