
White Paper

OpenGL Performer™

Real-Time 3D Rendering for High-Performance and Interactive Graphics Applications

1

1.0 Introduction .2

2.0 Toolkit Overview .2

3.0 Write Once, Deploy Anywhere: The Perfect Fit for Your Software
Development Workflow .2

4.0 Rendering Architecture: App, Cull, and Draw .2
4.1 Running Real Time: IRIX and REACT™ .3

4.2 Performance Monitoring: IRIXview™ and EventView .3

5.0 The Scene-to-Screen Path: Scene Graph, Channels, Pipes, Windows 3

6.0 Multichannel and Multipipe Flexibility at Peak Performance 4
6.1 Increasing Frame Rate by Using DPLEX .4

6.2 Compositor Control for Scalable Performance .4

7.0 Increasing Visual Fidelity with Image-Based Rendering 4

8.0 Enhanced Realism through Programmable Shading .5

9.0 Culling in OpenGL Performer: Powerful, Flexible, and Programmable 5

10.0 Real-Time Shadows .5

11.0 Frame and Load Management: LOD and DVR .5

12.0 Texturing with Large Imagery: Virtual Clip-Texturing6

13.0 Rendering Large Geometric Surfaces: Active Surface Definition 6

14.0 Dynamic Data Buffers: Engine and Flux .6

15.0 Double-Precision Coordinate Systems .7

16.0 Rendering Features for Realistic Visual Simulation .7

17.0 API Interoperability .7

18.0 Scene Graph Types and Selected Objects of Interest .8
18.1 Libpf Node Types .8

18.2 Additional Libpf Objects .8

18.3 Libpr Objects .8

18.4 Libpfv Objects .8

18.5 Libpfv Sample Modules .9

19.0 OpenGL Performer and the SGI® Onyx® Family: A Powerful Combination
for Real-Time Rendering .9

20.0Release and Compatibility Information .9

21.0 Further Information .9

2

1.0 Introduction
OpenGL Performer is a powerful and comprehensive
programming interface for developers of real-time
performance-oriented 3D graphics applications. OpenGL
Performer dramatically simplifies development of com-
plex applications made for visual simulation, virtual
reality, simulation-based design, interactive entertain-
ment, broadcast video, manufacturing, scientific
visualization, architectural walk-through, and computer-
aided design.

OpenGL Performer provides the advanced features and
innovative techniques that enable you to achieve peak
performance and make optimal use of system capabili-
ties and sophisticated 3D graphics features. It gives
you the capability to scale easily to multiple processors
and multiple graphics pipelines, deploy to a wide range
of systems and price points, and be ready-made for the
graphics systems of today and the future.

2.0 Toolkit Overview
The basis of OpenGL Performer is the performance-
rendering library libpr, a low-level, object-oriented
library providing high-speed rendering functions,
efficient graphics state control, and other application-
neutral 3D graphics functions.

Layered above libpr is libpf, a real-time visual simula-
tion environment providing a high-performance scene
graph and extensible multiprocess rendering system
designed to take best advantage of SGI® scalable
graphics systems.

The modular libpfv library provides a high-level infra-
structure for rapid construction and extension of
OpenGL Performer applications. It is based on the
pfvViewer interface and ships with an extensible collec-
tion of ready-to-use modules for display control, model
manipulation, navigation, picking, and customization.

The database utility library libpfdu provides powerful
functions for defining both geometric and appearance
attributes of three-dimensional objects, encourages

sharing of state and materials, and generates efficient
triangle strips from independent polygonal input.

The database library libpfdb contains file importers for
many popular industry-standard database formats
including OpenFlight™, Open Inventor™ .iv, OpenGL
Optimizer™ .csb, and more than 70 others. A run-time
look-up mechanism is used to invoke loaders for
requested files that, on loading, can be combined into
a single database. Additionally, OpenGL Performer pro-
vides the fast-loading PFB file format for use in
run-time database paging. These loaders also serve as
a guide to developers creating new database importers.

The libpfui library contains user interface building
blocks for creating manipulators and user-interface
components common to many interactive applications.

Completing the suite of libraries is libpfutil, the
OpenGL Performer utility library. It provides a collec-
tion of convenience routines implementing tasks such
as multiprocessing configuration, multichannel sup-
port, texture management, graphical user interface
tools, input event collection and management, and
scene graph traversal functions.

For aid in application development, OpenGL Performer
includes example source code ranging from simple
programs to illustrate particular features to the com-
prehensive, GUI-driven file viewer perfly.

3.0 Write Once, Deploy Anywhere: The
Perfect Fit for Your Software
Development Workflow

OpenGL Performer supports the IRIX® operating system
and the Linux® operating system, as well as Microsoft®
Windows NT®, Windows® 2000, and Windows® XP. The
API is built atop the industry-standard OpenGL®
graphics library, includes both ANSI C and C++ bind-
ings, and is completely source-code compatible across
all platforms.

4.0 Rendering Architecture: App, Cull,
and Draw

OpenGL Performer provides a pipelined rendering
architecture designed to detect and take full advantage
of the capabilities of the underlying system. At its core
lie high-performance, multithreaded, parallel render-
ing stages for per-frame scene management and image
generation output to one or more graphics pipelines.
The software architecture is split into three major
stages to handle critical path operations:

• APP: Simulation processing, which includes reading
input from control devices, simulating the dynamics
of moving models, updating the visual database, and
interacting with other libraries or simulation stations.

3

• CULL: Traverses the visual database and determines
which portions of it are potentially visible (a proce-
dure known as culling), selects a level of detail (LOD)
for each model, sorts objects and optimizes state
management, and generates a display list of objects
to be rendered.

• DRAW: Traverses the display list and issues graphics
library commands to a geometry pipeline in order to
create an image for subsequent display.

The user has full control over the configuration of the
App, Cull, and Draw tasks, including the ability to
combine multiple tasks into a single process or divide
them among multiple processes and processors on the
system. OpenGL Performer can also automatically
make process configuration decisions at run time
based on the hardware platform.

In addition to the main App/Cull/Draw pipeline, several
asynchronous processes are available for user custom-
ization and optional tasks such as:

• DBASE: database paging, for asynchronously loading
files and adding data to or deleting data from the
scene graph

• ISECT: intersection testing, to intersect line segments
with the database for operations such as collision
detection and line-of-sight determination

• COMPUTE: general asynchronous computations, such
as those used for dynamic geometry evaluation and
morphing

• Input: input handling
• Cull Helper: advanced culling modes, for per-polygon

cull operations and occlusion culling tests
• LPOINT: computation of complex light-point

characteristics

The multiprocess pipeline of OpenGL Performer is
largely transparent to the user because the toolkit
manages the difficult multiprocessing issues for you,
such as interprocess communication, process timing,
synchronization, data exclusion, coherence, and real-
time control.

4.1 Running Real Time: IRIX and REACT™
In situations where a guaranteed fixed frame rate is
required, OpenGL Performer uses the REACT exten-
sions to the IRIX operating system to control process
scheduling and process priority management, as well
as real-time system profiling. REACT guarantees real-
time predictable behavior from the IRIX operating
system by restricting and isolating processes to specific
processors and maintaining nondegrading priorities.

4.2 Performance Monitoring: IRIXview™ and EventView
OpenGL Performer provides a full suite of diagnostic
statistics, including graphics pipeline hardware statis-
tics for extremely accurate measurements of rendering

time. These statistics are used for tuning and real-time
monitoring of full system performance for load man-
agement and for direct use with other system
monitoring tools, such as IRIXview.

OpenGL Performer also includes an event analysis tool
called EventView, which traces events generated inter-
nally by the toolkit as well as user-generated time
events on a logic-analyzer-style display. EventView is
particularly useful for measuring how the duration of
various OpenGL Performer execution blocks varies
across time and as a function of user application events.

5.0 The Scene-to-Screen Path: Scene
Graph, Channels, Pipes, Windows

The OpenGL Performer scene graph holds the data
that defines your scene or virtual world. The scene
graph includes low-level descriptions of object geometry
and their appearance, as well as higher-level, spatial
information, such as transformations, animations,
levels of detail, environmental elements, and special
effects, as well as additional application-specific data.
OpenGL Performer and your application act on the
scene graph to perform rendering, culling, paging,
intersection, and other functions.

A channel is equivalent to a camera moving about the
scene. Whereas the scene graph encapsulates all of the
visual data in the scene, the channel sees only the
visual information that is visible to the viewer; the
channel shows a slice of the scene from a specified
perspective. Each channel is associated with a single
viewport in the final display configuration.

The pfPipe is the heart of all processing done by
OpenGL Performer. It performs the per-frame App/
Cull/Draw stages, thereby rendering each channel to
the windows on the display. Under the hood, the pfPipe

Scene graph

pfChannel

pfPipe

pfPipeWindow

Display system

Fig. 1. The Scene-to-screen path

4

is a high-performance abstraction of the graphics pipe-
line, designed to manage performance, realism, image
quality, and the sense of immersion for the end user;
while ensuring that the system hardware and operating
system capabilities are fully and efficiently utilized.

The pfPipeWindow is the mechanism by which a pfPipe
manages the windows to which it is to render, the size
of the render area, and the configuration of the frame
buffer. OpenGL Performer uses this information for
proper viewport and frustum management and for any
features affected by frame buffer configuration, such
as anti-aliasing, transparency for fade LOD, layers for
decal geometry, and so on.

6.0 Multichannel and Multipipe
Flexibility at Peak Performance

Multiple channels can be arranged side-by-side with
multiple offset views for fully synchronized panoramic
and tiled displays with optional overlap for insets and
edge blending. Performance can be scaled even further
with the use of multiple synchronized InfiniteReality®
or InfinitePerformance™ graphics pipelines. OpenGL
Performer maximizes multipipe throughput by assign-
ing a dedicated Cull/Draw pair for each hardware
pipeline and automatically manages stress for each
channel.

6.1 Increasing Frame Rate by Using DPLEX
On InfiniteReality systems with multiple rendering
pipes and a DPLEX option, OpenGL Performer provides
support for time-multiplexing the output of the differ-
ent pipes into a single screen. For example, a five-pipe
system that can render a complex model at 12 Hz can
now render the same model at 60 Hz. Each one of the
five pipes starts drawing its frame at a different time,
and the resulting images are multiplexed into the out-
put screen. The result is that the output screen sees a
new image 60 times per second even though each one
of the pipes can produce only 12 new images per
second.

6.2 Compositor Control for Scalable Performance
On InfinitePerformance systems the output of multiple
graphics pipelines can be directed into a single com-

posite output. Each pipe renders only a portion of the
overall display, thereby directly scaling performance.
The composition can be tiled spatially on the final
display or blended for anti-aliasing and other effects.
OpenGL Performer also performs cross-pipe load
balancing on a frame-by-frame basis by adjusting the
relative size and position of all pipes using the
compositor.

7.0 Increasing Visual Fidelity with
Image-Based Rendering

One of the major challenges in the creation of visually
realistic scenes is the rendering of organic forms such
as trees and people. A single tree, for example, can
require thousands of polygons, and a forest can over-
load the real-time rendering capabilities of even the
fastest graphics system. Traditional visual simulation
systems provide a partial solution with billboard
objects or by neglecting the use of rich scene elements
altogether.

OpenGL Performer provides a technique called Image-
Based Rendering (IBR) to dramatically increase the
photographic realism of a scene while simultaneously
freeing polygonal rendering power to increase scene
complexity. Instead of creating an image from geometric
primitives or rendering a billboard that always shows
the same texture, IBR combines a series of images of
the desired form into a seamless depiction of the
object that can be viewed from any angle or from any
distance. The combination of IBR with the texture
memory capacity, fill rate, and image quality of the
InfiniteReality series enables the creation of interac-
tive environments with orders of magnitude more
complexity and realism than previously possible.

Image-Based Rendering can also be applied to the tex-
ture maps of arbitrary geometric figures, enabling a
simple object with a low polygon count to appear to be
an extremely complex model with features that corre-
late with the view angle. OpenGL Performer takes this
idea even further with the inclusion of a simplification
utility that preprocesses complex models into a set of
IBR textures and an IBR proxy containing only a frac-
tion of the polygon count of the original.

Fig. 2. Image-based rendering of a human figure

5

8.0 Enhanced Realism through
Programmable Shading

Programmable shading enables users to create dramat-
ically compelling scene content by describing the
appearances of objects in a special-purpose shading
language. Shaders can be created to resemble real-
world materials ranging from highly realistic metals,
wood, plastics, skin, leather, and cloths to water, glass,
dirt, dust, and smoke. Many other effects are also pos-
sible, such as bump-mapping, anisotropic effects, and
arbitrary surface reflectance. Such techniques have
played a fundamental role in the broadcast and motion
picture industries for many years.

OpenGL Performer supports programmable shading by
integrating the shading description language of OpenGL
Shader™ directly into the scene graph and by using the
OpenGL Shader renderer to convert shader descriptions
into the OpenGL commands necessary for the target
hardware. This facility transforms the use of program-
mable shading from a specialized offline process into a
standard application of high-performance rendering.

9.0 Culling in OpenGL Performer:
Powerful, Flexible, and
Programmable

The culling operations done by OpenGL Performer
process the scene graph to construct a list of visible
objects, which is then used to render the scene. By
eliminating objects that are occluded or outside the
user’s field of view, the load on the underlying graph-
ics hardware is greatly reduced, thereby enabling all of
the rendering power of the system to be directed to
those objects that do contribute to the final display.
OpenGL Performer also provides the facility to use
spare CPU resources to perform extra culling opera-
tions such as per-polygon culling, backface removal on
the host, and occlusion culling.

The OpenGL Performer culling operations are fully
programmable. Many custom rendering tasks and

advanced multipass special effects, for example, require
certain elements of the scene to be reprocessed several
times per frame with different appearances, environ-
mental effects, and rendering modes. The user can use
the built-in flexibility of programmable culling to facil-
itate all of these operations.

10.0 Real-Time Shadows
OpenGL Performer provides the facility to visualize the
projection of an object’s true shadow on any and all
other objects in the scene, in real time. Each shadow
is generated by projecting the objects as seen from
one or more light sources and performing Image-Based
Rendering to visualize the result. The user can specify
any number of objects that cast shadows and can even
perform image-processing operations before rendering
to create soft shadow edges.

11.0 Frame and Load Management: LOD
and DVR

OpenGL Performer provides two mechanisms for auto-
mated real-time load management. The first mechanism,
level-of-detail (LOD) control, adjusts object complexity
in accordance with scene quality and performance

Fig. 3. Examples of programmable shading

Fig. 4. Example of a real-time shadow

6

considerations set by the database or user. This mech-
anism allows objects with low contribution to scene
quality (far from the eye point, small in scene, low in
priority, or based on custom parameters) to be ren-
dered at a lower level of complexity—thus reducing
polygonal and graphics state loads. The second mecha-
nism is targeted at pixel-fill or raster-load management.
On the InfiniteReality series of graphics subsystems,
raster load can be managed with Dynamic Video Resize
(DVR) control, which allows each display channel to be
rendered with fewer pixels (determined on a per-frame
basis based on per-channel load). The resulting image
is displayed at full output resolution through bilinear
interpolation, without added latency or loss of
performance.

12.0 Texturing with Large Imagery:
Virtual Clip-Texturing

Traditionally, large geographic areas were textured
with separate tiled textures. This required significant
modeling effort, complex application management of
the texture paging, and a substantial amount of texture
memory.

Supported by OpenGL Performer on the InfiniteReality
series of graphics subsystems, clip-texturing (clipmap-
ping) is a superior alternative because it virtualizes the
texture and allows the entire texture to be specified in
a single coordinate system. Only a small fixed amount
of these virtualized textures, called clipmaps, need to
be kept in hardware texture memory. The InfiniteReality
series features specialized hardware that can map tex-
ture coordinates from the original virtual space into
this “clipped” texture space. This allows texture and
geometry of large textures to be defined more inde-
pendently than is possible with texture paging. With
clipmapping, large-area geospecific imagery, such as
satellite and aerial photographs, can be easily mapped
onto terrain geometry with minimal database-creation
effort. This clipped part of the texture is actually a
subset of the clipmapping pyramid usually associated
with MIPmapping and is centered at a point of interest
in the virtual texture.

The size of the clipped area needs to be only as big as
the number of high-resolution texels that can fit on
the screen at one time and is completely decoupled
from the size of the virtual texture. For a virtual tex-
ture of size 8 million x 8 million texels, typically less
than .0000003% (under 45MB) of the actual potential
full virtual texture is kept in hardware texture memory.
The user can choose a smaller clipped space and thus
use even less hardware texture memory. The virtual
texture space can also be very sparsely populated with
high-resolution insets. Lower-resolution versions of
the image data will automatically be used where high-
resolution data is unavailable.

OpenGL Performer manages the virtualization of clip-
mapped textures, the update of the center of interest
based on viewer position, and the automatic paging of
texture data to keep the clipped space up-to-date. A
two-level look-ahead caching scheme is employed in
order to minimize disk-paging latency and improve
download bandwidth into texture. Load management
controls are provided to control the texture and paging
resources. OpenGL Performer also contains support
for the efficient management of multiple graphics
pipelines in a system viewing a single clip-texture and
management for multiple clip-textures. Utilities are
provided to convert image data to clipmapped texture
files for optimal texture paging speed.

13.0 Rendering Large Geometric
Surfaces: Active Surface Definition

The rendering of very large or heavily tessellated
surfaces presents many image-quality and load-
management challenges. OpenGL Performer solves
these problems using an approach called active
surface definition (ASD). ASD provides an efficient,
multiprocessed framework for the evaluation and
paging of geometry over precomputed levels of detail
based on user-specified evaluation, quality, and load-
management constraints. Transitions between different
levels of detail are made smoothly, on a per-triangle
basis, eliminating spatial and temporal artifacts.

14.0 Dynamic Data Buffers: Engine and
Flux

OpenGL Performer includes several features for the
representation and evaluation of dynamic data. Engines
allow the description of operations, such as morphing,
blending, and bounding box computation, to be per-
formed on specific objects or buffers of data. Fluxes
are dynamic evaluated objects, the contents of which
can be computed by engines and used as geometry or
transformations any place where fluxed data is
allowed. Asynchronously generated data is rendered
when available in a frame-accurate manner.

Clip region

Entire level in
texture memory

Mem region

Tex region

Fig. 5. Clipmapping pyramid

7

15.0 Double-Precision Coordinate
Systems

The use of standard single-precision floating-point
numbers provides the best performance but sometimes
does not provide enough precision to represent position
information for objects at an extreme distance from
the origin of the database. This is a problem when ren-
dering very large scenes (e.g., terrain of the whole
earth). Current OpenGL hardware does not support
double-precision values for vertex coordinates and
matrices; therefore, the solution to the precision prob-
lem must come from a higher-level layer.

OpenGL Performer provides the ideal solution to this
problem by allowing a double-precision transformation
to be used to represent the camera position and overall
transformation of each scene graph subbranch (e.g., a
single terrain tile), while maintaining the use of high-
performance single-precision values in the rest of the
scene graph. This enables the correlation of the origin
of the database to the camera position, thereby elimi-
nating any precision artifacts.

16.0 Rendering Features for Realistic
Visual Simulation

OpenGL Performer includes a large number of envi-
ronmental and other advanced special effects for use
in virtual reality and visual simulation systems. One of
these features is the high-performance atmospheric
model that includes fog, haze, and an earth/sky model
with graduated sky color and horizon glow. OpenGL
Performer also implements high-fidelity and volumet-
rically accurate layered fog, ground fog, and patchy fog
and clouds effects.

Such features can also be combined for specific simu-
lation effects such as light shafts, with a patchy fog
defining the shape of the light cone, and a layered fog
modulating the cone density and color with elevation.
The use of programmable culling in OpenGL Performer
further enables these advanced multipass features to
operate at peak performance.

OpenGL Performer also offers sophisticated lighting
effects, including projected shadows, IBR shadows,
and local projected lights to simulate objects such as
landing lights and vehicle headlights.

OpenGL Performer also supports a rotorwash effect for
helicopter simulation applications. The effect is over-
laid upon the geometry of the scene graph and may
vary its appearance depending on the material proper-
ties of the geometry. By automatically detecting the
underlying material properties and geometry, the rotor-
wash effect adjusts the color and appearance of the
dynamic texture to achieve the appropriate visual effect.

OpenGL Performer incorporates wide support for
visible, nonilluminating light points—essential for
accurate renderings of a given view that might include
such lights as stars, runway lights, visual approach
slope indicators, precision approach path indicators,
and even street lights when viewed from a great dis-
tance. The computation for these lights can be done in
a separate process in parallel with the main rendering
process, which can be multithreaded. OpenGL
Performer contains full support for calligraphic light
points and the management of calligraphic hardware.

17.0 API Interoperability
OpenGL Performer is interoperable with each of the
advanced rendering toolkits and utilities created by
SGI, enabling you to share data with programs using
these tools and, in many cases, to directly utilize the
features and capabilities of the tools in your own
application based on OpenGL Performer.

OpenGL—The industry-standard high-performance 3D
graphics interface. OpenGL Performer uses OpenGL for
all of its rendering functions and enables users to
customize their application with objects and callbacks,
where they can invoke OpenGL functions directly.

OpenGL Shader—An object-oriented toolkit and inter-
active shading language for real-time programmable
shading using OpenGL. OpenGL Shader objects can be
directly integrated into the OpenGL Performer scene
graph.

Fig. 6. Examples of a light shaft

8

OpenGL Volumizer™—A volume-rendering API that
targets the needs of the sciences and oil and gas
markets, supports volume roaming, TLUTs, clip planes,
volume paging, and many other volume-visualization
operations. OpenGL Volumizer operations are supported
in OpenGL Performer via the pfVolume object.

OpenGL Vizserver™—A tool that enables Visual Area
Networking and allows universal access to applications
based on OpenGL Performer from any IRIX, Linux,
Solaris™, or Microsoft Windows client. OpenGL
Vizserver is directly compatible with OpenGL
Performer applications.

OpenGL Multipipe™ SDK—A software toolkit for
creating OpenGL API-based multichannel and multi-
pipe applications on IRIX. OpenGL Performer can
import OpenGL Multipipe SDK configuration files and
use them to configure its own pipes and channels.

OpenGL Optimizer—A scene graph library that targets
the needs of CAD and manufacturing applications; also
includes the Cosmo3D™ library. OpenGL Performer can
directly import OpenGL Optimizer and Cosmo3D .csb
data sets.

Open Inventor—A popular object-oriented toolkit and
scene graph library for interactive 3D graphics applica-
tions. OpenGL Performer can directly import Open
Inventor .iv datasets.

Image Format Library—IRIX OS-based 2D image and
texture file loaders for a variety of industry-standard
formats including RGB, GIF, JPEG, TIFF, and many
others. Use of the Image Format Library enables
OpenGL Performer for IRIX to load these formats
directly.

18.0 Scene Graph Types and Selected
Objects of Interest

18.1 Libpf Node Types
ASD—Active surface definition evaluates continuous
level of detail of terrain
Billboard—Rotates geometry to face the viewer for
efficient rendering of symmetric geometry
DCS—Dynamic coordinate system: applies transforma-
tion to its children
FCS—Fluxed coordinate system: for asynchronous
(fluxed) transformations
Geode—Contains geometry described with GeoSets,
GeoStates, or Shaders
Group—Groups with zero or more children
IBRNode—Contains the textures and geometry to
enable Image-Based Rendering
Layer—Renders co-planar geometry (e.g., stripes on a
road or pictures on a wall)

LightSource—Light source to illuminate geometry in
the scene
LOD—Level of detail: selects one or more children
based on distance from viewer
Scene—Root node of a visual database
SCS—Static coordinate system: applies static transfor-
mation to its children
Sequence—Sequences through its children for
sequenced animation effects
Switch—Enables/disables traversal of children nodes
in a group

18.2 Additional Libpf Objects
Channel—Camera moving about the scene, defining
which objects are visible
Compositor—Controller for multipipe composite
displays
FrameStats—Holds per-frame timing, computation,
and rendering statistics
LightShaft—A light shaft cone special effect with
volumetrically correct attenuation
LODState—Represents custom LOD parameters and
priority classes for LOD nodes
MPClipTexture—Manages the paging of a clip-texture
for a graphics pipe
Pipe—Software rendering pipeline implementing the
App/Cull/Draw stages
PipeWindow—Controls the configuration and behavior
of a window on the screen
Rotorwash —Encapsulates the helicopter rotor wash
effect
Shader—Containers for multipass rendering
specifications
Shadow—Real-time shadows projected on the scene
VolFog—Encapsulates layered and patchy fog rendering
algorithms

18.3 Libpr Objects
Calligraphic—Configures/manages a calligraphic
channel for rendering calligraphic light points
Engine—Encodes a standard or custom user-defined
operation on a fluxable object
Flux—An object or buffer for dynamic and optionally
asynchronous update
GeoSet—The container for all geometric primitives in
OpenGL Performer
GeoState—Holds state description for geometry: tex-
ture, material, lighting, transparency, and fog
LpointState—Holds description of light-point illumina-
tion behavior

18.4 Libpfv Objects
Viewer—Modular execution structure for easy con-
struction of OpenGL Performer applications
World—Representation of the visual database with
associated modules

9

View—Encapsulation of camera positions and associ-
ated modules
DisplayManager—Manages the configuration of pipes,
windows, and channels
InputManager—Manages keyboard, mouse, and other
input

18.5 Libpfv Sample Modules
Trackball—Module for trackball-like on-screen model
navigation
Loader—Module for model loading and placement
Logo—Module to add a logo overlay to the display
WorldSwitcher—Module to enable seamless transitions
from one world to another
Earthsky—Module to control the earth and sky
backdrop
DrawStyle—Module to control the render mode of
objects in the world
Navigator—Module to navigate the eyepoint within the
world
Picker—Module for picking and selection of objects in
the world
Snapshot—Module to capture screen snapshots of the
scene
Motif®—Module for GUI integration with applications
based on Motif

19.0 OpenGL Performer and the SGI®
Onyx® Family: A Powerful
Combination for Real-Time
Rendering

OpenGL Performer and the Onyx family of visualiza-
tion systems combine to provide the features, tools,
and capabilities you need to build a complete real-time
solution, including:

• Unsurpassed real-time performance, optimized to
achieve peak system throughput—by the company
that invented OpenGL

• Flexible multiprocessor and multichannel system
management, with the automatic use of multiple
CPUs, video channels, and graphics pipelines

• Support for up to 16 fully synchronized InfiniteReality
graphics pipelines with up to 8 channels each, plus
unlimited interchannel insets

• Support for stereo-in-a-window, full screen anti-
aliasing, video textures, 12-bit-per-component frame
buffer, and a gigabyte of texture capacity on
InfiniteReality systems

• Fully configurable for any display environment,
including head-mounted, walk-in, desktop, flat and
curved wall, or dome displays

• Image-Based Rendering for dramatically increased
image quality, realism, and performance

• Programmable shading using OpenGL Shader, volume
rendering using OpenGL Volumizer, and Visual Area
Networking using OpenGL Vizserver

• Support for Digital Video Multiplexer Option (DPLEX)
on InfiniteReality series configurations for dome
distortion correction and other high frame-rate
applications

• Support for composite combined output on
InfinitePerformance systems to scale multipipe per-
formance into a single display

• Low-latency, real-time fixed frame-rate control to
maximize immersion

• Automatic scene and load management features, view
frustum culling, level of detail evaluation, and
dynamic video resolution

• Per-polygon frustum culling, backface removal, and
occlusion culling

• Run-time and real-time profiling for use in debug-
ging, load management, and performance tuning

• Real-time fly-through of geospecific terrain, database
geometry, and imagery

• Automatic paging and management of huge textures,
up to 8 million x 8 million texels in a single texture
on InfiniteReality systems

• Active surface definition for automatic paging of
terrain with continuous LOD evaluation

• Asynchronous database intersection and user data-
base processing

• Dynamic animated geometry and morphing
• Atmospheric effects for visual simulation, including

fog and haze, and support for range/angle-correct
layered fog and patchy fog

• Visual simulation effects, including real-time shadows,
light shafts, light points, rotor wash, and calligraphic
lights

• Double precision coordinate systems for large area
database support

• Interoperability with more that 70 industry-standard
data storage formats

20.0 Release and Compatibility
Information

IRIX: All SGI systems running IRIX® 6.5 and later
Supports O32, N32, and N64 MIPS® ABIs
Includes backwards-compatibility environ-
ment for OpenGL Performer™ 2.0 through 2.5

Linux: Qualified for Red Hat® Linux® versions 6.2
and above
Includes backwards-compatibility environ-
ment for OpenGL Performer™ 2.4 and 2.5

Windows: Microsoft Windows NT 4
Microsoft Windows 2000
Microsoft Windows XP

21.0 Further Information
For additional information on OpenGL Performer, visit
the Web site at www.sgi.com/software/performer/.

10

© 2002 Silicon Graphics, Inc. All rights reserved. Specifications subject to change without notice. The contents of this document may not be copied or duplicated in any form, in whole or in part,
without the prior written permission of Silicon Graphics, Inc. Silicon Graphics, SGI, IRIX, InfiniteReality, Onyx, OpenGL, and the SGI logo are registered trademarks and OpenGL Performer, Open
Inventor, OpenGL Optimizer, REACT, OpenGL Shader, IRIXview, OpenGL Multipipe, OpenGL Volumizer, OpenGL Vizserver, and InfinitePerformance are trademarks of Silicon Graphics, Inc., in the U.S.
and/or other countries worldwide. Linux is a registered trademark of Linus Torvalds. Microsoft, Windows, and Windows NT are trademarks or registered trademarks of Microsoft Corporation, in the
U.S. and/or other countries. Motif is a registered trademark of The Open Group in the U.S. and other countries. All other trademarks mentioned herein are the property of their respective owners.
Image credits: (page 4) IBR data set courtesy of Archvision, and (pages 5 and 7) helicopter data set courtesy of BVR.

3381 [11/22/2002] J14122

Corporate Office North America 1(800) 800-7441
1600 Amphitheatre Pkwy. Latin America (52) 5267-1387
Mountain View, CA 94043 Europe (44) 118.925.75.00
(650) 960-1980 Japan (81) 3.5488.1811
www.sgi.com Asia Pacific (65) 771.0290

