
White Paper

An Architectural Comparison of Single-System-Image Architectures
and Clusters of Workstations for Interactive Graphics Applications
Bob Kuehne, SGI

1

Abstract .2

1.0 Introduction .2

2.0 Interactive Graphics Requirements .2

3.0 Recent History of Parallel Computing .2

4.0 Parallel Computing System for Graphics .3
4.1 Application Resource Demands .3

5.0 Multiple Graphics Pipelines .3
5.1 Frame Buffer Synchronization .4

5.1.1 Framelock and Genlock .4

5.1.2 Swap-Ready .4

6.0 VizCOW/SSI Comparison .4
6.1 Hardware Comparisons .5

6.2 Software Comparison .5

7.0 VizCOW Analysis .6
7.1 Bandwidth and Latency .6

7.2 Application Software .6

7.3 Cost .6

8.0 Summary .7

Acknowledgements .7

References .7

2

Abstract
Shared-memory computing has a rich legacy of
success in computational and graphics applications.
In recent years, clusters of workstations have become
a credible alternative for certain computer applica-
tions. Now, with increased graphics capability on
commodity machines, clusters of workstations have
become an area of interest for graphics visualization
as well. This paper explores some of the hardware
architectural differences between these two classes of
system and the implications of these differences for
software applications.

1.0 Introduction
Single-system-image (SSI) computing architectures
have been the mainstay of high-performance comput-
ing (HPC) for many years. Recently, clusters of work-
stations (COW) has become another architecture of
interest in certain HPC arenas. Interactive graphics
visualization software, however, has traditionally been
implemented using SSI-based architectures. Recently,
using COW architectures to perform interactive graph-
ics (dubbed visualization COW or VizCOW) has become
a topic of research. Interactive graphics, however, uti-
lizes a system in different ways than traditional HPC
applications. In application domain, compute, or
graphics, the goal in using scalable hardware architec-
tures is to achieve software applications scalability.
This paper will explore the history, architecture, state
of current technology, and software implications in a
comparison of SSI and COW architectures for perform-
ing high-performance interactive graphics.

2.0 Interactive Graphics Requirements
Interactive graphics applications (IGAs) are those in
which the user of the application provides feedback
and sees results within some certain time period. This
definition is rather vague, but necessarily so, as the
limits on the time demands for different application
domains varies dramatically. For example, flight simu-
lators may need 60 Hz updates while CAE visualiza-
tions may require 20 Hz, and plant walk-through users
may be thrilled with 10 Hz. These frame-rate frequen-
cies directly imply certain time limits in which to
accomplish work per frame of rendering. For the
application domains just described these would be,
respectively, .0167 sec and (for 60 Hz), .0333 sec and
(for 30 Hz), and .1000 sec and per frame (for a 10 Hz
frame rate). Obviously, certain quality constraints must
be met as well, but the tradeoff will always exist
between quality and performance. Said another way, in
different application domains, assuming quality con-
straints are met, different per-frame time limits are
imposed. In IGAs per-frame time limit is one of the
most important constraints to which an application
must adhere.

Understanding that time is critical for interactive
graphics is essential to the subsequent discussions in
this paper. The key issues that differentiate COW and
SSI systems relate primarily to time management and
its subsequent demands on performance. Specific
time-related performance issues include data synchro-
nization, bandwidth and latency constraints, and visual
synchronization.

3.0 Recent History of Parallel
Computing

The history of parallel computation is long and
involved, but for this paper, only a few types of sys-
tems common in the last decade will be discussed.
Bus-based architectures originally dominated the
SSI computing space, and continue to do so for small-
CPU-count (2–16 CPU) computing systems today.
However, as a problem and data size increase, the
buses in these architectures quickly become saturated,
causing a bandwidth bottleneck. Additionally, con-
tention for memory, exhibited as latency, becomes an
issue as well, as there is only one memory subsystem
on which all subsystems perform I/O. Bus-based multi-
processor systems are known as symmetric multipro-
cessing systems (SMP) because all CPUs have equal
access to devices in the system. The scalability of bus-
based systems rapidly degrades when either the bus or
access to memory becomes the bottleneck.

However, in the early 1990s, research at Stanford [15]
into distributed-memory hardware architectures led to
systems such as the SGI® Origin® [14] server, which
alleviated the resource-contention limitation of SMP
systems. The solution was a point-to-point switched
architecture [11] with processing elements and local
memory distributed on that architecture. Access to
memory can be much more efficient with memory dis-
tributed near processors. This architecture, with
nodes (containing memory and processors) distributed
around a system is known as nonuniform memory
architecture (NUMA). NUMA is a form of distribution
shared memory (DSM) but implemented with dedicated
memory management hardware and software. As
graphics in particular requires a lot of bandwidth, hav-
ing dedicated, high-bandwidth, switched I/O near
those compute elements is also key for NUMA graphics
application performance.

Also during the early 1990s, as dedicated NUMA sys-
tems were being developed, the computing power of
CPUs continued to increase. Commodity hardware
became powerful enough for many in the scientific
community to consider doing traditional compute
applications on collections of commodity hardware.
These clusers-of-workstations were driven primarily by

3

the overall system price/performance ratio. One of the
more well-known efforts in this arena began in 1994
and became know-as Beowulf [5,4]. Though COW
architectures offer a significant price/performance
advantage, they suffer from many of the same I/O bot-
tlenecks as traditional SMP systems. In particular, the
networking hardware and software used to intercon-
nect these systems can be a significant bottleneck.

The key point in this historical retrospective is that
current high-end NUMA systems look in many ways
similar to COWs. Both have an architecture that has
many compute nodes, each with memory and process-
ing elements. However, the primary difference
between COWs and NUMA systems ultimately becomes
that of the performance of the interconnect between
and within nodes. This difference manifests itself in
different software programming techniques, and, con-
sequently, different potential uses. These differences
will be discussed in more detail in section 6.1.

4.0 Parallel Computing System for
Graphics

The previous section described the two types of sys-
tems compared in this paper from a computing per-
spective. In recent years, research has begun to appear
exploring interactive graphics on COW architectures,
such as recent research by Samanta [20]. However,
while some research has begun to appear, analysis of
the hardware and software interaction has not yet
been fully explored. Further, quality issues are largely
ignored, as most research has focused on mechanisms
by which systems are implemented and workload dis-
tributed. Display quality issues for VizCOWs are
addressed in section 5.

4.1 Application Resource Demands
SSI and COW systems used in computational applica-
tions are often stressed quite differently than for
graphics applications. Compute applications designed
for COWs are frequently coarsely parallel and designed
to spend a lot of time computing and much less time
synchronizing with other threads of execution. Hence,
computational applications are designed to exercise
the CPU and memory subsystem on a particular node
but to minimize communication among nodes. This is
a necessary consequence of the lower bandwidths and
latencies available in a COW. An IGA will often have
different requirements, particularly I/O demands at a
node.

Graphics applications must send geometric and image
data to the graphics hardware, often a complete
description of the scene to be rendered. IGAs can miti-
gate the download bandwidth requirements by choos-
ing data storage modes that reside in the graphics

hardware cache. Data which does not fit in the graph-
ics hardware cache must be transferred from main
memory to the graphics subsystem on a per-frame
basis. Data may not able to be stored in cache because
it is time-varying. Examples include CAD data that is
being edited or modified, CAE data that is continu-
ously perturbed, dynamically tessellated NURBS
surfaces, or other data that may be dynamically gener-
ated.

Graphics data that might be transferred per frame
include geometric data, texture data, image data, etc.
The memory requirements of a single vertex with posi-
tion (12 bytes), normal (12 bytes), color (16 bytes), and
texture coordinates (16 bytes) is 56 bytes [7]. A small
CAD model with 100,000 vetices, or approximately
100,000 triangles in extremely long strips, will require
nominally 5.34MB of bandwidth. A 60 Hz application
drawing this geometry will therefore use 320MB/per
second of bandwidth, not including any state changes,
setup, etc. A small 256-pixel-square, 8-bit-per-compo-
nent RGBA image or texture requires 256KB of band-
width each frame it is downloaded. A full-sized
1280x1024 pixel, 32-bit image will require 5MB of
bandwidth. Downloading or uploading full-sized
images at 60 Hz will therefore use 300MB of band-
width. Clearly, texture, image, and vertex transfer can
rapidly become a significant use of the bandwidth
available. The high-bandwidth demands of IGAs on
commodity hardware prompted a hardware evolution
from PCI to a higher-bandwidth bus dedicated to
graphics. The resultant high-bandwidth data bus for
commodity architectures, developed by Intel, is known
as AGI [1].

5.0 Multiple Graphics Pipelines
Systems with multiple graphics pipelines are typically
used for one of several reasons. One reason is to try to
address larger data sets, a second is to render existing
data sets faster, a third is to distribute or collaborate
data among a number of users, a fourth is to render to
large display formats, and a fifth is to increase visual
quality. These goals are often complementary and
interdependent, and a few techniques used to accom-
plish these ends will be explored.

A technique used for distributed or collaborative ren-
dering involves using each pipeline, or pipe, to display
a unique display to each user. One example of this is a
simulation in which multiple participants share access
to a common database, with each having a distinct
view into that data. It’s important that each user sees
the same data, but not critical that the views are dis-
played with exact synchronization. Examples include
military tank simulations and multiparticipant collabo-
rative design review.

4

A multipipe technique used to address larger data sets
(and a technique used to scale performance) is to
divide the total data among multiple pipes. Much prior
research has occurred in this area [9,23], though these
techniques are now being implemented in off-the-shelf
applications and hardware. Data is rendered to each of
several pipelines, and then the image data is captured
and composited on another pipeline for final output.
These pipelines may attempt to scale the workload
through a number of 2D and 3D decompositions.

Another scaling technique involves time-interleaving
pipelines where each pipe renders the nth frame of a
sequence of visual data, effectively multiplying the
performance by the number of pipes used in the time
progression. One pipe renders time=0, another ren-
ders time=1, and so on, to the last pipe, which renders
time=n, where n is the number of pipes in the system.
Though performance scales upward, latency also
increases by the number of frames in the pipeline.
Display decompositions require software synchroniza-
tion (and for time-based decompositions, hardware
synchronization) and large bandwidth for pixel trans-
fers among the pipelines.

A third multipipe technique involves using graphics
pipes in combination to create a large tiled display by
using multiple output display devices. Examples
include the CAVE™ [10] and SGI® Reality Center™ facili-
ties[21]. In these cases, hardware display synchroniza-
tion is critical or a number of artifacts will quickly
destroy the illusion of a coherent display.

The above usage scenarios and scalability implementa-
tions describe a few of the possible uses for multipipe
systems. In a few cases, no display synchronization is
necessary. However, in time-based and multiprojector-
based techniques, synchronization of the output visual
systems is essential to prevent visual artifacts. Several
types of synchronization are common in multipipeline
graphics systems, and these will now be described.
Details on these techniques can be found in more
detail in a white paper by Burns [6].

5.1 Frame Buffer Synchronization
Frame buffer synchronization is necessary when it is
desired to have multiple graphics pipelines redraw
simultaneously. A buffer swap, the point at which a
double-buffered graphics visual copies the contents of
the back buffer to the front buffer, is the point at
which synchronization needs to occur. Typically, this
buffer swap occurs on a vertical-retrace interval,
equivalent to the screen-refresh rate. The implication
here is that the maximum frame rate for double-
buffered application on a particular display device is

the screen-refresh-rate. For visual correctness in a
multipipe tiled display, all pipes must buffer swap at
the same time. Several techniques of varying quality
exist to allow this to occur.

5.1.1 Framelock and Genlock
Two types of buffer-swap synchronization are in com-
mon usage today: framelock and genlock. Genlock is
the capability that allows multiple pipes to refresh
each pixel of display synchronously. Framelock is the
capability of all pipes within a system to begin redraw-
ing at the same time. Framelock does not ensure that
each pipe draws all portions of the display synchro-
nously, but rather that each begins drawing at the
same time. Either type of synchroinzation is better
than no synchronization at all, but genlock synchro-
nization is the least visually disturbing, and therefore a
requirement for the highest quality displays.

5.1.2 Swap-Ready
The ability to have frame-accurate or pixel-accurate
synchronized displays is important, but one remaining
piece is necessary for a complete multipipe synchro-
nization picture. This piece is the ability for multiple
threads on multiple graphics pipelines to defer buffer-
swap commands until all pipes have completed render-
ing. This is necessary because when one pipeline fin-
ishes rendering before another, it and the other pipe
may not buffer swap on the same vertical retrace. This
introduces a visual discontinuity that detracts from
the overall quality of the display.

The ability for multiple pipes to signal their readiness
to swap is known as swap-ready signaling. Swap-ready
signaling may be performed in software over TCP/IP
or through a serial port-based mechanism. Software
mechanisms such as these are problematic because
communicating signaling data with networking or seri-
al hardware involves interaction of different hardware
subsystems. This interaction can introduce additional
latency into already latency-critical graphics applica-
tions. Swap-ready signaling implemented in dedicated
hardware as part of the graphics pipeline provides the
lowest latency mechanism, though it necessarily
involves vendors implementing this feature on their
graphics hardware.

6.0 VizCOW/SSI Comparison
As noted earlier, COW and SSI systems are quite simi-
lar in overall design, with major differences in soft-
ware and communications architectures. These differ-
ences will now be discussed with an eye towards the
graphics demands discussed in section 4.1.

5

6.1 Hardware Comparison
Typical VizCOW installations resemble traditional COW
installations with the addition of graphics hardware.
Typical COW installations are constructed from off-
the-shelf PC hardware with dedicated high-speed data
network hardware. Two common vendors of this hard-
ware are Myrinet [18] and Giganet [12]. As has been
previously discussed, bandwidth and latency are key in
IGAs, so using dedicated data-network hardware
addresses this need directly. However, this network
hardware lives on the shared-PCI bus within a com-
modity node. This bus provides anywhere between
528MB/per second (PCI 66 MHz/64-bit) and
132MB/per second (PCI 33 MHz/32-bit) of bandwidth,
depending on the variant of PCI implemented. Note
that these bandwidths are theoretical maximums and
presume no other resource will be contending for the
shared-bus bandwidth. Simultaneous communication
of multiple devices such as network controllers, SCSI
disk controllers, and others will all require portions of
this bandwidth.

Data-network cards are then typically attached to a
switch-hub, providing point-to-point connectivity and
dedicated bandwidth between nodes within the cluster.
Latencies on typical COW dedicated data-network
interface cards currently range between approximately
5 ms and 50 ms for round-trip communications. In
contrast, latencies in dedicated NUMA hardware can
be as low as 540 ns for 4-processor remote memory
access and scale to as high as 945 ns for 128-processor
average remote memory access [14]. For COWs, the
latency due to contention by multiple devices commu-
nicating on a particular node topology increases as
more nodes in the cluster are added. For example,
each node can communicate directly with another
node in a switched star topology with a known latency.
But as additional links are traversed by data, potential-
ly through multiple data-network switches, the laten-
cies further increase. Choosing efficient topologies to
minimize latency for COW architectures is important
but is beyond the scope of this paper.

Both SSI and COW systems can contain multiple
graphics cards. A variety of systems from various ven-
dors (Hewlett-Packard, Sun, SGI, etc.) exist with multi-
ple graphics adaptors contained within an SSI system.
One specific example of a scalable general SSI system
with integrated graphics is an SGI® Onyx® family
machine with InfiniteReality® graphics. The
InfiniteReality graphics architecture in the SGI Onyx

family system implements all necessary forms of syn-
chronization [16] described in section 5.1 within a SSI-
based NUMA architecture. However, in the VizCOW
scenario, commodity graphics cards are used to keep
overall system cost low. Commodity cards are designed
for commodity market segments and are typically
designed for the largest market segment, currently the
gaming community. This implies that many of the fea-
tures that give these cards extreme performance num-
bers are targeted at markets that are often different
than that which a VizCOW will address.

Another issue with commodity hardware is that these
graphics cards typically implement no synchronization
among and between cards. As discussed earlier, inter-
card synchronization is necessary for updates to
appear cohesively across multiple displays. Note, how-
ever, that commodity technology used in Samanta’s
tiled display system did not contain frame-
synchronization technology, and they resolved this
problem through exhaustive load-balancing algorithms
and software.1 In contrast, though a barrier-wait soft-
ware solution is easier to implement, it suffers from
latency and frame-accurate synchronization issues
described in section 5.

6.2 Software Comparison
In SSI systems of any particular architecture (NUMA
or SMP, for example), a single copy of the operating
system runs and controls the overall system. Software
running on systems of this sort can use traditional
programming models. Data can be shared among mul-
tiple threads using explicit shared-memory methods,
through implicit shared-data threading models or
through any other technique that might be available on
a traditional workstation. The operating system man-
ages all aspects of thread migration, memory manage-
ment, placement, and access. Applications can request
specific processor affinity or memory placements if
required. In essence, the programming of software for
a multipipe SSI system is a task to which programmers
can directly apply their existing skills. In a VizCOW
system, numerous copies of a particular operating sys-
tem are run simultaneously, one on each node. One
system in the cluster acts as the process distributor
and spreads threads of execution among various com-
pute nodes in the cluster. Software running on
VizCOWs must parallelize and share data through
explicit shared communication mechanisms, such as
MPI [7], PVM [19], or software DSM systems such as
TreadMarks [2,22].

1 The main thrust of this research was to attempt to equitably balance workload among nodes in
a system. However, one consequence of this was that all pipelines finished rendering very close
to each other and therefore buffer-swapped "within a few tens of microseconds of each other."

6

7.0 VizCOW Analysis
The previous sections explored hardware architecture,
software techniques, and graphics demands. The paper
now focuses on some analysis of the key problems fac-
ing VizCOW architectures and explores current appli-
cation and market applicability.

7.1 Bandwidth and Latency
Interestingly, results discovered in Lenoski [15] and
predating the onset of VizCOW show that having a
high-performance switched network feeding SMP
nodes can perform quite poorly in certain nonlocal
memory-access cases. Specifically, they noted that the
SMP node bus bandwidth was the limiting factor in
overall system memory bandwidth when the majority
of memory accesses by a node were not local to that
node. This result is corroborated in a different study
of clusters as performed by Cox et. al. [8] in which
they compare hardware and software DSM architec-
ture. Specifically, they noted that for low synchroniza-
tion and communication demands, software and hard-
ware DSM systems can perform comprabably; however,
as these demands increase, the software DSM perfor-
mance rapidly degrades. Both of these findings—that
synchronization for software DSM and that node bus-
bandwidth are bottlenecks—pose serious problems for
distributed interactive graphics applications.

Consider, as an example, using a fast dedicated
off-the-shelf interconnect in a VizCOW. Recent
VizCOW research using a Myrinet network (Samanta
[20]) achieved 26 ms round-trip latency and 100MB-
per-second bandwidth in an 8-node cluster. Using this
latency implies that, at most, 3.8x104 messages can be
communicated each second between two nodes in the
system. With an application with per-frame time con-
straints of 60 Hz, only about 640 messages can be
communicated each frame between any two nodes in
the system. Addressing bandwidth, using the maxi-
mum bandwidth capabilities of a 528MB-per-second
node bus interface (the PCI 66 MHz/64-bit maximum,
there is effectively only 8.8MB of communication
bandwidth per frame at 60 Hz. The system assembled
by Samanta had bandwidth yielding only 1.7MB per
frame. Further, as communications become more com-
plex among multiple nodes with a VizCOW, the band-
width and latency demands will increase, effectively
lowering bandwidth and latency.

Using Samantas bandwidth and latency numbers, 640
messages, and 1.7MB-per-frame at 60 Hz, it’s impor-
tant to calculate the number of vertices that can be
distributed between nodes, per frame. Given the previ-
ous 56-byte-per-frame per-vertex result, approximately
32,000 vertices per second can be transferred, but
give the 640 round-trip per-frame message limit, this

further implies that these vertices must be packaged
to preserve this constraint as well. The salient point is
that in the management of shared data across limited
bandwidth, high latency is a problem that requires
explicit application awareness.

7.2 Application Software
Due to the nature of a VizCOW architecture, many
application modifications are necessary to attempt to
mitigate the effects of the lower bandwidth and higher
latency inherent in the architecture. Work by Jiang et.
al. [13] into scaling HPC applications through virtual
shared-memory mechanisms finds that pure software
DSM systems can perform well, but also scale poorly.
They note in particular that applications with high
synchronization demands (latency) and high communi-
cations demands (bandwidth) scale poorly on clusters.
They further describe that the solution for these
issues is a high degree of application restructuring
and algorithmic rework. Work by Amza et. al. [3] has
been performed to attempt to automate the manage-
ment of data among nodes in a cluster. Their results
show promise for certain application data access pat-
terns, but they conclude that a purely automatic run-
time approach is difficult to automate and likely
requires user or compiler input to tune.

As with any COW architecture machine, load-balancing
is essential to good performance. Work by Samanta
explores a variety of load-balancing techniques and
achieves very good balancing among nodes in the clus-
ter. As is apparent from a variety of sources thus far in
the paper, the communication issues among nodes
must be carefully monitored at an application level to
balance workload and data transmission, and manage
latency. Samanta’s results bear this out, showing that
any form of load balancing among nodes in their clus-
ter improved performance.

7.3 Cost
One of the primary motivators for using COW architec-
ture machines, including VizCOWs, is cost. Though a
direct comparison of cost will not be endeavored at
this time, there are some general points that can be
made about SSI or VizCOW systems. First, though indi-
vidual components may appear less expensive in COW
architectures, there is overhead in system mainte-
nance, as there is now a network of individual sys-
tems, etc., to be maintained. Second, there is the
application development overhead as described above,
which adds to development costs for either custom
VizCOW applications or ideally for commercial vendors
who support VizCOWs. Lastly, there may be quality
issues in using commodity hardware that keeps the
cost low but at the expense of visual quality.
Quantification of the cost of quality is difficult.

7

8.0 Summary
Though little direct research into interactive graphics
application scalability on VizCOW architectures has
been published, the existing literature evaluating clus-
ter architectures and VizCOWs draws conclusions
which have direct and obvious applicability to graphics
applications. In particular, VizCOW architectures suffer
from a number of limitations, including:
• Bandwidth constraints among nodes in the cluster:

Bandwidth limitations are imposed by the bus inter-
face on a node, the data-network adaptor speed, net-
work speed, and the memory architecture on a node.

• Latency among nodes in the cluster: Latency perfor-
mance is limited by the bus interface on a node, the
data-network interface, the graphics interface, and
the memory architecture on each node.

• Synchronization issues among graphics pipes in the
cluster: Synchronization is limited by capabilities of
commodity graphics adaptors used in nodes.

• Application restructuring: Dramatic restructuring
is required for applications to scale. Restructuring
is necessitated particularly with respect to data
locality, parallel algorithms, synchronization, and
load balancing.

There is much research yet to be performed to
improve the state of VizCOW architectures. VizCOWs
show promise for certain problem domains in which
the effects of high latencies and low bandwidth can
be mitigated and coarse parallelism is evident.
However, VizCOW architectures currently have limita-
tions that make it difficult to implement general, high-
performance, and scalable graphics applications on
them.

Acknowledgements
Thanks to Don Burns for his excellent paper summa-
rizing frame synchronization issues. Thanks particu-
larly to Alan Commike for an exhaustive early review
and TeX help. Finally, thanks to all of my reviewers,
Janet Matsuda, Thomas True, and Herb Kuehne.

References
[1] AGP. http://support.intel.com/support/technolo-
gies/graphics/agp/.

[2] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R.
Rajamony, W. Yu, and W. Zwaenepoel. Treadmarks:
Shared memory computing on networks of worksta-
tions. IEEE Computer, February 1996

[3] C. Amza, A.L. Cox, S. Dwarkadas, L.-J. Jin, K.
Rajamani, and W. Zwaenepoel. Adaptive protocols for
software distributed memory. In Proceedings of IEEE,
Special Issue on Distributed Shared Memory, pages
467-475, March 1999.

[4] Donald J. Becker, Thomas Sterling, Daniel Savarese,
John E. Dorband, Udaya A. Ranawak, and Charles V.
Packer. Beowulf: A parallel workstation for scientific
computation. In Proceedings, International Conference
on Parallel Processing, 1995.

[5] Beowulf. www.beowulf.org.

[6] Don Burns. Multichannel synchronization with
loosely coupled low-cost IGs. Technical report, SGI,
2000.

[7] Keith Cok, Alan Commike, Bob Kuehne, and
Thomas True. Developing efficient graphics software.
SIGGRAPH 1999 Course Notes, 1999.

[8] A. L. Cox, S. Dwarakadas, P. Keleher, H. Lu, R.
Rajamony, and W. Zwaenepoel. Software versus hard-
ware shared-memory implementation: A case study. In
Proceedings of the 21st Annual International
Symposium on Computer Architecture, pages 106-117,
1994.

[9] Michael Cox and Pat Hanarahan. Pixel merging for
object-parallel rendering: A distributed snooping algo-
rithm. In Proceedings of the 1993 Symposium on
Parallel Rendering, pages 49-56, 1993.

[10] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A.
DeFanti, Robert V. Kenyon, and John C. Hart. The
CAVE: audio visual experience automatic virtual envi-
ronment. Communications of the ACM 35, June 1992.

[11] Mike Galles. Scalable pipelined interconnect for
distributed endpoint routing: The SGI SPIDER chip.
Hot Interconnects, 1996.

[12] Giganet. www.giganet.com

[13] Dongming Jiang, Brian O’Kelly, Xiang Yu, Sanjeev
Kumar, Angelos Bilas, and Jaswinder Pal Singh.
Application scaling under shared virtual memory on a
cluster of SMPs. In Proceedings of the 1999
International Conference on Supercomputing, pages
165-174, 1999.

© 2002 Silicon Graphics, Inc. All rights reserved. Specifications subject to change without notice. Silicon Graphics, SGI, IRIX, Origin, Onyx, InfiniteReality and the SGI logo are registered
trademarks and InfiniteReality3 and Reality Center are trademarks of Silicon Graphics, Inc., in the U.S. and/or other countries worldwide. All other trademarks mentioned herin are the property
of their respective owners.

3340 (07/12/2002) J14067

Corporate Office North America 1(800) 800-7441
1600 Amphitheatre Pkwy. Latin America (52) 5267-1387
Mountain View, CA 94043 Europe (44) 118.925.75.00
(650) 960-1980 Japan (81) 3.5488.1811
www.sgi.com Asia Pacific (65) 771.0290

[14] James Laudon and Daniel Lenoski. The SGI Origin:
A ccNUMA highly scalable server. In Proceedings of
the 24th International Symposium on Computer
Architecture, pages 241-251, 1997.

[15] Daniel Lenoski, James Laudon, Truman Joe, David
Nakahira, Luis Stevens, Anoop Gupta, and John
Hennessy. The DASH prototype: implementation and
performance. In 25 Years of the International
Symposia on Computer Architecture, pages 418-429,
1998.

[16] John S. Montrym, Daniel R. Baum, David L.
Dignam, and Christopher J. Migdal. InfiniteReality: A
real-time graphics system. In Proceedings of the 24th
Annual Conference of Computer Graphics and
Interactive Techniques, pages 293-302, 1997.

[17] MPI. www.mpi-forum.org.

[18] Myrinet. myri.com/myrinet/overview.

[19] PVM. www.epm.ornl.gov/pvm.home.html

[20] Rudrajit Samanta, Jiannan Zheng, Thomas
Funkhouser, Kai Li, and Jaswinder Pal Singh. Load bal-
ancing for multi-projector rendering systems. In
Proceedings 1999 Eurographics/SIGGRAPH Workshop
on Graphics Hardware, pages 107-116, 1999.

[21] SGI Reality Center. www.sgi.com/realitycenter/.

[22] TreadMarks.
www.cs.rice.edu/~willy/TreadMarks/overview.html.

[23] Scott Whitman. A task adaptive parallel graphics
renderer. In Proceedings of the 1993 Symposium on
Parallel Rendering, pages 27-34, 1993.

