
White Paper

The SGI® Onyx® 3000 Series with InfinitePerformance™
Graphics—Architecture and Programming
Bob Kuehne, SGI

1

1.0 Introduction .2

2.0 The Architecture of the Onyx 3000 Series with InfinitePerformance Graphics . .2
2.1 The V-Brick .2
2.2 The Scalable Graphics Compositor .2

3.0 System Configuration .3
3.1 Configuring a State Compositor Tiling .3

4.0 Scalable Software for Scalable Systems .3
4.1 2D Compositing .3

4.2 Per-Pipe Display and Texture ID Management .4

4.3 Compositing Issues .5

4.4 Compositing APIs .5

4.5 GLX Hyperpipe .6

5.0 Scalable Software .6

6.0 Conclusion .6

2

Abstract
The SGI Onyx 3000 series of visualization systems with
InfinitePerformance graphics represents the latest
product offering in the decade-long history of scalable
graphics products from SGI. The SGI Onyx 3000 series
with InfinitePerformance graphics is the first SGI
product to perform graphics scaling using powerful
low-cost pipes in conjunction with a new hardware
compositor module. This system allows unprecedented
levels of host and graphics scalability, resulting in
the highest geometry performance commercially
available today. This white paper will detail the overall
system architecture and focus on graphics software
techniques available for developers to fully utilize
this system.

1.0 Introduction
The Onyx 3000 series with InfinitePerformance
graphics is a highly scalable next-generation graphics
powerhouse system from SGI. The Onyx family work-
stations combine the shared-memory programming
that users have come to expect with the unrivaled
scalability of the SGI® Origin® 3000 series architec-
ture, adding unprecedented graphics scalability. The
result is the most scalable graphics system on the
planet. The Onyx 3000 series with InfinitePerformance
graphics allows applications to easily scale to work
with ever-increasing data-set size, model complexity,
and visual realism.

The Onyx 3000 series has numerous advantages over
other systems on the market. First, the Onyx 3000
series system architecture provides the highest band-
width interconnect available, which speeds moving
data throughout the system—from disk, to memory, to
CPU, and to graphics. The Onyx 3000 series with
InfinitePerformance graphics moves data faster than
any other graphics system available. Second, the Onyx
3000 series with InfinitePerformance graphics has the
lowest memory latency of any system in the industry,
allowing the fastest available access to memory. Third,
only the Onyx 3000 series combines this architecture
with the simplicity of a shared-memory programming
model. Fourth, the Onyx 3000 series is highly modular,
allowing the system itself to scale to include more
pipes and more channels as a customer’s demands
increase. Finally, the Onyx 3000 series with
InfinitePerformance graphics allows applications to
use standard SGI® graphics APIs to seamlessly take
advantage of this system scalability.

2.0 The Architecture of the Onyx 3000
Series with InfinitePerformance
Graphics

The workstations of the Onyx 3000 series with
InfinitePerformance graphics share the same high-
bandwidth, low-latency SGI® NUMA architecture
found in all Onyx and Origin family products and
systems. Details about the Origin 3000 series can be
found on the SGI Web site. The workstations in the
Onyx 3000 series with InfinitePerformance graphics
contain two new components:
• V-brick: a compact graphics module containing up to

two independent InfinitePerformance graphics pipes
• Scalable graphics compositor: a zero-latency, stereo-

capable, genlock-capable, frame-synchronous digital
hardware compositor

2.1 The V-Brick
The V-brick is a new graphics module consisting of up
to two independent InfinitePerformance graphics
pipes based on modified versions of the proven VPro™
V12 graphics processor. The VPro V12 is the workhorse
of the SGI graphics line, providing high polygon rates
and high fill rates.

Up to 16 independent InfinitePerformance graphics
pipes can be installed in a single Onyx 3000 series
system. These independent graphics pipes can be
deployed in a variety of ways that increase the flexibil-
ity and power of the system. For example, four inde-
pendent pipes could be used to drive four single dis-
plays or to drive a single 4-way composited display,
bringing up to four times the graphics processing
power to bear on your data. Systems with more than
four independent InfinitePerformance graphics pipes
can mix and match usage modes that adapt to system
load throughout the day.

2.1 The Scalable Graphics Compositor
The scalable graphics compositor (or compositor)
allows zero-latency compositing of two or four inde-
pendent InfinitePerformance pipes simultaneously.
Four independent pipes combined through the
compositor together are referred to as a 4-way
InfinitePerformance graphics pipe. Stereo, genlock,
and frame-synchronization support are all provided in
hardware. Two video outputs are available on the
compositor: one DVI-D and one HD-15 analog.

3

A variety of visual formats are supported, including:
• 1280x1024_60/75, output: DVI/13W3
• 1280x1024_96s, output: 13W3
• 1600x1200_60, output: DVI/13W3
• 1920x1200_60, output: 13W3

3.0 System Configuration
One key advantage of the SGI Onyx 3000 series archi-
tecture is its modularity, which allows the systems to
be configured in many different ways. This white
paper will not address the numerous ways in which a
system can be configured, because that topic is cov-
ered in other guides, but will look at ways in which
pipes can be configured through software tools avail-
able on the system.

3.1 Configuring a Static Compositor Tiling
The Onyx 3000 series with InfinitePerformance graph-
ics ships with a software tool to allow compositing
arrangements to be set statically by a system adminis-
trator. This tool, sgcombine, is similar in intent to
ircombine, used with the Onyx 3000 series with
InfiniteReality3® graphics. Whereas ircombine lets a
user describe which areas of the screen will get output
on different channels, sgcombine describes how
different channels will combine into one logical frame
buffer. The tool lets the user visually array the
input-independent InfinitePerformance pipes into
some logical output arrangement and then download
that arrangement throughout the system, configuring
independent InfinitePerformance pipes and the
compositor simultaneously.

The central sgcombine window (Fig. 1) displays
the composited output area. Users can select the
video format shared by the compositor and the inde-
pendent InfinitePerformance pipes and select an
external sync format. Selecting the video format for
the compositor will automatically select a format for
the independent InfintePerformance pipelines and
configure external sync. Users may also select an ini-
tial tiling setup with the Initial Tiling Mode menu. The
User Guide and System Setup Guide both provide addi-
tional detail on the operation of this tool.

Fig. 1. sgcombine static compositor assignment

4.0 Scalable Software for Scalable
Systems

The Onyx 3000 series with InfinitePerformance graph-
ics is a scalable hardware system that allows software
to use up to four independent InfinitePerformance
pipelines simultaneously to address a larger problem
than any single pipeline can address alone. To achieve
good software scalability, an application must do some
additional work to ensure the most efficient rendering.
The Onyx 3000 series with InfinitePerformance graph-
ics performs a type of compositing known as spatial,
or 2D, compositing. This operation requires specific
data-distribution techniques. This section of the paper
will discuss the various aspects of performance, from
bottlenecks to tuning to APIs.

4.1 2D Compositing
2D or spatial compositing, or the division of a logical
resultant rendered image into subregions or subim-
ages, is a powerful technique to allow two types of
performance scaling simultaneously. First, geometric
performance can scale well, provided the geometric
data is balanced equally among the four pipes in the
compositor. Second, fill performance can scale well,
given that each pipe is required to fill the pixels only
for the subregion that it contributes to the final image.

An easy initial approach to get an application
“compositor-ready” is to select equally sized regions
for each of the four pipelines. This technique is
virtually identical to that required to implement a
Powerwall (three pipes, side by side). For an applica-

4

tion to use effectively either of these modes,
Powerwall or composited, the application must first
possess several characteristics and abilities:
• View-frustrum cull-enabled
• Multiprocess or multithreaded
• Texture and display list management enabled

View-frustum culling minimizes the data sent to each
pipe by sending only the data needed by that pipe. In
an ideal application for the SGI Onyx 3000 series with
InfinitePerformance graphics, each independent
InfinitePerformance pipeline would perform exactly
25% of the workload, enabling a 4x performance
improvement. Owing to view-frustum culling overlap
(the effects produced from a single object spanning
several pipelines), this efficiency is difficult to achieve.
Or, said differently, a 4x performance boost is possible,
but your results may differ. View-frustrum culling effi-
ciency is under active research and quantification.

Multiprocessing is the second essential application
prerequisite to using the Onyx 3000 series with
InfinitePerformance graphics effectively. Without
multiprocessing, each of the four independent
InfinitePerformance pipes in a single Onyx 3000 series
InfinitePerformance pipe would render in serial fash-
ion, making the overall rendering the same perfor-
mance (realistically, a bit slower) as a single indepen-
dent InfinitePerformance pipeline: no benefit whatso-
ever. However, if each pipeline can render in parallel,
and the application can keep each pipe busy without
stalling the other pipelines, a high degree of scalability
can be achieved. Parallelism is essential, and can be
difficult, but the Onyx 3000 series with
InfinitePerformance graphics is an SGI NUMA system
that enables applications to simply and efficiently
perform basic, thread-level, shared-memory paral-
lelism. This allows an application to avoid the arduous
task (and lower bandwidth and performance) of
writing to a cluster and focus instead on solving the
problem at hand.

4.2 Per-Pipe Display and Texture ID Management
An application must also provide for some of the
inherent difficulties of writing to multiple graphics
adapters. Specifically, because each independent
InfinitePerformance pipeline is really a separate
pipeline, an application cannot assume that the same
texture and display list IDs will be available on each
independent InfinitePerformance pipeline. This
means that each texture and display list must be
generated and downloaded to each independent
InfinitePerformance pipeline. The good news is that
most multipipe applications have already encountered
this issue and built structure to manage the complex-

ity. However, for those developers who have not, it is
easy to do this with a set of structures as outlined
below.

An example of some C++ pseudocode to manage a list
of unique IDs per pipe follows. First, use the structure
below to manage associations of texture or display list
names to particular IDs:

using namespace std;
typedef map< string tex_or_dl_name,

GLuint id > name_id_map;

And use this structure to manage pipe name (or other
ID if you prefer, use perhaps the full display ID such as
":0.0," ":0.1," etc.) to above ID mapping:

typedef map< string sub_pipe_name,
name_id_map > pipe_map;

The combination of these two structures makes it sim-
ple to manage the multipipe texture issues. For exam-
ple, the following pseudocode allows the developer to
allocate texture IDs for multiple pipes:

int texid;

// this is to make ":0.0" current
pseudo_glxMakeCurrent(this_pipe);
glGenTextures(1, \&texid);
pipe_map[":0.0"]["blue_marble.rgb"]

= texid;

// this is to make ":1.0" current
pseudo_glxMakeCurrent(other_pipe);
glGenTextures(1, \&texid);
pipe_map[":1.0"]["blue_marble.rgb"]

= texid;

This code can then be used later to retrieve the ID and
can be used in another context, such as to download
textures to each pipe:

// this is to make ":0.0" current
pseudo_glxMakeCurrent(this_pipe);
glTexImage2D(

pipe_map[":0.0"]["blue_marble.rgb"],
0, GL_RGB, 256, 256,
GL_RGB, GL_BYTE, pixels);

// this is to make ":1.0" current
pseudo_glxMakeCurrent(other_pipe);
glTexImage2D(

pipe_map[":1.0"]["blue_marble.rgb"],
0, GL_RGB, 256, 256,
GL_RGB, GL_BYTE, pixels);

5

The point of the above code is to illustrate that a sim-
ple layered indirection scheme makes trivial the seem-
ingly complex task of managing potentially unique tex-
ture and display list ids across multiple 4-way compos-
ited pipes and independent InfinitePerformance
pipelines.

4.3 Compositing Issues
Once you’ve got the desired data rendering on each
independent pipeline, the next task becomes how to
composite them together effectively. The SGI Onyx
3000 series with InfinitePerformance graphics offers
a diverse set of compositing operations, from simple
linear stripes, horizontal or vertical, to combined
horizontal and vertical splits, or any combination of
the above. Fig. 2 shows a few possible compositing
modes. Fig. 3 examines in detail one possible com-
positing arrangement, showing a nonuniform set of
regions, aggregated in a 4-way composition through
the compositor.

Fig. 2. Four types of possible composited output from
the InfinitePerformance compositor

As mentioned in section 3.1, a static compositing
arrangement may be chosen. However, there are inher-
ent limits to the scalability of this technique. For
example, to achieve good performance, data must be
well distributed among the pipes—evenly balanced
data scales well. However, in a static compositor
arrangement, it’s possible for a user of an application
to position all of the data within a single independent
pipeline, say in the far upper-left corner of the
4-way composited window. This scenario would leave
the remaining three pipelines idle. Although fixed
compositing arrangements are easy to set up
(fire-and-forget), they are much harder to get to
perform effectively with dynamic data.

Fig. 3. A detailed example of the regions from
independent InfinitePerformance pipes combined in
a 4-way composition

A much better way to do compositing is to check how
your data is distributed on a per-frame basis and then
adjust the compositing regions so that each is doing a
roughly equal portion of the work. It is not always pos-
sible to adjust on a per-frame basis, and, in fact, owing
to the time involved in downloading new configura-
tions through the system, it’s not always desirable to
do this per frame. However, it is a good idea to adjust
the compositing as your data changes, say every N
number of frames. It adds a bit more workload to an
application to select a good composition, but it is quite
easy to get better performance with this technique
than to simply use a static composition arrangement.
SGI provides a number of Software Development
Toolkits that support the ability to dynamically adjust
composited arrangements, as detailed in section 4.4.

4.4 Compositing APIs
The Onyx 3000 series with InfinitePerformance
graphics is fully supported across the SGI graphics
software API suite. Several levels of support exist,
from low-level control over each independent
InfinitePerformance pipeline and the compositor
directly, to higher-level APIs managing window control
and context management, to still higher-level APIs
managing the entire scenegraph and all of the previ-
ous tasks as well. All the APIs referenced above are
shipping with SGI systems today.

The highest level API that SGI produces that supports
all of our graphics systems is OpenGL Performer™.
OpenGL Performer is a scenegraph that will manage

multiprocessing, parallel graphics rendering,
view-frustrum culling, and state-sorting, and will
provide a host of other performance tools to ensure
that your data renders as fast as possible on whatever
system you’re using. See the OpenGL Performer Web
site for details about this API. OpenGL Performer
fully supports the SGI Onyx 3000 series with
InfinitePerformance graphics.

The medium-level API to use with the Onyx 3000
series with InfinitePerformance graphics is OpenGL
Multipipe™ SDK. Already in use at numerous software
vendors around the world, OpenGL Multipipe SDK
takes care of the drudgery of multipipe management
and the difficulties of parallel programming while still
allowing an application to use its existing scenegraph.
OpenGL Multipipe SDK fully supports the Onyx 3000
series with InfinitePerformance graphics.

The lowest-level API to use with the Onyx 3000 series
with InfinitePerformance graphics is known as the
GLX™ Hyperpipe API. This API has existed for nearly
four years and is specifically designed to support
dynamic reconfiguration of pipes in logical groupings.
This is precisely what is needed to fully control the
Onyx 3000 series with InfinitePerformance graphics.

4.5 GLX Hyperpipe
GLX Hyperpipe is an API that allows a developer to
fully control the Onyx 3000 series with
InfinitePerformance graphics scalable graphics com-
positor and the regions being composited from the V-
bricks. GLX Hyperpipe (or more simply, hyperpipe) is a
simple API, yet it allows some very powerful opera-
tions. The API consists of a number of calls that allow
graphics hardware and software to interact. Quoting
the “man hyperpipe” man page:

“This extension provides a means for configuring and
managing a group of rendering pipes that work togeth-
er to produce a single display. Typically, a hyperpipe
application will be multithreaded, with one thread per
pipe; each thread needs to create its own rendering
context. The hyperpipe extension allows these render-
ing threads to communicate with the hardware.”

The API allows a user to:
• Determine the physical configuration of a hyperpipe

network
• Configure a hyperpipe
• Manage GLXSwapBuffers correctly
• Redirect resize parameters

The hyperpipe API is the definitive SDK if you have
an application that can’t use one of the higher-level
toolkits.

5.0 Scalable Software
The hardest part of any application is scalability.
Although the Onyx 3000 series with
InfinitePerformance graphics performs one extremely
difficult part of the scalable graphics process—the
compositing—a large part of this difficult task is still
shouldered by the developer. Classes and books have
been written on the subject, but at the end of the day,
developing scalable software is a difficult task.
However, SGI provides proven software APIs to make
that process much easier. The SDKs produced by SGI
that are discussed in section 4.4 are a good starting
point, and the SGI Developer Forum provides another
excellent opportunity to learn about the details of scal-
able software. SGI has been enabling developers to
write the most scalable applications for more than 20
years, through software and hardware, and the
InfinitePerformance graphics system continues that
great tradition.

6.0 Conclusion
The Onyx 3000 series with Infinite Performance
graphics is the latest high-performance graphics
supercomputer from SGI. Combining state-of-the-art
graphics subsystems, zero-latency compositing, and
industry-standard graphics APIs, the Onyx 3000 series
with InfinitePerformance graphics provides a com-
pletely scalable graphics hardware environment. With
careful attention to culling and multiprocessing
details, the Onyx 3000 series with InfinitePerformance
graphics can scale to address the largest problems.
The Onyx 3000 series with InfinitePerformance graph-
ics is the best choice for developers and customers
who need the absolute standard in graphics scalability
and performance.

6

7

© 2002 Silicon Graphics, Inc. All rights reserved. Specifications subject to change without notice. Silicon Graphics, SGI, Onyx, InfiniteReality, Origin, OpenGL, and the SGI logo are registered trade-
marks of Silicon Graphics, and InfinitePerformance, OpenGL Performer, OpenGL Multipipe, InfiniteReality3, GLX, VPro, and Reality Center are trademarks of Silicon Graphics. All other trademarks
mentioned herein are the property of their respective owners.

3213 (1/02) J13291

Corporate Office North America 1(800) 800-7441
1600 Amphitheatre Pkwy. Latin America (52) 5267-1387
Mountain View, CA 94043 Europe (44) 118.925.75.00
(650) 960-1980 Japan (81) 3.5488.1811
www.sgi.com Asia Pacific (65) 771.0290

References
SGI Origin 3000 Series. www.sgi.com/origin/3000/
SGI VPro Graphics. www.sgi.com/workstations/octane2/graphics.html.
SGI Onyx 3000 Series Systems with InfinitePerformance Graphics. 2002.
SGI InfinitePerformance: Scalable Graphics User’s Guide. 2002.
SGI Onyx 3000 Series Systems with InfiniteReality Graphics. www.sgi.com/onyx3000/
SGI® Reality Center™. www.sgi.com/realitycenter/
SGI OpenGL Performer. www.sgi.com/software/
SGI OpenGL Multipipe SDK. www.sgi.com/software/
Cok, K., A. Commike, B. Kuehne, T. True. Developing Efficient Graphics Software. SIGGRAPH 1999 Course Notes (1999).
SGI Developer Forum. www.sgi.com/developers/, 2002.

