
White Paper

Satellite Imaging Ground Stations: A System Overview
Rick Reid, SGI

1

1.0 Architecture Overview .2

2.0 Data Capture .2

3.0 FailSafe Capture .3

4.0 Dual-Capture Method .4

5.0 Data Storage .4

6.0 Archiving and Data Retrieval .5

7.0 Compute Servers .6

8.0 Product Servers .6

9.0 Control Servers .6

10.0 Ground Station Architectures for Real-Time Processing 8

11.0 Summary .10

2

1.0 Architecture Overview
The high-level system architecture of a ground station
is illustrated in figure 1. Sensor data is received by the
data-capture function and stored in the unprocessed-
data buffer (UDB). This data is then read from the
(UDB) by the compute servers, processed as necessary
and stored back in the processed-data buffer (PDB).
Product servers then read the processed data and
produce the required products for storage in the
distribution-data buffer (DDB) and delivery to the sys-
tem’s users. Control servers provide the data struc-
tures required for control of system resources and
allocation of these resources to the mission. The con-
trol servers also manage all data archive and retrieval
functions and provide mission control.

2.0 Data Capture
Data capture is the process of receiving downlinked
data from the satellite’s sensors, formatting the data
as required, storing it on disk, and indicating the
availability of the data for processing. The degree of
complexity of these subfunctions varies with the data-
input bandwidth and the reliability requirements of
the system. The architecture of a system capable of
receiving data at 600MB per second is considerably
different from the architecture of a system with a
maximum acquisition capability of 5MB per second.
Data paths from the I/O interface to memory must be
capable of sustaining at least 1.6 times the data-receipt
rate. Processing power must be sufficient to perform
the necessary protocol processing, data access, and
validation. As the data-capture rate increases, the
amount of protocol processing and CPU data access

prior to storage must be minimized. One way to do this
is to format input data into the largest possible blocks
and read directly into user space instead of having the
operating-system buffer copy it. SGI® IRIX® is one of
the few commercial operating systems that can provide
this capability. At a minimum, the capture system’s
memory bandwidth must be capable of sustaining the
sum of the input-data rate, CPU data access rate, and
output-data rate. Systems with global I/O capability
and multiple memory modules such as SGI®
NUMAflex™ architecture are particularly well suited to
high-performance data capture. Each input buffer can
be placed in a different memory module so that only
one of the data-capture subfunctions (input, CPU data
access, and output) is active in the memory module at
a time.

After data validation, the data block is usually written
to storage or queued to a processing function or both,
depending on the real-time requirements of the sys-
tem. A proven system design is to segregate the data
into files and queue the file identifiers for subsequent
processing. This concept facilitates the use of multiple
processes, processing partitions, or separate systems
as compute servers. Data pointers or file identifiers
are queued by the data-capture function and then
removed from the queue by the compute servers as
they complete their previous task and become available
for additional work. Should a process fail during pro-
cessing, the file identity is simply inserted back to the
queue head where it will be processed as soon as the
next available compute server completes its task. The
files may also be queued in memory for those systems
with more real-time requirements. As the input-data
rate increases, the preallocation of files in the UDB
must be considered. Normally the UDB is completely
full; therefore, files must be purged to make room for
the data associated with the next data-capture period.
It is best to perform this function prior to the start of
the real-time data capture in order to minimize the
amount of time required to open the files associated
with the new data.

The degree of data-capture reliability required deter-
mines the architecture of the data-capture function.
There are three basic approaches: single capture, fail-
safe capture used in an SGI® FailSafe™ environment,
and dual capture. The single-capture approach illus-
trated in figure 2 is the simplest to implement, the
least expensive, and the least reliable.

Data
Capture

Product
Servers

Control
Servers

Compute
Servers

Users

Ethernet

SAN

RAIDRAID RAID

Unprocessed-
Data Archive

Processed-
Data Archive

Unprocessed-
Data Buffer

Processed-
Data Buffer

Distribution-
Data Buffer

Fig. 1. Ground station architecture overview

3

With this approach, there is a single system to receive
the data and write it to storage. If this system fails, the
input data is lost and continues to be lost until the sys-
tem is repaired. The total cost of reacquiring the data
must be compared with the cost of the additional
hardware, software, and maintenance associated with
more-reliable approaches in order to determine if the
single-capture approach is best for your ground sta-
tion.

3.0 FailSafe Capture
The FailSafe capture approach is a more reliable (but
more expensive) approach. With this approach, there
are two data-capture systems; one system is online
and the other system is in standby mode. There are
three degrees of standby: cold, warm, and hot.
Cold standby means the system is not involved in the
data-capture function at all but simply has the neces-
sary capabilities and interfaces to perform the data-
capture function should the online system fail. This
approach is illustrated in figure 3.

If the online system fails, the processes running in the
standby system are terminated and the data-capture
process is started (either manually or automatically by
the control server). During the time required to load
the data-capture function and make it operational on
the standby system, all input data is lost. The advan-
tage of this approach is that the system is back online

prior to repair of the first system. Another disadvan-
tage, of course, is the cost of the second system,
although this cost is not totally allocated to data cap-
ture because the system can be used for other pro-
cessing functions when both systems are operational.
Warm and hot standby share the same architecture,
which is illustrated in figure 4.

The major difference between the systems illustrated
in figure 4 and figure 3 is the use of a LAN between
the two systems. This LAN provides the FailSafe
heartbeat. Each system pings the other system on a set
time interval. If one system fails to respond for two
sequential pings, it is reset by the pinging system and
that system assumes the online function. The process
is called switchover or failover, and for most operating
systems—certainly any that are UNIX® OS based—it
requires a minimum of 30 seconds.

A warm standby system does not receive the data from
the satellite sensor; therefore, input data is lost during
the switchover process. A hot standby system, on the
other hand, does receive the sensor data. Usually the
data is duplicated in the analog to digital hardware
and sent to both systems. Each receives and validates
the data, but only the online system stores the data in
the UDB. Upon completion of the write to storage by
the online data-capture function, a message is sent
to the standby system indicating that the data block
is safe on disk and can now be dumped by the hot
standby system. Should the online data-capture system
fail, the standby system must have sufficient buffers to
hold the data blocks being received until it decides to
take over the online function.

The advantage of the warm- and hot-standby architec-
tures is that less data will be lost if the online data-
capture system fails than in a single capture or cold-
standby approach. The disadvantages are the addi-
tional cost and software complexity.

It should be noted that the architectures in figures
2–4 likely contain single points of failure along the
data path somewhere between the RF hardware and
the storage. If the design requirement is that no data

A/D
Hardware

Data-
Capture
System

Data-
Capture
System

SAN RAID

A/D
Hardware

Data-
Capture
System

Data-
Capture
System

SAN
LAN

RAID

Fig. 3. Cold-standby Failsafe capture architecture

Fig. 4. Warm- and hot-standby Failsafe capture architecture

A/D
Hardware

Data-
Capture
System

LAN

SAN

RAIDRAID RAID

Unprocessed-
Data Archive

Processed-
Data Archive

Unprocessed-
Data Buffer

Processed-
Data Buffer

Distribution-
Data Buffer

Fig. 2. Single-capture architecture

4

shall ever be lost, then the dual-capture method is the
approach recommended. This approach is illustrated in
figure 5.

4.0 Dual-Capture Method
The dual-capture approach eliminates all single points
of failure. Satellite sensor data is received over dual
analog to digital hardware, sent to separate capture
systems, and written to separate RAIDs via separate
SAN switches using different RAID controllers. Both
data-capture systems receive, process, and store the
data using completely independent hardware. One of
the redundant data files created in the UDB is deleted
by the control server upon completion of status pro-
cessing from each of the data-capture systems.
Undoubtedly this is the most reliable data-capture
approach, but it is also the most costly.

5.0 Data Storage
The data storage architecture of a ground station is
also highly dependent upon the data-capture rate and
the degree of reliability required. If data can afford to
be lost, JBOD storage may be the best solution (and
most likely has the lowest cost). If the requirement is
to never drop a bit, then dual capture and dual RAID-
based volumes are the answer.

When the total of the data-capture write rate plus the
processing and archiving read rates exceed the sus-
tainable rate of a single RAID controller, multiple RAID
volumes must be utilized for the unprocessed-data
buffer. For example, a UDB capable of sustaining 1GB
per second alternating reads and writes requires at
least eight Fibre Channel interfaces, four RAID con-
trollers (assuming each 2Gb-per-second Fibre Channel
interface can sustain 125MB per second and each con-
troller can sustain 250MB per second), and four RAIDs
(logical units) per controller. It also requires a volume
manager and filesystem capable of creating and effi-
ciently using logical volumes of this magnitude. Not all
SAN filesystems are capable of efficient high-speed,
multivolume operations. SGI IRIX has demonstrated
2GB-per-second sustained bandwidth deployed in a
multivolume UDB ground station architecture.

As the storage data rate increases, several other fac-
tors must be also be considered in the design of the
system architecture. The filesystem’s ability to issue
I/O directly from user space becomes critical. The
latency required for one or more copies of the data
by the filesystem not only wastes precious CPU and
memory resources but makes it more difficult to keep
the RAID queues sufficiently loaded to prevent idle
disk time.

The size of the data blocks is also important, especially
as a higher percentage of peak performance is
required from the storage architecture. The bigger the
data block, the more time that is spent by the drives
actually reading or writing instead of shifting the
heads or simply being idle. Another factor, which must
be considered in determining the correct block size, is
the number of disk drives in the buffer architecture.
In the example described above where the UDB must
sustain 1GB per second, if 4+1 RAID 3 were used for
each RAID, data would be stripped across 64 user dri-
ves and 16 parity drives. A 64MB data block would
therefore result in 1MB of data per drive. A drive capa-
ble of sustaining 25MB per second would therefore
require about 40 milliseconds to read or write the data
and would be capable of storing multiple data blocks in
its cache. In addition, it is best to not mix data block
sizes in a volume. If all data blocks in the volume are
the same size, fragmentation is minimized as files are
repeatedly created and deleted. It is preferable to pro-
vide a separate volume for support data and other files
that have small data blocks.

The use of a SAN and a shared filesystem are very
beneficial in a ground station architecture. SGI® SAN
performance is very close to 100% of direct storage
performance when large files are usually only being
accessed by a single process and few if any files are
modified after creation. Data therefore can flow
between storage and the servers in the system at full
storage rates, and network bandwidth limitations are
eliminated. However, as the necessary storage buffer
bandwidth increases, so must the number of Fibre
Channel interfaces per server, and the number SAN
switch ports increase. In a system with an
unprocessed-data buffer that sustains 1GB per second
and two capture servers, 24 SAN ports would be
required just for the capture servers and the RAID
controllers. If there were four compute servers (not
unrealistic for a system processing 1GB per second),
each with eight FC interfaces, another 32 ports would
be required (56 ports total) just to access the
unprocessed data. This does not include the ports
required for archive recorders and the other buffers in
the system. The SAN can easily expand to require mul-
tiple 64-port SAN switches. Most compute servers do

A/D
Hardware

Data-
Capture
System

Data-
Capture
System

SAN RAID

SAN RAID

Unprocessed
Data

Fig. 5. Dual Capture Architecture

5

not need read access at the rate required for data cap-
ture. Therefore, the number of Fibre Channel inter-
faces per compute server can be reduced. This pre-
sents a problem when a capture server is writing to
the UDB in parallel over multiple Fibre Channel inter-
faces and the compute servers are reading from the
same volume over far fewer interfaces. The duration of
the read operation will be limited by the sustainable
bandwidth of the Fibre Channel interfaces to the com-
pute server. For example, if the capture server has
eight Fibre Channel interfaces and the compute server
has two Fibre Channel interfaces, the compute server
read operation will take approximately four times as
long. The longer duration for each data-block read
delays completion of the write operations from the
capture server because it ties up the necessary drives.
This results in longer write completion times and
requires more memory buffers in the capture servers
to compensate for the delays. This problem can be
compounded even more when several compute servers
all issue read operations at the same time. The capture
server’s write operation may then have to wait for
completion of all the queued reads.

The number of SAN switch ports can be reduced by
combining multiple compute servers into a single sys-
tem. The global I/O capability of IRIX and SGI® Origin®
3000 series servers allows the I/O interfaces to be
shared by the compute servers. This allows multiple
compute servers to share the full number of Fibre
Channel interfaces to the SAN and eliminates the
problem of slower read rates.

6.0 Archiving and Data Retrieval
Both the unprocessed data and the data products pro-
duced by the system are usually archived as part of
the normal processing inherent in a ground station.
The unprocessed data is retained so that it can be
reprocessed in the future to reproduce the original
product or to make additional products by using differ-
ent parameters or algorithms. Products are archived
so they can be readily available for retrieval and distri-
bution to customers without having to be completely
reprocessed from scratch. This approach results in two
archives, usually called the unprocessed-data archive
(UDA) and the processed data archive (PDA).

Several factors affect the design of the UDA and PDA.
The most significant factor is the data-capture rate
and the size of the unprocessed-data buffer. If the
UDB can store 24 hours of unprocessed data, there
must be a sufficient number of recorders in the UDA
to record this same amount of data in 24 hours:
archiving a day’s worth of data in a day.

If the UDB can only store one satellite’s orbit of
unprocessed data, the UDA must be able to archive the
peak amount of data received per orbit within one
orbit’s time. The smaller the UDB capacity, the more
UDA recorders required. And, conversely, the larger
the UDB, the fewer UDA recorders required.

Another factor that must be considered in the design
of the unprocessed-data archive is the data retrieval
rate. The amount of data retrieved from the UDA to the
UDB must be considered in the capacity-requirement
calculations of the UDB as well as in calculating the
number of UDA recorders required. The number of
retrievals must also be considered in the recorder-
quantity calculations. Most likely, retrievals will have a
much shorter time requirement than other UDA data
storage operations. Customer requests are not usually
averaged over some period but instead are given a
higher priority than archive storage functions.
Consequently, recorders are allocated to retrieval
operations as required (up to a certain threshold)
thereby reducing archive storage operations. It is
recommended to always leave some recorders
dedicated to UDB storage operations.

The size of the processed-data archive is a function of
the capacity of the distribution-data buffer, the size of
the products produced, and retrieval rate required for
the PDA. Like the UDA, the buffer capacity determines
how much time there is to archive the data. Again, if
the DDB can hold a day’s worth of product files, then
the number of recorders is determined by the speed of
the recorder, the duty cycle of the recorder, and the
time allocated to archive the buffer. This formula is
illustrated in figure 6 below.

A recorder duty cycle of around 50% will usually com-
pensate for media access, media load, tape position-
ing, repositioning of the media after the file transfer,
and media unload times. However, if the sum of these
times is greater than the file transfer time for the
average file size and the particular hardware selected,
lowering the percentage is recommended.

Products should always first be retrieved from the
distribution-data buffer because it provides the fastest
possible access to the data. If the desired product/file
is not available on the DDB, the next location queried
should be the PDA. If found, the file would then be

Buffer capacity in MB

(Recorder rate in MB/sec)
(Seconds allocated for buffer storage) (Duty cycle %)

Number of
recorders required

=

Fig. 6. Archive recorder algorithm

6

retrieved from the PDA to the DDB. Failure to locate
the desired file in either the DDB or PDA means
reprocessing is required. The order of retrieval from
this point would be the processed-data buffer, the
unprocessed-data buffer, and lastly, the unprocessed-
data archive.

7.0 Compute Servers
Most compute servers do not need read access at the
rate required for data capture. For example, if the pro-
cessing algorithm requires around 1,000 operations per
input sample, 1GB-per-second processing would
require a system of over 1 TFLOPS. The amount of
time allocated for processing is often determined by
the production requirements of priority products. The
compute server is sized to perform the processing
required for the highest priority product within the
allocated time. Processing-time allocations can also be
determined by the frequency of vehicle contact. If the
vehicle has a 90-minute orbit and only a single contact
per orbit, then processing-time allocation is the time
between the ends of the vehicle contact periods: basi-
cally, completing an orbit’s worth of processing per
orbit.

The maximum benefit is obtained from the compute
servers when the processing algorithms are kept as
busy as possible. This is accomplished by always hav-
ing the n+1 data file, or at least multiple data blocks of
the total file, buffered in memory for processing when
the algorithms complete processing on the nth data
file. This requires that the I/O read and write func-
tions be performed by an application driver in parallel
with algorithm processing. The application driver com-
municates with the control servers to obtain the path
identities of the files to be processed and created by
the compute server. It opens both the input and output
files, allocates buffers, and reads the data file (and all
support data) into the global memory buffers. The
global buffer addresses are then passed to the algo-
rithm processes for processing when they are avail-
able. The algorithm-process CPUs access their individ-
ual portions of the global memory buffers, process the
data in their local memories, write the processed data
back to the global output memory buffers, and signal
the application driver that the output data is ready for
storage. The application driver then writes the data file
or data block back to the appropriate storage buffer.
While this process is going on for the nth file or data
block, the application driver is reading the n+1 file or
data block into a second set of global memory buffers.
The design goal is to always have a set of buffers avail-
able for the algorithm-process CPUs so that these

processors never go idle. Optimizing the algorithm
processes and assuring that file I/O times do not
exceed file processing times will result in maximum
utilization of the compute servers.

8.0 Product Servers
Product servers, like compute servers, process files.
They read data files from the processed-data buffer,
turn them into products, and write these products to
the distribution-data buffer. These products are then
queued and distributed to users by the control servers
as requested. Product servers also read files from the
DDB to combine them with recently processed files or
to redistribute existing products.

Ground stations process raw satellite data to create
varying levels of geospatial products, which meet a
broad range of needs. Examples of these product
levels are:
•Level 1: Radiometrically corrected—oriented to sen-

sor patch, corrected for transmission errors, adjusted
for brightness/contrast

•Level 2: Standard geometrically corrected—corrected
for systematic distortions, no ground control points
or terrain elevation required

•Level 3: Precision geometrically corrected—ground-
control points improve product accuracy; rectified to
a constant elevation

•Level 4: Orthorectified—constant elevation and cor-
rected for terrain relief

•Level 5: Digital terrain data—precision terrain infor-
mation and stereoscopic imagery pairs

•Level 6: Pan-sharpened—multispectral data sharp-
ened with black-and-white data of same area

•Level 7: Mosaics—digitally assembled images to
create large contiguous areas; applied to levels 2, 3,
4, and 6

Product levels 1 and 2 are usually provided by the pro-
cessing functions of the compute servers. Product lev-
els 3 through 7 are produced in the product servers.

9.0 Control Servers
Control servers provide three major functions in a
ground station. These functions are resource manage-
ment, process management, and mission management.
All of these functions require databases, interprocess
communications, and the support of a high-availability
system architecture.

Resource management maintains the state of the com-
puter systems and networks in the ground station. The
functional state of each capture server, control server,

7

compute server, product server, disk drive, RAID con-
troller, network path, and SAN switch and port is
maintained in a database. The possible states for each
piece of equipment are illustrated in figure 7.

The in-service-online (ISO) state indicates the unit is
operational and available to perform its function in the
online system architecture. Failure of a unit moves the
equipment from the ISO state to the out-of-service-
failed (OSF) state. Once a unit enters OSF, it must be
serviced and repaired. After repairs are complete, the
unit is taken to the out-of-service-test (OST) state
where vendor diagnostics, etc., can be executed, but it
is not certified as operational. Upon completion of
diagnostics, the normal transition from OST is to in-
service-test (IST), where the required software is
loaded and the unit reestablishes communications
with the control servers. However, under emergency
conditions in which this unit is required to continue
ground operations, the unit can move directly from
the OST to the ISO state: caution is recommended.
Following establishment with the control servers
and software synchronization, the unit moves to the
in-service-standby (ISS) state or the ISO state,
whichever is appropriate. Defining states for all units
in the system allows for quick identification of the
configuration and for easy determination of available
resources for operations.

Resource management also includes buffer and archive
management. Files in the UDB, PDB, and DDB are not
deleted until the disk space is required for newer data.
Running the buffers in this “full” manner provides the
fastest possible access to the data for retrievals and for
restarting processes after a failure. If a compute or
product server fails, its output files are purged and its
input files are simply queued to the next available
server. The control server database maintains the iden-
tity and capacity of the oldest files marked for possible
deletion in each of the buffers. Files are marked for
deletion after they have been processed and archived
as necessary. Prior to the start of a data-capture peri-
od, buffer management calculates the storage capacity

required in each of the buffers for all data to be
received and created as a result of the upcoming data-
capture period. This amount of storage is purged from
each of the buffers. Files are then allocated for each
file to be generated. Preallocation of files minimizes
the real-time delay associated with dynamic deletion
and creation of data files. The new file identities are
maintained in the database and distributed as part of
the queue entries sent to the archive management,
application driver, and product server processes.

When there are multiple volumes in a single buffer,
load leveling must be considered. Load leveling main-
tains a similar fill level in each of the volumes in a
single buffer. Several factors should be considered
when determining which files should be deleted and
created on which volumes. The files should be as
evenly distributed as possible across the volumes. For
example, if most of the files created in a data-capture
period were to be allocated to a single UDB volume,
then that volume would not only receive most of the
write activity while other volumes were less busy, but
would also receive most of the read activity as the data
was being processed.

Buffer management must also consider file size when
trying to evenly distribute the files. Not all files
received from a satellite are of the same size—some
are very small and some are very large. Allocation of
multiple large files to one volume and multiple small
files to another volume results in an imbalance of vol-
ume capacity as files age. The final factor considered
when load leveling buffer volumes is the processing
priority of the data. If all the high-priority files are
written to a single volume, all compute servers will
immediately try to access that volume as the files are
queued for processing.

Archive management is another subfunction of
resource management running on the control servers.
It involves several tasks depending upon the complexi-
ty of the archive requirements. The main tasks include
copying the required data files to the archives, retriev-
ing files back from the archive, managing the archive
content database, communicating with the robotics
control software, deleting files and compacting tapes,
and, possibly, managing a “shelf” archive.

The efficiency of copying files to the archive depends
on the organization of the tapes and the number of
retrievals expected. The most efficient method for
organizing an archive with low retrieval rates is to
mount blank tapes, calculate which files will best fit
on the available tapes, and initiate parallel copy opera-
tions beginning with the oldest files. This minimizes
the number of tape mounts, streams files to tape, and
fills the tapes as much as possible. It also makes aging

ISO

OSF

OST

ISS

IST

Fig. 7. Equipment state diagram

8

the archive by date very easy—full tapes are simply
either overwritten or removed from the online archive
and stored offline. However, if frequent retrieval of
files involves multiple files associated with specific
criteria, such as geographic location, it would be best
to archive the data according to the desired criteria.
This results in more tape mounts during tape storage
operations but far fewer mounts and therefore faster
retrievals where time is more important. For this rea-
son, the organization of the unprocessed-data archive
may not be the same as the organization of the
processed-data archive.

Process management is the second major function of
the control server. It involves control over and initia-
tion of the data capture, data processing, product pro-
cessing, and product distribution processes. The
process manager receives information from mission
management about the data to be captured during the
next satellite contact period and the products to be
produced. This information is stored in the control
server database. The resource manager is then tasked
to delete files until sufficient space is available and to
allocate the required buffer files for the next contact
period. When the resource manager completes its
buffer management function, the information defining
capture times, sizes, and associated file-path identities
is formatted into a capture plan and transmitted to the
capture servers. As each file is captured and written
to the UDB, the status of the file is transmitted to the
process manager and stored in the control server data-
base. If dual capture is being used, the status from
each capture server for this input file is compared and
the file with the best status is selected for further pro-
cessing. The other file is marked for possible deletion.
Once the selected file is identified, the process man-
ager analyzes the input queues of the compute servers
and adds the file’s path identity and other processing
support data to the correct server’s work queue. The
correct server can be determined by a number of dif-
ferent criteria, ranging from which is the least busy to
which has specific algorithms loaded for this particu-
lar file. The specific and often dynamic capabilities of
the compute servers are maintained in the control
server database. Status is transmitted back to the
process manager each time the file completes a step in
the series of events it must go through, from capture
to final product archiving. The process manager jour-
nals these status messages for failover recovery,
processes them, and queues the newly created files to
the next appropriate process for each step in the
series. If a compute server or product server should
fail during the series, the process manager simply
queues the input file to another server capable of per-
forming the failed step.

Mission management is the process of receiving the
user’s collection or retrieval requests, determining
how and when those requests can best be satisfied,
tasking the satellite, and then providing the details of
the collection and the products required to the process
manager.

Users request an area to be collected by identifying
the area geographically via latitude/longitude coordi-
nates or by specifying the name of an area in the mis-
sion management’s database. They may also specify
the type and quality of the collection desired. Graphics
capability is a significant help to the user in producing
requests. Mosaic images of the desired area can be
overlaid with graphics showing specific vehicle orbits,
imaging capabilities, and known targets from the data-
base. This type of visualization greatly reduces the
time required to generate a valid imaging request.

Mission management receives and verifies these
requests, determines how they can best be satisfied,
and assigns them to a specific orbit of a specific col-
lector. Once all nominations for a specific orbit of a
specific vehicle are determined (by reaching either a
cutoff time or the vehicle’s capacity), the necessary
vehicle activities associated with the requests are sim-
ulated to ensure the vehicle’s capabilities are not
exceeded. Upon completion of the simulation, a vehicle
command list is prepared and verified. Another simu-
lation is usually used for this verification to make sure
that the vehicle’s capabilities are not exceeded. The
details of each user’s request are acknowledged back
to the user at this time as well as being transmitted to
the process manager for capture and processing
scheduling. Once the command list has been verified,
it is ready to be uplinked to the vehicle. Orbit tasking
is usually prepared several revolutions prior to actual
usage. Also, command lists are usually stored on the
vehicle for more than one orbit should the ground sta-
tion be unable to communicate with the vehicle for
some period of time. This eliminates the possibility of
a wasted orbit due to failed communications.

10.0 Ground Station Architectures for
Real-Time Processing

Ground stations that require real-time processing of
the data usually have a different system architecture
than the architecture illustrated in figure 1. The
unprocessed data may or may not be stored on disk
but is routed directly to the compute servers for pro-
cessing. Usually, not all of the processed data is saved,
just those segments or files of interest. As figure 8
illustrates, there are still capture servers, compute
servers, product servers, control servers, and archives
in a real-time ground station, most with functions sim-
ilar to those described previously.

9

The main difference between the figure 8 architecture
and the architecture shown in figure 1 is the routing of
unprocessed data from the data capture function
directly to the compute servers. If the unprocessed
data must be saved, it is also routed simultaneously to
a file server for storage in the unprocessed-data
buffer. Specific attention to the design of the network
connecting the components of the architecture is
required for real-time systems. If the input data rate is
very high, 1GB per second for example, each link in the
network must be able to sustain at least this rate.
Therefore, in the example, each link must have a peak
bandwidth of around 1.6GB per second. The SGI Origin
3000 series processor interconnect is well suited to
move large data blocks between processes or parti-
tions because of its 3.2GB per second per link band-
width.

Processing data in real time is easier to do if it is pos-
sible to segment the data into chunks or granules. Data
is received for a certain period or until a natural sepa-
ration point is determined, and the resulting
unprocessed data granule is transmitted over the SGI®
NUMAlink™ interconnect and queued to a compute
server process or partition. The next granule is
received, transmitted, queued to another compute
server, and so on for each of compute servers in the

architecture. This concept allows the real-time pro-
cessing load to be distributed among the number of
compute servers it takes to handle the granule input
rate such that an idle compute server is always avail-
able.

For example, if data is coming in at 100MB per second
and the granule size is 10 seconds (or 1GB) of data, and
there are 10 compute servers, each server would have
100 seconds to process a granule and be ready for its
next granule. The output from the compute servers
would be transmitted and queued to a product server
in the same manner, as would the products produced
from the granule. Data granules can also be transmit-
ted to a file server after each step in the process and
written to storage as necessary. All transfers are mem-
ory and all granule queues are memory based. The
goal of this architecture is to keep the compute and
product servers as small and as busy as possible
because they are the most expensive resource in the
architecture.

An added benefit of this architecture is the possibility
of reducing maintenance costs while at the same time
increasing the processing power available and the sys-
tem availability. The addition of two more compute
server partitions than are necessary for real-time pro-

Data
Capture

Product
Servers

Control
Servers

Compute
Servers

File
Servers

Users

Unprocessed
Data Granules

Unprocessed-
Data Buffer

Unprocessed-
Data Archive

Processed-
Data Archive

Distribution-
Data Buffer

Control-
Data Buffer

Processed
Data Granules

Processed
Data Granules

NL

NL

NL

NL

Unprocessed
Data

Support
Data

Support
Data

Support
Data

Product
Data

FC2 or 1B

Fig. 8. Real-time ground station processing system architecture

10

cessing means that two partitions can fail and the sys-
tem can still continue processing in real time. Having
these two extra partitions allows the maintenance pol-
icy to be reduced to 48-hour response because of the
low probability of three partitions failing within 48
hours.

In addition, the need for on-site spares is reduced
considerably because replacement parts can be
shipped via overnight delivery. The maintenance-cost
savings easily pays for the extra partitions in the first
few years of operations. The processing power avail-
able on-site is increased because the two additional
partitions are used as normal compute or product
servers, thereby increasing the peak processing capa-
bility of the ground station. In addition, the availability
of a system with two additional servers will exceed
0.9999.

11.0 Summary
The complexity of a satellite ground station architec-
ture is determined by the input-data capture rate, the
amount of processing required to produce the end
products, and the degree of automatic operations
desired in a multisystem architecture. A high input-
data rate affects the selection of the capture server
itself and the design of the data storage buffers and
the network or SAN connecting the system compo-
nents. The input-data-capture rate and the amount of
processing required per input sample determines the
size and number of compute and product servers
required. The more systems required the more com-
plex the ground station. The degree of automation of
the processing steps and desired recovery from fail-
ures increases the complexity of the control server
code and those applications that communicate with it.
However, it greatly increases the performance and
operational stability of the ground station.

© 2002 Silicon Graphics, Inc. All rights reserved. Specifications subject to change without notice. Silicon Graphics, SGI, IRIX, Origin, and the SGI logo are registered trademarks and NUMAflex,
FailSafe, and NUMAlink are trademarks of Silicon Graphics, Inc., in the U.S. and/or other countries worldwide. UNIX is a registered trademark of The Open Group in the U.S. and other countries.
All other trademarks mentioned herin are the property of their respective owners.

3285 (5/02) J13845

Corporate Office North America 1(800) 800-7441
1600 Amphitheatre Pkwy. Latin America (52) 5267-1387
Mountain View, CA 94043 Europe (44) 118.925.75.00
(650) 960-1980 Japan (81) 3.5488.1811
www.sgi.com Asia Pacific (65) 771.0290

