
White Paper

SGI® OpenGL Vizserver™ 3.5
Visualization and Collaboration
(Application-Transparent, Remote, Interactive)

Table of Contents

1 Introduction..1
1.1 Collaboration ..1

1.2 Application and Desktop Sharing ..1

1.3 Resource Centralization ..1

1.4 Scalability ..1

1.5 Server-Client Independence ..1

2 OpenGL Vizserver Architecture ..1
2.1 Implementation Details..2

2.1.1 Hardware Readback ..3

2.1.2 Desktop Sharing..3

2.2 OpenGL Vizserver Pipeline ..3

2.2.1 Readback (Server) and Draw (Client) ..4

2.2.2 Spoiling..4

2.2.3 Compress (Server) and Decompress (Client) ..5

2.2.3.1 Interframe Compression ..5

2.2.3.2 Delta Color Cell Compression (CCC, ICC, SCCC, SICC)..6

2.2.3.3 JPEG Compression ..6

2.2.3.4 Lossless Compression..6

2.2.3.5 ZLIB Compression ..6

2.2.3.6 Custom Compressors ..6

2.3 Collaboration ..6

3 Optimizing OpenGL Vizserver Performance ..7
3.1 Network Bandwidth ..7

3.2 Network Latency ..7

3.3 Processor Utilization..7

3.4 Monitoring OpenGL Vizserver Performance ..7

3.5 Expected Performance ..8

4 Application Compatibility ..8
4.1 Ideal Application Design ..8

4.2 Desktop Sharing..9

4.3 Hardware and Software Composition ..9

4.4 Cross-Platform Application Execution ..9

5 Environments ..10
5.1 High-Resolution Servers and Low-Resolution Clients ..10

5.2 Multipipe Servers and Multipipe Clients ..10

5.3 Multipipe Servers and Single-Pipe Clients ..10

6 Security 10
7 Pipe Allocation/Management ..10

7.1 Dynamic Pipe Allocation ..10

7.2 Static Pipe Allocation ..11

1.0 Introduction
The OpenGL Vizserver™ computing solution is one of the key
enabling technologies in a Visual Area Network (VAN). These
solutions distribute the interactive graphics generated by power-
ful visual servers to remote, thin clients. VAN enables remote
users and distributed teams to manipulate and visualize large
data sets at rates that are tens to thousands of times faster than
is possible with desktop systems.

OpenGL Vizserver enables users of remote workstations, lap-
tops, and even wireless tablet computers to use existing
unmodified applications to access and control the power of
Silicon Graphics Prism™ and SGI® Onyx® families of visualization
systems and collaborate with one another by selecting from
existing visualization applications based on X11 and the Open
GL® API or by sharing the entire desktop from the server. The
Silicon Graphics Prism and SGI Onyx families of visualization
systems can be deployed as shared group, departmental, or
enterprise visual servers in the manner that best matches the
needs of an organization.

1.1 Collaboration
The OpenGL Vizserver architecture is designed to allow multiple
clients in a geographically dispersed network to create a fully
collaborative work session. This architecture provides the capa-
bility to gather input from any OpenGL Vizserver client and treat
that input as if it were the “local” input that has direct control of
the visualization application. Passing control from client to client
can be strictly moderated by a session master or allowed to
happen in an unmoderated, arbitrary fashion. This control mech-
anism provides the flexibility necessary to conduct formal
design reviews or unstructured brainstorming sessions.

1.2 Application and Desktop Sharing
With OpenGL Vizserver 3.5 and higher, users have two options
for the scope of graphics being served: application-based or
desktop sharing mode. In application-based mode, users select
specific application windows to be served. With desktop sharing
mode, users are able to access and share the entire desktop
from the server, enabling greater flexibility for a wider range of
applications.

1.3 Resource Centralization
Centralizing the visualization resources allows for the consolida-
tion of data, additional security of that data, and alleviation of
the need for data replication to local desktops. Also, since only
the visual servers need to be upgraded to meet increased
visualization demands, desktop upgrades are simplified and
copy-data demands for network upgrades are eliminated. An
added benefit of the OpenGL Vizserver approach is that network
bandwidth to clients remains constant while the data set sizes
and computational complexity of the visualizations can increase
without bound.

1.4 Scalability
OpenGL Vizserver leverages the scalability provided by Silicon
Graphics® visualization systems. Scalable graphics hardware
includes support for multiple graphics pipes, SGI Scalable
Graphics Compositors, and SGI Scalable Graphics Capture
(SGC) cards. The compositors provide a hardware solution to
joining and cascading the video output of two or more graphics
pipes and outputting them in a single video output. The SGC
cards provide enhanced hardware readback including the
ability to ingest external DVI signals from hardware compositors
or other computers.

On the software side, SGI provides a full range of toolkits that
enable scalable applications. The toolkits include products like
OpenGL Performer™ and OpenGL Multipipe™ SDK.

1.5 Server-Client Independence
OpenGL Vizserver supports clients that range from a Silicon
Graphics Prism supercomputer to clients with little computa-
tional and graphics power. When collaborating over a VAN, a
heterogeneous mix of clients running various operating systems
may be in use. To ensure that client rendering does not become
a bottleneck, each client utilizes native drawing mechanisms
that deliver the highest performance for that particular client
platform.

2.0 OpenGL Vizserver Architecture
OpenGL Vizserver software has two primary components: a
server and a client. The server must be one of the Silicon
Graphics visualization systems—for instance, a Silicon Graphics
Prism or SGI Onyx system. The OpenGL Vizserver client runs on
a variety of operating systems including IRIX®, Linux®, Microsoft®

Windows®, Mac OS X®, or Solaris™ operating systems, and the
client system need not have extensive graphics or computa-
tional power.

The server manages graphics resources (for example, graphics
pipelines) and monitors the visualization application activity.
Once a visualization application is started, the OpenGL
Vizserver server will assign the application the requested
graphics resources and begin serving the application-rendered
frames to the OpenGL Vizserver client. This visual serving is the
basis of the OpenGL Vizserver technology and the SGI VAN
strategy. Only after a visual application has rendered a frame
will OpenGL Vizserver intercede and capture that frame. The
captured frame can be a small fraction of the original data set
size and orders of magnitude less complex, because only the
pixels associated with the screen representation of the data are
captured.

1

Each frame captured is compressed using either lossy or loss-
less data compressors that take advantage of interframe
coherency to minimize the amount of data sent to the OpenGL
Vizserver clients. Once compressed, the image stream is sent to
the client. An OpenGL Vizserver client is a lightweight applica-
tion that reads the image stream from the OpenGL Vizserver
server, uncompresses the stream, and displays the uncom-
pressed image on the client computer. The OpenGL Vizserver
client directs all user interaction back to the OpenGL Vizserver
server to create a seamless visualization environment on the
client as if the user were interacting locally with the SGI graphics
supercomputer.

2.1 Implementation Details
Figure 1 illustrates the architecture of OpenGL Vizserver. The
philosophy behind OpenGL Vizserver is one of “Execute and
Monitor.” To that end, it monitors all calls to the OpenGL and X11
application libraries, relying on the native OpenGL and X11
implementations as if OpenGL Vizserver were not running.
Information gathered by monitoring OpenGL and X11 is passed
to the OpenGL Vizserver run-time system that handles all
aspects of running OpenGL Vizserver. All API calls into the
OpenGL and X11 libraries occur as expected, in the order
expected, without side effects. An application that runs correctly
against the native libraries will also run correctly in an OpenGL
Vizserver installation.

In order for OpenGL Vizserver to effectively monitor OpenGL
and X11, it inserts a wrapper around the libGL.so and
libX11.so API entry points. These wrapper libraries are trans-
parently used when an application is started in the OpenGL
Vizserver environment. Applications that are statically linked or
those that dynamically load libGL.so and libX11.so will not
transparently use the wrapped libraries and will not function
correctly in the OpenGL Vizserver environment.

There are wrapper libraries for OpenGL and X11 that target o32,
n32, and 64-bit MIPS® ABIs (Application Binary Interface) on
IRIX and the 64-bit Itanium™ ABI on Linux. Each of these libraries
will work with a single-threaded application or a multithreaded
application using sproc, pthread, or fork thread programming
models. An application running in the OpenGL Vizserver
environment will use these wrapper libraries for libGL.so and
libX11.so in place of the native libraries. The wrapper libraries
enable OpenGL Vizserver to monitor select OpenGL and X11
API calls by augmenting the API entry points with additional
code that records the information needed by OpenGL Vizserver
to effectively process the rendered scenes. Those API entry
points that do not need to be monitored by OpenGL Vizserver
are called directly by the application as if OpenGL Vizserver
were not in use. The monitored API entry points first call the
native API entry points and then record the information that is
needed by OpenGL Vizserver.

2

Compression
modules

Session manager
(vssesion)

Client
keyboard and�
mouse input

Authentication
modules

Authentication
modules

Decompression
modules

Xserver

libvsx.so

Application

X/OpenGL

Graphics pipes

Server manager
(vizserver)

vsconfig vsadmin
Reservation

web
interface

Performance
monitoring

tools

Client process
(vizserver)

Client side

Server side

Client
display

Fig. 1. OpenGL Vizserver Architecture

Recording data from the monitored libGL.so and libX11.so
API entry points is handled by functions within the libvsx.so
OpenGL Vizserver run-time library. This run-time library encodes
a protocol that allows the library to communicate with the
OpenGL Vizserver run-time system, vssession, which provides
all of the OpenGL Vizserver functionality. The run-time system
runs as a separate process in the system in order not to intro-
duce side effects into the monitored application. The protocol
used between the libvsx.so and the OpenGL Vizserver run-
time system communicates through a shared memory segment
that is shared between the run-time library and server. This
approach ensures a minimal performance impact of monitoring
API entry points. Each monitored entry point first calls the native
API entry point, allowing native calls to process data as normal.
It then writes data to the shared memory segment using the
OpenGL Vizserver communication protocol and signals the run-
time server that new data is available. The monitored API entry
point will not return to the application until the OpenGL Vizserver
run-time system acknowledges that it has recorded the new
information.

The monitored OpenGL and X11 API entry points allow OpenGL
Vizserver to record events of interest in the lifetime of an appli-
cation. These events of interest include window creation,
window movement, mouse movement, buffer swaps, window
destruction, application exit, and others. As each event occurs,
OpenGL Vizserver takes the appropriate action based on the
number and types of clients that are connected across the VAN.
One of the primary events of interest is a buffer swap in a win-
dow that OpenGL Vizserver is monitoring. This event triggers
OpenGL Vizserver to read back the application’s framebuffer,
compress the resulting image, and write that image out to the
network for each client. This pipeline ensures that the readback
and compression steps are performed only once for all clients.
The readback is done inside the monitored API entry point that
triggered the event, not in the OpenGL Vizserver run-time sys-
tem. This ensures that the graphics pipeline will not have to
context-switch between the run-time system and application
each time a readback is triggered.

On the client side, the data is read in from the network, uncom-
pressed, and then drawn to the local graphics display. OpenGL
Vizserver monitors the region of interest associated with each
window in use by an application running in the OpenGL
Vizserver environment. This region of interest includes the
OpenGL rendering area and X11 renderings including menus,
icons, and dialog boxes. The entire area of interest is read back
from the framebuffer, compressed, and shipped to the client.

2.1.1 Hardware Readback
When SGC cards are installed in the system and are connected
to the outputs of the graphics pipes being used by the OpenGL
Vizserver session, the framebuffer readback will be done using
these cards. Instead of performing software readback inside
libvsx.so (and, thus, within the application process), the
framebuffer is read from the SGC cards that are connected
to the graphics pipes output. The communication between
libvsx.so and vssession is reduced in this case to the events
required for OpenGL Vizserver functionality without the actual
pixel data. The readback performance is increased when using
this method, and the influence of OpenGL Vizserver on the
application’s process is reduced to the bare minimum.

2.1.2 Desktop Sharing
Upon startup of an OpenGL Vizserver session, the user can
choose to make it a desktop sharing session. In desktop sharing
mode, instead of serving specific application windows, OpenGL
Vizserver serves the whole server-side desktop to the client. The
library libvsx.so is not used in this case, and vssession
reads the entire desktop from the framebuffer independently
from the behavior of applications running on the desktop. On the
client side, one window per server screen will be displayed.

Desktop sharing mode can be used with both software read-
back (in which case, vssession reads the framebuffer using the
READDISPLAY X11 extension or the glReadPixels() OpenGL
call) and with hardware readback using an SGC card. The
difference in readback performance between these two meth-
ods is very noticeable in desktop sharing mode, and it is highly
recommended to use the SGC card in this case.

2.2 OpenGL Vizserver Pipeline
The OpenGL Vizserver pipeline, briefly described in section 2.0,
is implemented with an FIFO queue at each stage of the
pipeline; each stage runs independently of the others. The
frame rate is the number of frames per second processed by
the longest stage, and the latency is roughly the number of
stages along the pipeline times the longest stage.

The client and server are symmetric with respect to the network.
Each operation on the server has a corresponding opposite
operation on the client that happens in reverse order. The last
operation performed by the server is a network write while the
first operation performed by the client is a network read. The fol-
lowing sections describe the individual stages of the pipeline;
each section describes both the client and server operation.
Figure 2 illustrates the pipeline.

3

2.2.1 Readback (Server) and Draw (Client)
The application populates the graphics framebuffer and
OpenGL Vizserver reads the completed frame into memory for
readback to the client. Only the portion of the framebuffer
bounded by the region of interest that is used for rendering will
be read back. This region of interest includes the window man-
ager frame along with other X11 GUI items and the OpenGL
rendering area. A readback of both the left and right buffers is
performed if the visual server running OpenGL Vizserver sup-
ports stereo and the OpenGL rendering area that the application
is using corresponds to a stereo visual. The time taken for this
readback depends on the size of the application window, not
the complexity of the scene being rendered. The time taken for
a readback can be seen in figure 3. When an SGC card is
installed and hardware readback is used, the readback time is
completely independent from the application and depends only
on the refresh rate of the graphics pipe’s output.

Readback

Compress
Network Write

Network Read
Decompress
Draw

Spoiling

Server

Client

Readback
Time

Window Size
(Total Pixels)

Readback

Compress
Network Write

Network Read
Decompress
Draw

Spoiling

Server

Client

Readback
Time

Window Size
(Total Pixels)

The draw operation on a client is a simple operation that uses
the native windowing system to render the pixels to the appro-
priate region of the client’s screen. This operation reproduces
the image that is displayed on the OpenGL Vizserver server
without the need for the client graphics system to have high-
performance graphics capabilities. Stereo rendering is repro-
duced if the client supports stereo. Clients that do not support
stereo will only see one of the buffers provided by the visual
server run-ning OpenGL Vizserver. The draw operation on the
client uses the native client’s hardware-rendering architecture to
achieve best performance. Since both the GUI and rendering
area are read back on the OpenGL Vizserver server, the client
does not need to perform window management or GUI tasks
other than opening a window in which to render the pixels
provided by the OpenGL Vizserver server. The look and feel
of an application on the client will be exactly the same as on
the server.

2.2.2 Spoiling
OpenGL Vizserver determines that a frame has been completely
drawn when an application issues either a glxSwapBuffers(),
glFlush(), or glFinish() call. These OpenGL API calls (readback
trigger functions) are monitored and, when issued, trigger
OpenGL Vizserver to read the completed frame from the
graphics framebuffer into main memory. The frame rate seen by
OpenGL Vizserver clients depends not only on the rendering
speed of the OpenGL Vizserver server but also on the read-
back/compression pipeline on the OpenGL Vizserver server and
the decompression/draw pipeline on the OpenGL Vizserver
client. These two pipelines can introduce delays into the system
when the OpenGL Vizserver server generates frames of data
faster than either of the two pipelines can process them. The
OpenGL Vizserver server contains a queue of frames that are
ready to be sent to an OpenGL Vizserver client. Spoiling is a
mechanism that allows the OpenGL Vizserver server to remove
a frame from the queue and replace that frame with the next one
available from the application. In the case of stereo rendering, a
consistent stereo image is preserved by removing frames from
both the left and right buffers.

When spoiling is on, pipeline bottlenecks do not affect the frame
rate of the application running under the OpenGL Vizserver
environment on the server machine. In this case, a full pipeline
will cause the first frame in the queue to be dropped and
replaced with the current frame generated by the application.
Information on the number of frames spoiled can be obtained
through the performance characterization tools described in
section 3.4.

4

Fig. 3. Readback Performance as a
Function of Window Size

Fig. 2. OpenGL Vizserver Pipeline

Compression Type

Ba
nd

wi
dt

h
in

M
bi

t/S
ec

on
d

Bandwidth for 10 Frames/Second

When spoiling is off, OpenGL Vizserver will pause the applica-
tion until the OpenGL Vizserver pipeline drains enough to fit the
next frame into the OpenGL Vizserver output queue. An
OpenGL Vizserver client running with spoiling turned on will not
see the frames that are spoiled but instead will always see the
most current frame generated by the application. Frame rate on
the client side in this case will be gated by the bandwidth of the
OpenGL Vizserver pipeline. That is, the frame rate seen on the
client will be that of the latency in the OpenGL Vizserver pipeline
or that of the client application, whichever is greater.

A third option is time-based spoiling, where the server sends a
new frame every time the client is ready to handle it, regardless
of the application’s behavior. This option is useful in special
cases where the application being served is incompatible with
the OpenGL Vizserver paradigm, which uses readback trigger
functions. Typically, such applications do not call a readback
trigger function at the end of each frame or draw to the same
window with both OpenGL and X drawing functions. Time-based
spoiling must be used when the session is in desktop sharing
mode.

2.2.3 Compress (Server) and Decompress (Client)
OpenGL Vizserver provides a variety of compression schemes
to compress/decompress frames of the rendered scene. The
OpenGL Vizserver compression model is a tiered approach: a
native interframe compression framework and two levels of user-
selectable compression schemes. At the first level, users can
select one of the following schemes:

• No compression
• Delta Color Cell (CCC, ICC, SCCC, or SICC)
• JPEG™

• Lossless (LLC)

At the second level of the tiered approach, users can select the
ZLIB compression scheme. The following subsections describe
these schemes along with the creation of custom compressors.

Figure 4 shows the amount of network bandwidth required to
drive 10 frames per second of performance over a network with
a typical model-viewing application and using compressors sup-
plied with OpenGL Vizserver. The figure shows how network
bandwidth can be reduced by increasing the level of image
compression used.

2.2.3.1 Interframe Compression
The interframe compression framework of OpenGL Vizserver
adds frame-differencing calculations to the built-in compression
modules. Doing so allows redundancy in the image stream to be
quantified and analyzed. Each compression module implements
a selective block compression/decompression algorithm com-
pressing only those portions of the image that changed since
the last frame was rendered. After frame differencing, only
blocks that have changed are sent to the compression modules.
If the new frame is exactly the same as the old one, only four
bytes of information are sent to the OpenGL Vizserver client.
This saves processing time and bandwidth on both client and
server.

Interframe compression is performed separately on the OpenGL
rendering data and the X11 GUI data. The X11 GUI data is sent
through the frame-differencing engine and then to a lossless
compression module, not to the user-selected module. Since an
application’s GUI is relatively static, very little bandwidth is
needed for the GUI portions of an application in an OpenGL
Vizserver environment.

5

Fig. 4. Bandwidth Requirements for OpenGL Vizserver Compressors

the image quality. The disadvantage is that the ZLIB compres-
sion/decompression introduces higher computational loads on
the server and client processors and, thus, might result in an
overall reduced performance.

2.2.3.6 Custom Compressors
OpenGL Vizserver also includes an API that provides the capa-
bility to develop new modules with user-defined functionality.
The API allows the creation of compression modules that take
into account domain-specific data formats and data structures
that cannot be optimally handled by general-purpose compres-
sion algorithms. This knowledge of the data can enable a
custom compression module to attain higher compression rates
and quality than the general-purpose compressors supplied with
OpenGL Vizserver.

A new compression module must be written in C++ and derived
from the vsCompressor class that is shipped as part of OpenGL
Vizserver. Some of the core methods of the new class that must
be implemented include the compress(), expand(), and
getMaxCompressedSize() methods. There are several macros
that ease the implementation task. The resulting compression
module must be built into a shared library for each operating
system platform that will be supported. The new module
appears to the end-user OpenGL Vizserver GUI once the
module is placed in the /usr/vizserver/compress/lib32
directory on both the OpenGL Vizserver server and on each
OpenGL Vizserver client that will use the custom compression
module. Examples of custom compression modules ship with
the OpenGL Vizserver module development package.

2.3 Collaboration
OpenGL Vizserver enables multiple users in geographically
diverse locations to collaborate on the same data set as if they
were all in the same room. Since collaboration is an integral part
of OpenGL Vizserver, there is little additional configuration
needed to configure such a session. The first client to connect
to OpenGL Vizserver is considered the session master. This ses-
sion master provides initial compression settings, validates
remote users joining the session, and determines the application
control policy used for remote users.

Users can join or leave a collaborative session at any time,
although the session ends when the session master exits.
Application control is dictated by the policy set by the session
master. The session master can either moderate the collabora-
tion by approving all requests for application control or allow an
unmoderated session where approval for application control is
not needed. Only a single user can have application control at
any one time.

2.2.3.2 Delta Color Cell Compression (CCC, ICC, SCCC, SICC)
The CCC, ICC, SCCC, and SICC OpenGL Vizserver compres-
sion modules implement lossy compression algorithms. These
four schemes are derived from the Block Truncation Coding
(BTC) algorithm that compresses a 4x4 pixel block down to two
colors plus a 4x4 pixel mask. The variation between the CCC
and ICC compressors lies in the number of colors identified by
the pixel mask. In the case of CCC, the mask identifies two col-
ors. The ICC mask identifies four colors. In both cases, the color
components are converted to 5 bits of red, 6 bits of green, and
5 bits of blue, totaling 16 bits per pixel. The compression ratio
for these two schemes is at least 8:1 for CCC and at least 4:1 for
ICC. SCCC and SICC are scaled versions of CCC and ICC,
respectively. Scaling reduces the image data 75% by scaling
the data before applying the CCC or ICC algorithms. Scaled
CCC and scaled ICC algorithms have compression ratios of at
least 32:1 and at least 16:1, respectively.

More information on these compression algorithms can be found
in “Two Bit/Pixel Full Color Encoding,” SIGGRAPH 86
Conference Proceedings, 1986, and “Hardware for Superior
Texture Performance,” EuroGraphics 95 Conference
Proceedings, 1995.

2.2.3.3 JPEG Compression
The other lossy compression scheme is Joint Photographic
Experts Group (JPEG) compression, also known as the ISO/IEC
IS 10918-1 standard. The implementation is based in part on the
work of the Independent JPEG Group, as well as on other imple-
mentations. OpenGL Vizserver provides JPEG compression
ratios of 20%, 50%, 70%, and 90%. The highest compression
level, 90%, provides the best quality but requires the most net-
work bandwidth.

2.2.3.4 Lossless Compression
In addition to lossy compressors, there is also a lossless com-
pression module called LLC. This preserves the original image
quality while still saving bandwidth. In many cases, the savings
is as high as 4x without any reduction in image quality.

2.2.3.5 ZLIB Compression
At the second level of the tiered approach, users can select
ZLIB compression to be used on top of the level 1 specification,
except in the case of JPEG compression. When ZLIB compres-
sion is enabled, the OpenGL regions of the image are
compressed using the ZLIB algorithm. Regions other than the
OpenGL regions (that is, pure X regions) are compressed using
the ZLIB algorithm rather than the default RLE algorithm.
Enabling ZLIB has the advantage of reducing the network band-
width required by the OpenGL Vizserver session at no cost to

6

All users in a collaborative session will have a synchronized
view of the scene being visualized. In order to achieve this syn-
chronization, OpenGL Vizserver must serve frames at the rate
that the slowest client can accept.

3.0 Optimizing OpenGL Vizserver Performance
To optimize OpenGL Vizserver performance, you should con-
sider the following items:

• Network bandwidth
• Network latency
• Processor utilization
• Monitoring OpenGL Vizserver performance
• Expected performance

3.1 Network Bandwidth
When determining the network bandwidth requirements of
OpenGL Vizserver, many aspects of the network must be con-
sidered. Primarily, the size of the image that the OpenGL
Vizserver server will send to OpenGL Vizserver clients deter-
mines the network bandwidth needed. The uncompressed
network bandwidth can be calculated by multiplying the size of
the window in pixels (width times height) by three bytes for each
pixel (one byte each for the red, green, and blue components of
the pixel). Each compression module will reduce the bandwidth
by a different amount, which will always vary with the specific
scene being rendered, although the average compression ratio
for each compression module is useful for sizing purposes. In
addition to image size, the physical network condition, routing
topologies, switch bandwidths, and network congestion leading
to packet retransmits must all be considered. Users should keep
these overheads in mind when calculating the expected band-
width or frame rate.

3.2 Network Latency
By default, OpenGL Vizserver is generally well-suited for low-
latency networks, such as Ethernet-based local area networks
(LANs). However, in high-latency environments, such as wide
area networks (WANs), the default configuration does not utilize
the network’s bandwidth well and achieves sub-optimal frame
rates. For such case, OpenGL Vizserver allows users on the
client side to configure the number of frames that are in transit at
any given time from the server to the client.

3.3 Processor Utilization
The OpenGL Vizserver server is a pipeline wherein the frame-
buffer readback, image compression, network writes, various
pixel conversions, and handling of non-GL regions each run
independently. Some of the built-in compressors (namely, the
lossless and CCC compressors) are multi-threaded. In most

cases, three processors per OpenGL Vizserver session will fully
utilize the parallel nature of this pipeline—two processors for
image compression and pixel conversion and another one for
the rest of the server-side work. This is in addition to the number
of processors needed for the application.

3.4 Monitoring OpenGL Vizserver Performance
The main purpose of monitoring OpenGL Vizserver performance
is to find performance bottlenecks and ensure that an applica-
tion running under OpenGL Vizserver gives virtually the same
performance as the application running locally without using
OpenGL Vizserver. To monitor OpenGL Vizserver, a Performance
Co-Pilot™ (PCP) OpenGL Vizserver Performance Metric Domain
Agent (PMDA) module and a text-based tool, vsmonitor, are
available. Easy to use, they are also useful in monitoring the per-
formance of each stage in the OpenGL Vizserver pipeline.

The PCP OpenGL Vizserver PMDA collects the performance
data from the OpenGL Vizserver server and makes it available
for the various performance metrics viewers available with PCP.
Some of the OpenGL Vizserver performance metrics are the
frame rate, the time consumed by each of the stages in the
OpenGL Vizserver pipeline, the amount of pixel data that moves
between the stages and is sent to the clients, and more. Figure
5 shows a snapshot of pmchart, a PCP graphical viewer, moni-
toring an active OpenGL Vizserver session.

In addition to the Performance Co-Pilot tools, vsmonitor is a
text-based tool that is used to display various performance met-
rics in a text-only display. It reports the current values of all the
metrics from the OpenGL Vizserver server every five seconds.

7

Fig. 5. The PCP Graphical Viewer pmchart

3.5 Expected Performance
Figures 6, 7, and 8 illustrate sample performance for OpenGL
Vizserver 3.5 in various environments. Most interactive visualiza-
tion applications in the sciences and engineering run with
interactive window sizes of between 640x512 pixels and
1024x768 pixels and with frame rates between 10 and 20
frames per second. These figures show that OpenGL Vizserver
is able to exceed these rates and deliver high-quality interactive
visual results to a wide variety of desktop devices at high rates
of speed. More recent and more complete performance informa-
tion can be found at
www.sgi.com/software/vizserver/tech_info.html.

4.0 Application Compatibility
OpenGL Vizserver can be used with today’s applications in their
current form. However, there are several considerations that are
noteworthy regarding application compatibility:

• Ideal application design for OpenGL Vizserver
• Desktop sharing
• Hardware and software composition
• Cross-platform application execution

4.1 Ideal Application Design
Application-wise, OpenGL Vizserver is a transparent technology,
meaning that an application is unaware if it is being visually
served. Even though OpenGL Vizserver is transparent, there are
a few areas where application design can affect the compatibil-
ity with OpenGL Vizserver.

Since the OpenGL Vizserver libraries are run-time bound, appli-
cations must directly link against the libGL.so and libX11.so
libraries. Applications that dynamically load graphics libraries
using the dlopen() system call will disable the ability of OpenGL
Vizserver to monitor OpenGL and X11 API calls and, thus, the
application will not perform as if it were executing under
OpenGL Vizserver. In this case, an application could dynami-
cally open the libvsx.so library and call the appropriately
monitored functions. Additionally, applications that run suid will
not function under OpenGL Vizserver because of security rea-
sons.

The OpenGL Vizserver server monitors the application’s use of
OpenGL by watching for a signal denoting the end of a frame.
This signal is denoted by the application issuing one of the fol-
lowing OpenGL API calls:

• glXSwapBuffers()
• glFlush()
• glFinish()

8

Fig. 6. Performance over LAN, Silicon Graphics Prism Server
and Client, 100 Mbit Network, Various Compressors

Fig. 7. Performance over LAN, Silicon Graphics Prism Server, Various
Clients, 100 Mbit Network, Delta CCC 8:1 Compression

Fig. 8. Performance over WAN, Silicon Graphics Prism Server,
SUSE LINUX 9.3 PC Client, 2 Mbit Network, Various

Low-Bandwidth Compressors

FP
S

OpenGL Vizserver Performance over LAN

Resolution

FP
S

OpenGL Vizserver Performance over LAN

Resolution

FP
S

OpenGL Vizserver Performance over WAN

Resolution

Applications that do not issue these calls, such as those that
draw only to the front OpenGL buffer, will not trigger OpenGL
Vizserver to read back the rendered scene to start the flow of
data to the OpenGL Vizserver client. By inserting a glFlush()
statement in the application where OpenGL Vizserver should
read back the scene, applications that utilize such techniques
as front-buffer OpenGL rendering will be fully compatible with
OpenGL Vizserver.

Applications that are based only on X11 will not have calls to
any of the above functions that trigger an OpenGL Vizserver
readback. OpenGL Vizserver detects this case and uses the
SGI_CAPTURE X11 extension to capture X11 rendering.

An application can detect if OpenGL Vizserver is running by
looking at the glXExtensionString of the client GLX extensions for
the SGI_vizserver string. OpenGL Vizserver creates shared
memory segments for use in communicating between
libvsx.so in the application’s address space and the OpenGL
Vizserver run-time system, vssession. Applications cannot
assume that all shared memory segments and queues that exist
are owned by the application. In addition, the maximum size
and number of shared memory segments are reduced by
OpenGL Vizserver usage of these resources. OpenGL Vizserver
allocates approximately 4MB of shared memory and an 8–16MB
memory-mapped file per graphics pipe.

4.2 Desktop Sharing
When starting an OpenGL Vizserver session, the user might
choose to start it in desktop sharing mode. In this mode, the
whole desktop on the server side is served to the clients rather
than specific application windows. All windows, graphics, and
other content that appear on the server’s desktop will be view-
able on the clients.

Starting a session in desktop sharing mode is useful when there
is a need to serve applications which are highly incompatible
with the OpenGL Vizserver paradigm of OpenGL readback trig-
ger functions. Since OpenGL Vizserver reads the whole desktop
from the framebuffer independently of the application’s behavior,
its functionality will not be harmed by any application-specific
implementation.

Another reason for using desktop sharing mode is efficiency
when there are many application windows on the server that
need to be served to the client. In some cases, if the sum of
graphics regions on the desktop is high enough, it might be
more efficient for OpenGL Vizserver to serve the desktop as a
whole rather than many smaller windows. Note that since the
software readback rate in desktop sharing mode can be consid-
erably lower than when serving specific applications, this

efficiency improvement will probably exist only when an SGC
card is available for hardware readback.

Desktop sharing is also the only way OpenGL Vizserver sup-
ports hardware composition applications, which are described
in section 4.3.

4.3 Hardware and Software Composition
For improved performance, greater display resolution, and other
reasons, some applications use graphics composition methods
such as DB, 2D, or eye decomposition. The composition can be
done using software only or a hardware solution. In the case of
software composition, the application renders to several pipes
and composes the target image in the CPU. For hardware com-
position, a hardware compositor can be connected to the output
of the rendering graphics pipes to compose the final image.

To support software composition applications, the user can
select upon OpenGL Vizserver session startup which of the
screens belonging to the session’s X server are active. Only
application windows that are displayed on these screens will be
served to the clients. For example, in a four-pipe OpenGL
Vizserver session, a software composition application might use
screens 1, 2, and 3 as pure rendering resources and compose
the target image on screen 0. Selecting only screen 0 as active
upon session startup will allow the clients to see only the final
image of the application.

Hardware compositor support in OpenGL Vizserver is done
using SGC cards, which are connected to the hardware com-
positors output. To support hardware composition applications,
the user must start the session in desktop sharing mode and
select one of the video groups available on the server instead of
an arbitrary number of pipes. A video group is a set of graphics
pipes, hardware compositors, and SGC cards that are con-
nected to one another using external DVI cables. OpenGL
Vizserver will start an X server on the video group’s graphics
pipes and serve to the clients the ingest of the video group’s
SGC cards (effectively, the hardware compositor’s output). It is
the job of the application (or the user) to configure the hardware
compositors so that they meet the application’s composition
requirements.

4.4 Cross-Platform Application Execution
OpenGL Vizserver can work in conjunction with other products
like Transitive® QuickTransit™ to allow cross-platform execution of
applications. Many changes to this, and it should read: The
QuickTransit software tool allows applications compiled for IRIX
MIPS platforms to run transparently on SGI® Altix® and Silicon
Graphics Prism systems, which are based on Intel® Itanium® 2
processors. Hence, QuickTransit software greatly augments the

9

10

number of graphics applications users can run on Silicon
Graphics Prism systems.

5.0 Environments
This section describes the following server and client display
environments:

• High-resolution servers and low-resolution clients
• Multipipe servers and multipipe clients
• Multipipe servers and single-pipe clients

5.1 High-Resolution Servers and Low-Resolution Clients
OpenGL Vizserver does not resize the dimensions of the image
stream when the size of the OpenGL Vizserver client display is
different compared with the OpenGL Vizserver server display.
The OpenGL Vizserver client display must have at least as many
pixels available for display as the OpenGL Vizserver server dis-
play. When the OpenGL Vizserver server runs on a system with
a large display area, it is difficult to ensure that the client display
matches the server display. In these cases, the results will be
correct as long as the application running on the OpenGL
Vizserver server is restricted to the smaller of the client and
server display areas. Movement of the application window out-
side of the proper area is not an issue for an OpenGL Vizserver
client on the VAN, but a user sitting at the OpenGL Vizserver
server host machine may move the application window without
knowledge of the OpenGL Vizserver client configuration, thereby
causing the application window to disappear from the remote
display.

5.2 Multipipe Servers and Multipipe Clients
When starting a session, the user can select the number of
graphics pipes on the server that will be part of the session.
Assuming there are enough available pipes on the server,
OpenGL Vizserver will start an X server containing the number
of pipes requested by the user. If the client has at least as many
pipes as requested for the sessions, an application window dis-
played on a specific screen on the server side will be displayed
on the corresponding screen on the client side.

5.3 Multipipe Servers and Single-Pipe Clients
Although OpenGL Vizserver can serve from a multipipe server
(for example, an SGI® Reality Center® facility) to a single-pipe
OpenGL Vizserver client, care must be taken in placing the win-
dows within the SGI Reality Center environment. Each pipe will
map to the same screen space on the OpenGL Vizserver client.
Therefore, proper server-side window location is critical to
ensure a proper, non-overlapped display on the client; window
location on each server pipe must be unique. This ensures that
the resulting client images do not overlap when the server pipes
are mapped to the same screen space on the OpenGL

Vizserver client. Generally, multiple pipes rendering full-screen
or near-full-screen images will occlude one another when ren-
dered on the OpenGL Vizserver client and will look incorrect to
the user.

6.0 Security
The use of OpenGL Vizserver does not require you to compro-
mise system security in any manner. Firewall support and user
authentication, both configurable, are integral parts of OpenGL
Vizserver.

OpenGL Vizserver provides two authentication mechanisms that
allow system administrators to control which users can remotely
access the server system and at what times they are allowed to
access it:

• AUTH-PAM—This scheme uses the Pluggable Authentication
Modules (PAM) mechanism. When using the AUTH-PAM module
on the server, no authentication module is needed on the client.

• AUTH-PASSWORD—This scheme is an unencrypted user/pass-
word mechanism based on the system’s passwd database.

The OpenGL Vizserver module development package includes
an API that allows customers to develop their own site-specific
authentication modules. One can also use the AUTH-PAM
authentication scheme and use it with custom PAM modules
developed using the PAM modules API.

7.0 Pipe Allocation/Management
When graphics pipes are allocated to the OpenGL Vizserver
sessions by the OpenGL Vizserver server manager, there are
two types of pipe allocation methods used: static pipe allocation
and dynamic pipe allocation. The terms static and dynamic refer
to the mobility of graphics pipes between the X display manager
(XDM) for local, interactive users and OpenGL Vizserver. A site
administrator configures the following:

• Which graphics pipes are managed by OpenGL Vizserver
• Whether OpenGL Vizserver can use XDM-managed graphics

pipes for its sessions (Default is True.)
• Whether a graphics pipe reservation by a user is required in

order to use a pipe managed by OpenGL Vizserver (Default is
False.)

7.1 Dynamic Pipe Allocation
In dynamic pipe allocation mode, OpenGL Vizserver can allo-
cate the graphics pipes that it manages, as well as the graphics
pipes managed by XDM. OpenGL Vizserver allocates XDM-
managed pipes for a session’s use only if the X server that
currently uses the graphics pipes is not logged in. In other
words, if the X server does not have an active user and is in the

11

© 2005 Silicon Graphics, Inc. All rights reserved. Silicon Graphics, SGI, IRIX, Onyx, OpenGL, Altix, Reality Center, and the SGI logo are registered trademarks and OpenGL Vizserver, OpenGL Performer,
OpenGL Multipipe, Performance Co-Pilot, and Silicon Graphics Prism are trademarks of Silicon Graphics, Inc., in the U.S. and/or other countries worldwide. Intel is a registered trademark and Itanium is a
trademark of Intel Corporation. JPEG is a trademark of Independent Joint Photographic Experts Group. Linux is a registered trademark of Linus Torvalds. Mac OS X is a registered trademark of Apple
Computer, Inc. MIPS is a registered trademark of MIPS Technologies, Inc., used under license by Silicon Graphics, Inc., in the U.S. and/or other countries worldwide. Microsoft, Windows, and Windows
NT are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. QuickTransit is a trademark of Transitive Corporation and/or its affiliates in the United States
and other countries. Solaris is a trademark of Sun Microsystems, Inc. All other trademarks mentioned herein are the property of their respective owners.
3263 [10.10.2005] J15002

Corporate Office
1500 Crittenden Lane
Mountain View, CA 94043
(650) 960-1980
www.sgi.com

North America +1 800.800.7441
Latin America +55 11.5509.1455
Europe +44 118.912.7500
Japan +81 3.5488.1811
Asia Pacific +1 650.933.3000

login stage with the login screen displayed, then OpenGL
Vizserver can dynamically allocate that pipe to support a
remote user. If, however, that pipe is being used and there are
no unused pipes, then the remote user requesting access
through OpenGL Vizserver will be told that no resources are
available.

Pipe reservation by a user and dynamic pipe allocation are
mutually exclusive.

7.2 Static Pipe Allocation
In static pipe allocation mode, OpenGL Vizserver can allocate
only graphics pipes that it manages. If so configured, a user
can open a session using any graphics pipes that are managed
by OpenGL Vizserver (subject to availability). Otherwise, a user
cannot have a session using more than the maximum number of
graphics pipes reserved. If no reservation was made by a user,
the user cannot open a session at all.

