
White Paper

The SGI® AltixTM 3000 Global Shared-Memory Architecture
Michael Woodacre, Derek Robb, Dean Roe, and Karl Feind

1

1.0 Introduction .2

2.0 NUMAflex .2

3.0 Intel Itanium 2 Microprocessor .3

4.0 Cache Coherency .4

5.0 Interconnection Network .4

6.0 Reliability, Availability, and Serviceability (RAS) .7

7.0 Peer I/O .7

8.0 Linux Scaling .7

9.0 Internode Access (XPMEM and XPNET) .8

10.0 The XPMEM User API .9

11.0 Code Sample for Shared-Memory Pointers .9

12.0 Conclusion .10

13.0 References .10

2

Abstract
This paper describes the global shared-
memory architecture and benefits of the SGI
Altix 3000 family of servers and superclusters.
Memory size and scaling, cache organization
and coherency, nodes and internode memory
access, bandwidths and latencies, and RAS
features are all discussed. The paper is written
from a perspective that may be useful to an
applications developer or a system administra-
tor. It describes the current implementation of
the Altix 3000 system communication infra-
structure.

1.0 Introduction
SGI Altix 3000 is a cache-coherent, shared-
memory multiprocessor system. It is based on
the proven SGI® NUMAflex™1 system architec-
ture used in SGI® Origin® 3000 systems, with
enhancements to provide new levels of perfor-
mance. While Origin® systems are based on
the MIPS® microprocessor and the IRIX®
operating system, the Altix 3000 family
combines NUMAflex with industry-standard
components—the Intel® Itanium® 2 micro-
processor and the Linux® operating system.

The Altix 3000 family enables new capabilities
and time-to-solution breakthroughs that neither
traditional Linux OS-based clusters nor com-
petitive SMP architectures can tackle, by
holding more complex job geometries and
complete workflows in memory. Altix 3000
systems dramatically reduce the time and
resources required to run technical applica-
tions by managing extremely large data sets in
a single, system-wide, shared-memory space
called global shared memory.

Global shared memory means that a single
memory address space is visible to all system
resources, including microprocessors and I/O,

across all nodes. Systems with global shared
memory allow access to all data in the system’s
memory directly and extremely quickly, with-
out having to go through I/O or networking
bottlenecks. Systems with multiple nodes
without global shared memory instead must
pass copies of data, often in the form of
messages, which can greatly complicate pro-
gramming and slow down performance by
significantly increasing the time processors
must wait for data. Global shared memory
requires a sophisticated system memory inter-
connect like NUMAlink™ and application
libraries that enable shared memory calls,
such as Message Passing Toolkit (MPT) and
XPmem from SGI.

2.0 NUMAflex
NUMAflex uses an SGI® NUMA (cache-
coherent, nonuniform memory access) protocol
implemented directly in hardware for perfor-
mance and a modular packaging scheme.
NUMAflex gets its name from the flexibility it
has to scale independently in the three dimen-
sions of processor count, memory capacity,
and I/O capacity. The key to the NUMAflex
design of Altix is a controller ASIC, referred to
as the SHUB, that interfaces to the Itanium 2
front side bus, to the memory DIMMs, to the
I/O subsystem. and to other NUMAflex compo-
nents in the system.

Altix 3000 is built from a number of compo-
nent modules, or bricks, most of which are
shared with Origin 3000. The C-brick (compute
brick) is the module that customizes the system
to a given processor architecture. The Altix
C-brick consists of four processors connected
to two SHUBs and up to 32GB of memory
implemented on two equal “node” boards in a
3U brick. A schematic diagram of the C-brick
is shown in figure 1.

3

The M-brick (memory brick) is essentially a
C-brick without the processors. An M-brick
can be placed in any location in the intercon-
nect fabric that could be occupied by a C-brick
and thus allows the system to scale memory
without adding processors up to multi-terabyte
shared memory domains for a single node.
The remaining components of the system are
the R-brick (an 8-port NUMAlink™ 3 router
brick), which is used to build the interconnect
fabric between the C-bricks and M-bricks; the
IX-brick (the base IO brick) and the PX-brick (a
PCI-X expansion brick), which attach to the
C-brick via the I/O channel; and the D-brick2
(a second-generation JBOD brick). SGI supplies
a variety of networking, Fibre Channel SAN,
RAID, and offline storage products to complete
the Altix 3000 offering.

3.0 Intel Itanium 2 Microprocessor
The Intel Itanium 2 64-bit microprocessor
brings industry-leading uniprocessor perfor-
mance levels to the Altix 3000 family. The
NUMAflex architecture allows the system to
scale applications performance up to 512
processors, all working together in a cache-
coherent manner. Intel is providing a family of

socket-compatible processors in the Itanium 2
family2, so shortly after Intel delivers a new
member of the processor family, it is expected
to be made available on the Altix 3000 platform,
with the intent that customers will remain at
the leading edge of microprocessor perfor-
mance. Itanium 2 has a processor bus that
supports 6.4GB per second of bandwidth into
the system.

Altix 3000 has been optimized for the demands
of high-performance applications. While the
Itanium 2 processor supports up to four
processors being placed on a bus, Altix 3000
places just two processors on a bus, so it can
provide twice the memory bandwidth of other
systems on a per-processor basis.

When the data required by the processor is
not in one of the on-die caches shown in fig-
ure 2, the processor sends a request for a
cache line of data from the global shared
memory. When two or more processors are
operating independently on the same data, the
Altix 3000 hardware will keep the data coher-
ent without software intervention.

D3

D2

D1

D0

D3

D2

D1

D0

D3

D2

D1

D0

D3

D2

D1

D0

SHUB

Processor

Processor

DDR SDRAM
Memory

Group 3

Group 2

Group 1

Group 0

NetworkI/O

NODE 0

D3

D2

D1

D0

D3

D2

D1

D0

D3

D2

D1

D0

D3

D2

D1

D0

SHUB

Processor

Processor

DDR SDRAM
Memory

Group 3

Group 2

Group 1

Group 0

NetworkI/O

NODE 1

Fig. 1. Altix 3000 C-brick schematic

4

4.0 Cache Coherency
The cache-coherency protocol on the Altix 3000
family is implemented in the SHUB ASIC, which
interfaces to both the snooping operations of
the Itanium 2 processor and the directory-
based scheme used across the NUMAflex
interconnect fabric. If a processor request, can
be satisfied by the contents of its neighbors
cache, data will flow directly from one proces-
sor cache to the other processor without the
extra latency of sending the request to memory.

With snoop-based systems, every transaction
must be made visible to all the processors in
the system to maintain cache coherence, and
so system overhead becomes an increasing
problem for large numbers of processors.
However, with directory-based cache-coherent
systems, only the processors that are currently
playing an active role in the usage of a given
cache line need to be informed about an oper-
ation to that cache line. This reduces the
amount of information that is needed to flow
around the system to maintain cache coher-
ence, resulting in lower system overhead,
reduced latency, and higher delivered band-
width for actual data operations.

In the past decade, “Beowulf” cluster systems
have become popular because of the attraction
of their low up-front hardware costs and the
availability of open-source software. In such
cluster systems, cache coherence is the
responsibility of the user, typically requiring
copying of data over commodity interconnects

with the associated performance issues that
involves. Altix 3000 enables the user to get
direct access to cache-coherent load/store
semantics to share data across the high-
performance NUMAflex network.

5.0 Interconnection Network
Altix 3000 makes use of a new advance in
NUMAflex technology, the NUMAlink™ 4 com-
munications channel. Prior generations of
NUMAlink have been employed in SGI® scal-
able systems. NUMAlink 4 builds on this
low-latency, high-bandwidth heritage.
NUMAlink 4 provides double the bandwidth of
NUMAlink 3 while maintaining compatibility
with NUMAlink 3 physical connections.
NUMAlink 4 is able to achieve this perfor-
mance boost by employing advanced
bidirectional signaling technology.

The NUMAflex network for Altix is configured
in a fat tree topology. Figure 3 shows this
topology for a 512-processor configuration.
The circles in the figure represent R-bricks,
the lines represent NUMAlink cables, and the
128 small squares across the center of the dia-
gram represent C-bricks.

The fat tree topology enables the system per-
formance to scale well by providing a linear
increase in bisection bandwidth as the systems
increase in size. Altix 3000 also provides dual-
plane or parallel networks for increased
bisection bandwidth. This dual-plane configu-
ration is made possible by providing two

•••••••••••••••
Virtual

Memory
Main

Memory
L3-Cache

Data+
Instruction
1.5 or 3MB

L2-Cache
Data+

Instruction
256KB

L1-Cache
Instructions

16KB

L1-Cache
Instructions

16KB

Write-through

Write-back

R
E
M
O
T
E

L
O
C
A
L

On-die

Write-back

Registers

Fig. 2. Itanium 2 memory and cache hierarchy diagram

5

NUMAlink ports on the Altix C-brick. With
Altix initially being deployed using the
NUMAlink 3 router brick, the system will be
able to double the bisection bandwidth when

the NUMAlink 4 router brick becomes avail-
able, allowing the systems’ capabilities to grow
along with the demands of new generations of
Itanium 2 family microprocessors.

The main memory characteristics of Altix 3000
are given in table 1. The two numbers in the
bandwidth-per-processor column correspond
to NUMAlink 3 and NUMAlink 4. The two
numbers in the maximum local memory column
correspond to using 512MB and 1GB DIMMs.

Because memory DIMMs can be added to the
system using M-bricks, the memory can be
scaled independent of processors. Hence it is
entirely possible to build a system with 16
processors and 4TB of shared cache-coherent
memory.

xxxxxxx xxxxxxx xxxxxxxxxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx

xxxxxxx xxxxxxx xxxxxxxxxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx

xxxxxxx xxxxxxx xxxxxxx xxxxxxxxxxxxxx xxxxxxx xxxxxxx xxxxxxxxxxxxxx xxxxxxx xxxxxxx xxxxxxx

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

X X X X X X X X

XXXX

XXXX

XXXX

XXXX

xxxxxxx xxxxxxxxxxxxxxxxxxxxx

xxxxxxx xxxxxxx xxxxxxx xxxxxxxxxxxxxx xxxxxxx xxxxxxx xxxxxxxxxxxxxx xxxxxxx xxxxxxx xxxxxxxxxxxxxx xxxxxxx xxxxxxx xxxxxxx

Level 1
Routers

Level 1
Routers

Level 2 Routers B Plane

576 Total Cables

A Plane

512-Processor Altix 3000 400MB/sec/p Dual-Plane Bisecton Bandwidth

Two Cables
per Line

Level 2 Routers

Two Cables
per Line

Cable Color Code Chart

Color

Black
Green
Blue
Red

Length

1 Meter
2 Meters
3 Meters
4 Meters

Quantity

320
128
96
32

Fig. 3. 512-processor dual “fat tree” interconnect topology

of
SHUBs

or
nodes

Maximum
of

processors

NUMAlink
3

Bandwidth
MB/sec/p

NUMAlink
4

Bandwidth
MB/sec/p

Maximum
Local

Memory
w/512MB
DIMMs*

Maximum
Local

Memory
w/1GB

DIMMs*

Maximum
Local

Memory
w/2GB

DIMMs*

of
Routers

Maximum
of

Router
Hops

8 16 800 1600 64GB 128GB 256GB 2 3

16 32 800 1600 128GB 256GB 512GB 4 4

32 64 400 800 256GB 512GB 1TB 8 4

64 128 400 800 512GB 1TB 2TB 20 5

128 256 400 800 1TB 2TB 4TB 40 5

256 512 400 800 2TB 4TB 8TB 112 7

512 1024 400 800 4TB 8TB 16TB 288 10

1024 2048 400 800 8TB 16TB 32TB 576 10

Table 1. System and Local Memory Characteristics of Altix 3000

*M-bricks can be used to scale memory independently up to 128GB per CPU.

6

The physical address space is split into a
memory address of 36 bits (architectural limit
of 64GB per SHUB), and compute node
address of 10 bits (1K nodes, or 2K proces-
sors). While the initial system is capable of
coherently sharing cache lines among up to
512 processors, it is possible to build a single
NUMAflex network with globally upgradeable
memory of up to 2,048 processors. Communi-
cations among the four 512-processor sharing
domains on the NUMAflex network use coher-
ent I/O semantics for moving data between the
sharing domains, while still utilizing the low-
latency, high-bandwidth characteristics of
NUMAlink. Future enhancements may
increase the size of the coherence limit to
thousands of processors.

Previous generations of NUMAflex systems
used proprietary memory DIMMs to provide
data storage and the additional directory stor-
age for tracking cache coherence within the
system. The Altix 3000 family breaks away
from this limitation and embraces industry-
standard DIMM technology, providing the
economic benefits of this standard technology
without sacrificing performance.

The memory subsystem of Altix 3000 uses PC-
style double data rate (DDR) SDRAM DIMMs,
shown in table 2. Each SHUB ASIC in a C-
brick supports four DDR buses. Each DDR bus
may contain up to four DIMMs (each DIMM is
72 bits wide, 64 bits of data and 8 bits of
ECC). The four memory buses are independent
and can operate simultaneously to provide up
to 12.8GB per second of memory bandwidth.

The system supports the use of PC2100
(DDR—266 MHz), PC2700 (DDR—320 MHz),
and PC3200 (DDR—400 MHz) DIMMs. The
aggregate memory bandwidths using these
DIMMs are 8.5GB per second and 10.2GB per
second respectively. Using 256Mb DRAM tech-
nology yields a per-DIMM capacity of 512MB.
This gives each node a base capacity of 8GB,
4GB per processor. One-gigabyte DIMM tech-
nology will provide a capacity of 32GB per
C-brick or 8GB per processor. Different DIMM
sizes may be mixed in a C-brick but must be
added in sets of eight DIMMs at a time. The
system is designed to accommodate 2GB DIMMs
when they become commercially available.

Each SHUB ASIC contains a directory cache
for the most recent cache-coherency state
information. This allows for efficient utiliza-
tion of the memory subsystem for performing
data operations, by minimizing the amount of

memory bandwidth that is needed to look up
cache-coherency state information.

When the system is booted, it sets aside
approximately 3% of the memory space to store
the cache-coherency directory information (in
comparison, typical memory structures set
aside 12% of memory space to store error-
detection and correction codes) for the system.
This directory space is used to store directory
information that is not being actively used in
the directory cache. The directory information
is stored in parallel with the cache-line data,
but on a different DIMM bus. So if the direc-
tory state for a memory reference is not
currently available in the on-chip directory
cache, the directory information can be read
from memory at the same time as the data
(which resides on a different DIMM bus). This
optimized storage scheme ensures that the
system can achieve maximum delivered data
bandwidth by minimizing bus usage conflicts.

Table 2. DDR SDRAM Memory used on Altix 3000

DIMM Type DDR Speed DIMM Size Local Memory Bandwidth

PC2100 266 MHz 512MB, 1GB or 2GB 8.5GB/sec

PC2700 320 MHz 512MB, 1GB or 2GB 10.2GB/sec

PC3200 400 MHz 512MB, 1GB or 2GB 12.8GB/sec

7

While the local processor bus has a peak
bandwidth of 6.4GB per second, the local
memory subsystem has enough bandwidth to
fully saturate the local processor demands
while leaving available bandwidth to service
remote processor and I/O memory requests.

In addition to providing support for cacheable
memory, the memory subsystem also supports
atomic in-memory operations (AMO) that may
be used to provide fast, scalable communica-
tion primitives such as locks and barriers.
These AMOs don’t require a full cache line of
data to ping around between different
processor caches; such pinging around causes
high contention that in turn leads to low
performance.

6.0 Reliability, Availability, and
Serviceability (RAS)

The Altix 3000 family was designed to provide
a robust operating environment. The design
protects data flowing around the system using
a number of techniques.

Memory is protected by an error-correcting
code that can correct all single-bit errors,
detect multiple-bit errors, and provide chip-
kill error detection.

The NUMAlink channels protect the messages
flowing across the channels with a CRC pro-
tection code. If a CRC error is detected at the
receiving end of a NUMAlink channel, the
message is resent, enabling the system to pro-
vide reliable communications. The dual-plane
NUMAlink interconnect fabric also provides
enhanced availability since the system is
designed to remain fully operational if one of
the planes fails.

The Itanium 2 microprocessor has ECC protec-
tion on caches and ECC is used on the
processor bus to detect and correct single-bit
errors and detect multiple-bit errors.

The system can run multiple nodes of the Linux
kernel, so even if one node suffers a fatal
error, other nodes may continue operating
while the failed node is repaired or rebooted.

The Altix 3000 packaging provides N+1 hot-
swap fans and N+1 redundant power supplies
on each of the C-bricks, R-bricks, and I/O
bricks in the system.

7.0 Peer I/O
The cache-coherence protocol has been
designed to accommodate future generations of
I/O bricks directly in the NUMAlink fabric. This
“peer-I/O” capability will enable NUMAflex
systems to scale I/O independently of process-
ing capabilities and thus configure to the
exact requirements that a user may need,
without the cost of surplus infrastructure.

8.0 Linux Scaling
The standard Linux operating system has been
scaled up to the new peak of 64 processors
within a single system image on the Altix 3000
family. In a traditional cluster, each host must
be provisioned with the maximum memory
that any process may ever need. In addition,
there is also the need for enough memory to
run a copy of the operating system on each
host. If a process wants more memory than
has been provisioned on a single host, the
code needs to be reworked to spread that load
across multiple hosts (if that is even possible).
With a large host size, a larger pool of memory
is available to each individual process running
on that host. For example, a 64-processor
system, running a single 64-processor Linux
kernel will have up to 1TB of memory available
for a single process to use. This gives applica-
tion developers an extraordinarily large
sandbox to work in, so they can concentrate
on the demands of their applications without
the need to worry about arbitrary node-
configuration limits.

Another major benefit of the Altix 3000 system
is the ability to share user memory for load/
store access across the entire system, com-
prising multiple hosts all connected to the
same NUMAlink interconnect. Using interfaces
like SHMEM and XPMEM that provide sharing
of memory segments across hosts, a user
application can approach work-sharing and
parallelism problems with direct memory
load/store access methods previously available

8

only on small SMP systems with System V and
similar shared-memory constructs.

9.0 Internode Access (XPMEM and
XPNET)

SGI NUMAflex architectures have the capability
of having multple nodes that are independent
systems, each running its own copy of the
operating system. The physical memory of an
Altix 3000 system can be separated via fire-
walls, which can be raised or lowered to
prevent or allow memory, CPU, and I/O
accesses to be made across the node boundary
by processes on the other side.

SGI NUMAflex architectures also contain block
transfer engines (BTEs) which can be viewed
as cache-coherent DMA engines. BTEs reside

on the SHUB ASICs and are used to copy data
from one physical memory range to another at
very high bandwidth. Once initiated, BTE data
transfers do not require processor resources,
and they can be performed across node
boundaries.

Internode memory access allows users to
access memory belonging to processes on the
same Altix 3000 system. This memory can
reside within the same or on a separate node.
Memory can be accessed by data copies utiliz-
ing the BTE or by directly sharing the
underlying physical memory. The software
stacks that allow internode shared-memory
(XPMEM) and networking (XPNET) software
layers to be built for SGI Linux™ are shown in
figure 4.

NUMAflex HW: SGI NUMA, BTE, AMOs

XP/XPC module

XPMEM module XPNET module

TCP/IPlibxpmem

libmpi
for MPI

libsma
for SHMEM

Fig. 4. Software stacks for XPMEM and XPNET

The XP and XPC kernel modules provide a
reliable and fault-tolerant internode communi-
cation channel that is used to transfer data
over the NUMAlink interconnect. XPNET uti-
lizes the NUMAlink interconnect to provide
high-speed TPC and UDP protocols for
applications.

Internode memory access is provided to user
applications via the libxpmem user library and
the XPMEM kernel module. XPMEM allows a
source process to make regions of its virtual

address space accessible to processes within
or across node boundaries. The source process
can define a permission requirement to limit
which processes can access its underlying
memory. Other processes can then request
access to this region of memory and are
allowed to attach to it if they satisfy the per-
mission requirement. Once the underlying
physical memory is attached and faulted, the
remote process operates on it via cache-
coherent loads and stores just as the source
process does.

XPMEM locks physical pages shared across
node boundaries in memory so they cannot be
swapped. This is done dynamically by the
XPMEM kernel module and only when a physi-
cal page is first used across node boundaries.
Prior to that, the physical page is not required
to be locked in memory.

The SGI® Message Passing Toolkit3 (MPI +
SHMEM) is optimized to use XPMEM via the
process-to-process interfaces outlined above.
Future enhancements for XPMEM may include
interfaces similar to existing System V shared-
memory interfaces. Use of XPMEM interfaces
across cache-coherence domains (via non-
cached shared memory, high-speed
memory-to-memory data copies, etc.) is also
being explored.

Open-source message-passing library imple-
mentations, such as MPICH4 and LAM-MPI5,
that are based on the IP protocol would build
on top of XPNET.

10.0 The XPMEM User API
The XPMEM API consists of a library (libxp-
mem) that abstracts the underlying kernel
module implementation from the end user.

The xpmem_make() library function provides
the user process with a unique handle that
represents a user-specified segment of its
address space. It is the responsibility of the
user process to share its handle with other
processes if external access to that address
segment is desired.

Once a process has knowledge of a handle, it
must ensure that it has the proper credentials
required to access the address segment repre-
sented by the handle. If the xpmem_get()
library function succeeds, an ID is returned to
the process that can then be used to access
the segment. The xpmem_get() operation is
performed before, and separate from, the
actual access operations, so that credential

checks need only be done once and not on
every access operation.

Once the necessary ID(s) are known, the
process can use various library functions such
as xpmem_copy() and xpmem_attach() to per-
form the desired memory-access operation.
xpmem_copy() can be used to copy data from
one address segment to another, utilizing the
BTE when possible. xpmem_attach() can be
used to attach data from another process’
address segment to the calling process’
address space so that the underlying physical
memory is actually shared between the
processes.

The XPMEM API provides a convenient low-
level mechanism on which to build higher-level
APIs that provide the end user with memory-
sharing capabilities. In addition to optimized
MPI send/receive, MPI and SHMEM put/get,
and SHMEM remote pointers (see below),
users could explicitly share access to System V
segments or distributed-memory regions
mapped into a single contiguous range of vir-
tual memory.

11.0 Code Sample for Shared-Memory
Pointers

The following simple working program shows
how to use shmem_ptr to access a data struc-
ture that resides in a remote process’ memory.
This is accomplished by using XPMEM from
within libsma (SHMEM). In this program, MPI
process 0 stores 100 integers directly into the
bigd array that resides in MPI process 1, even
if process 1 is running on a different host in
the same Altix 3000 system. A virtual address
pointing to the remote bigd array is returned by
shmem_ptr(). Then the process simply stores
the data at that address. A barrier synchro-
nization is performed before process 1 reads
the data that was delivered. The power and
ease of use of shmem_ptr() makes it an inter-
face worth investigating by code developers.

9

12.0 Conclusion
Altix 3000 is a powerful new server and
supercluster architecture for HPC applica-
tions. With a fast, extensible, globally shared,
cache-coherent memory and an array of APIs,
users will be able to solve computational prob-
lems of greater mathematical complexity at
finer resolution in a shorter time.

13.0 References
1. Intel press announcement, January 16, 2003:

www.infoworld.com/articles/hn/xml/03/01/1
6/030116hnitanium.xml?s=IDGNS

2. MPI Programmer’s Manual, MPT Release
Notes, mpi man page and intro_shmem
man page: http://techpubs.sgi.com

3. www-unix.mcs.anl.gov/mpi/mpich
4. www.lam-mpi.org/

© 2003 Silicon Graphics, Inc. All rights reserved. Silicon Graphics, SGI, Origin, IRIX, and the SGI logo are registered trademarks and Altix, NUMAflex, NUMAlink, and SGI Linux are trademarks of Sil-
icon Graphics, Inc., in the United States and/or other countries worldwide. Linux is a registered trademark of Linus Torvalds, used with permission by Silicon Graphics, Inc. MIPS is a registered
trademark of MIPS Technologies, Inc. Intel and Itanium are registered trademarks of Intel Corporation. All other trademarks mentioned herein are the property of their respective owners.

3474 10/21/2003] J14186

Corporate Office North America 1(800) 800-7441
1600 Amphitheatre Pkwy. Latin America (52) 5267-1387
Mountain View, CA 94043 Europe (44) 118.925.75.00
(650) 960-1980 Japan (81) 3.5488.1811
www.sgi.com Asia Pacific (65) 6771.0290

#include <mpi.h>
#include <mpp/shmem.h>
main(ing argc, char **argv)
{

static int bigd[100];
int *ptr;
int i;

MPI_Init(&argc, &argv);

if (_my_pe() == 0) { /* MPI rank 0 */
/* initialize PE 1’s bigd array */
ptr = shmem_ptr(bigd, 1);
for (i=0; i<100; i++)

*ptr++ = i+1;
}

shmem_barrier_all();

if (_my_pe() == 1) { /* MPI rank 1 */
printf(“bigd on PE 1 is:\n”);
for (i=0; i<100; i++)

printf(“ %d”,bigd[i]);
printf(“\n”);

}
MPI_Finalize();
}

10

