
White Paper

OpenGL VolumizerTM 2.x

1

Experiments, simulations, and instrumentation devices
continuously produce larger, more complex, and more
detailed volumetric data. Along with this apparent
increase in information comes a greater need for more
powerful computational tools to visualize such data.
Volume visualization provides a way to discern details
within the data while potentially revealing complex 3D
relationships. This paper presents OpenGL Volumizer
2.x, a new application-programming interface (API)
from SGI for interactive, high-quality, and scalable
volume visualization.

Volume Visualization
There are a number of approaches for the visualization
of volume data. Many of them use data analysis tech-
niques to find the contour surfaces inside the volume
of interest and then render the resulting geometry
with transparency. The 3D-texture approach is a direct
data visualization technique using textured data slices

that an API or application combines successively in a
specific order using a blending operator [Cabral, 1994;
Drebin, 1988]. In this model, a 3D texture becomes a
voxel cache, and the graphics hardware processes all
rays simultaneously, one 2D slice at a time. Since an
entire 2D slice of the voxels is cast at one time, the
resulting algorithm is much faster with hardware-
accelerated textures than with ray casting. This
technique takes advantage of graphics hardware and
resources by using OpenGL® 3D-texture rendering,
allowing applications to reach real-time performance
and making this 3D texture-based approach the
method of choice for interactive and immersive volume-
visualization applications. The 3D-texture approach
described here is equivalent to ray casting [Hall, 1991]
and produces similar results. Unlike ray casting, in
which each image pixel is built up ray by ray, this
approach takes advantage of spatial coherence.

Fig. 1. Ray Casting vs. 3D Texture Mapping

Eye Point

To help application programmers develop interactive
and immersive volume-visualization methods that
exploit hardware-accelerated 3D texturing, SGI designed
and implemented OpenGL Volumizer, a revolutionary
API providing groundbreaking capabilities for tradi-
tional volume-visualization applications and allowing
application developers to treat volumetric and surface
data equally.

OpenGL Volumizer 2.x should be distinguished from
its predecessor, OpenGL Volumizer 1.x. With the same
objectives as OpenGL Volumizer 1.x, OpenGL Volumizer
2.x is a separate product, with a newly designed API.
The new API is a high-level, C++, volume-rendering
API that supports management and visualization of
large volume data sets. In this white paper, we address
the characteristics and features of OpenGL Volumizer
2.x, which we refer to simply as OpenGL Volumizer.

Product Overview
Announced during SIGGRAPH 2001, OpenGL Volumizer
considerably simplifies the programming model while
offering new capabilities and features, making visual-
ization development of extremely large volumetric data
sets on multipipe platforms easier. It provides:
• A high-level, extensible, C++ API that segments

classes and methods based on the corresponding
procedural versus descriptive nature of the component
members. The core API consists of a volumetric-shape
description API and a procedural 3D-texture-based
render action (see page 2).

• Thread safety, which allows implementation of multi-
threaded applications that run on multiple processors
and graphics engines in conjunction with APIs like
OpenGL Multipipe™ SDK.

Ray Casting 3D Texture Mapping

2

• Integrated shading capabilities to perform volumetric
lighting to improve realism and provide depth cues.
The API provides support for gradient-based and
gradientless rendering algorithms.

• Large data-management capabilities, including data-
management mechanisms for data paging and
graphics-resource control.

• Examples that include a transfer-function editor, data
loaders, and a volume-rendering application for multi-
pipe systems, along with sample integration with
existing APIs.

• A container for volume-rendering techniques.
Developers can integrate their own scene graph
parameters and rendering algorithms in the API
structure. The ability to incorporate such custom-
tailored parameters and renderers gives the flexibility
to advanced developers to implement and experiment
with new rendering methods.

Figure 2 shows the architecture of the API.

Scene graph
API 3D-texture

renderer

M
ul

tip
ipe

ap
pl

ica
tion

Large-data
API

renderer
Shirley-Tuchman Image lo

ad
er

s

Tools and
ut

ili
ti

es

LUT ed
ito

r

Fig. 2. Layered architecture of OpenGL Volumizer; all modules with the exception of the large-data API and the
Shirley-Tuchman renderer are included with the OpenGL Volumizer 2.0 distribution

OpenGL Volumizer API
OpenGL Volumizer supports a hierarchical scene graph
structure to retain and organize visualization para-
meters. The leaf node of the volumetric scene graph is
the shape node that is a container for its geometry
and appearance. The volume’s geometry defines the
spatial attributes and a region of interest, while the
volume’s appearance defines the visual attributes like
rendering parameters. The appearance itself consists

of a list of parameters that are specific to the particu-
lar rendering technique being applied to the shape.
Appearance parameters act as data containers for the
render action. They typically retain the volume data
itself as well as other shading parameters like light
direction or lookup tables, if needed. Figure 3 shows a
sample shape node with the corresponding geometry
and appearance.

Render action Shape

Geometry Appearance

Texture data

Para
mete

r 1

Pa
ra

m
et

er
 2 Parameter 3

LUT Light

Fig. 3. Shape node and its associated render action

Render actions are implemented as a separate class
derived from vzRenderAction and hold all of the
components to render the shape. They primarily
implement different visualization algorithms to render
shape nodes. The render action is also responsible for
managing the resources needed to render the shape
nodes. The texture mapping render action is a 3D-
texture-based renderer delivered with the API. The
render action polygonizes the shape’s volumetric
geometry by slicing it using viewport-aligned planes. It
then applies the other shading parameters, such as 3D
textures and a postinterpolation lookup table (LUT).
Separating the shape node’s description from the
rendering techniques allows the possibility of imple-
menting custom render actions. Adding parameters,
defining new shaders, and deriving the right render
action will provide a custom rendering method.

The object classes (derived from vzObject) in the API
are thread/MP safe. This allows them to be shared
across multiple threads/processes running in parallel
to render the shape(s) concurrently on several graphics
engines.

OpenGL Volumizer simplifies memory allocation and
deallocation of the objects. All objects in the scene
graph are reference-counted and automatically deleted
when the reference count reaches zero. The vzObject
class is derived from the base class vzMemory, which
allows the application to specify memory allocation
and deletion callbacks. This can be used for allocating
memory from shared memory arenas, which is essen-
tial for integration with APIs using a multiprocessed
model of execution, such as OpenGL Performer™.

Volumetric Geometry
In OpenGL Volumizer, the region of interest is repre-
sented as the geometry component of the shape node
and described apart from the shape’s appearance. Using
this approach allows the separation of the geometry or
the spatial attributes of the shape from the visual
attributes. This separation is important since the
appearance is specific to the rendering technique
being applied to the shape. Figure 4 shows an example
of an appearance applied to two shapes with different
volumetric geometries.

3

Fig. 4. Different volumetric geometries for a volume data set

OpenGL Volumizer allows specifying arbitrary volumetric
geometry using simple primitives ranging from axis-
aligned cubes to arbitrary tetrahedral meshes. As
triangles are base primitives used to describe polygonal
geometry, a tetrahedron is the base primitive used to
describe volumetric geometry. Hence, the API uses the
tetrahedron as the basic primitive for all its operations
by tessellating all other geometric representations into

tetrahedral meshes. For example, a cube can be repre-
sented with as few as five tetrahedra. This tessellation
process is transparent to the application for the built-
in geometry classes and allows applications to write
their own geometry classes by overriding the appropri-
ate virtual methods in the base class vzVolumeGeometry.

4

Using geometrical techniques to render volume data
sets gives the flexibility offered by traditional 3D-
render engines:
• Perspective views can now be issued to immerse the

observer in the scene. By simply specifying a differ-
ent camera model, applications can switch between
parallel and perspective projections. Perspective
transformations are an integral part of 3D graphics
languages and are accelerated by the geometry and
the texture-mapping engines.

• Polygonal surfaces can be embedded in the volume
by rendering them first. The Z buffer hardware-
accelerated hidden removal technique will ensure
that they correctly appear to lie within the volume.
For example, a corona-prosthesis model can be easily
inserted in MRI- or CT-scanned data from a patient.

3D-Texture-Mapping Render Action
The 3D-texture-based renderer (TMRenderAction)
delivered with OpenGL Volumizer implements the
semitransparent plane-rendering technique described
earlier. The underlying method is composed of two
parts. First, the volume geometry is sliced with planes
parallel to the viewport and stacked perpendicular to
the direction of view. These planes will be rendered as
polygons clipped to the geometry primitives’ boundaries.
During each frame, this polygonization phase generates
a set of polygons, normal to the viewing direction.

These clipped polygons are textured with the volume
data they intersect, and the resulting images are alpha
blended together, from back to front, toward the view-
er’s position. Each polygon’s pixel is successively
drawn and blended into the frame buffer to provide
the appropriate transparency or color effect. The
polygonization phase can be executed in parallel on
the next frame while the current frame is rendered.

To improve image quality while taking into account
rendering performance, the application must specify
an appropriate sampling rate. The sampling rate controls
the distance between the adjacent slices of the poly-
gonized geometry. The number of slices to be used
depends on the scene complexity and the pixel-fill
performance of the hardware. This paper elaborates
the trade-off between image quality and performance
in the section titled “Understanding the Texture-
Mapping Render Action.”

Slicing with planes is common but artifacts can
appear when the observer is very close to the model.
As an implementation alternative, spherical slicing
provides a more accurate visualization in perspective
projection [McReynolds, 1998]. The principle is illus-
trated in figure 7.

Fig. 7. Spherical slicing

Fig. 5. Geometric primitives

Triangle
Tetra-
hedron

Line
Point

Tetrahedron as the basic 3D primitive Tessellation of a cube into five tetrahedra

Fig. 6. Tetrahedral slicing

Eye

Volume

Shells

5

In this case, the polygonization process might become
the performance bottleneck. Using a parallel algorithm
to perform the polygonization on multiple processors
will help maintain a good level of performance.

The advantages of the TMRenderAction include:
• Immediate-mode execution to prevent the overhead

of storing transient geometry from polygonization
• Optimized texture management for improved texture

download performance; this includes the case of
texture memory oversubscription

• Built-in support for multipass shading techniques
like volumetric lighting and tagging

• Transparent bricking and interleaving of texture data

• Support for applications using multiresolution and
volume roaming techniques

Volumetric Shaders
In OpenGL Volumizer, we introduce the concept of
volumetric shaders to apply specific rendering tech-
niques to generate desired visual effects using the same
rendering algorithm described above. Each shader
implements a particular technique by setting the
appropriate OpenGL state and using multiple rendering
passes if necessary. The TMRenderAction supports
multiple built-in shaders that accept parameters for
the particular technique being applied. Figure 8 shows
the results generated from three different shaders
applied to the same medical data set.

vzTMSimpleShader vzTMLUTShader vzTMTangentSpaceShader

Fig. 8. Shading examples

Transfer Functions
For effective visualization of the data sets, the data
values often need to be mapped to different color and
opacity values [Levoy, 1990]. This mapping is specified
using transfer functions implemented as lookup tables
supported in the graphics pipeline. Different alpha
values in volumetric data often correspond to different
materials in the volume being rendered. A nonlinear
transfer function can be applied to the texels to help
analyze the volume data, highlighting particular classes
of volume data. By graphically thresholding values,
users can visually extract surfaces in real time.
OpenGL Volumizer implements a postinterpolation

lookup-table parameter, mapping color and opacity
values after texture interpolation. To edit transfer
functions, a simple lookup-table editor is delivered
with the product.

Understanding the Texture-Mapping
Render Action

This section explains the details of the render action
and mentions a few techniques that application writers
can use to their advantage. Figure 9 shows the pipeline
used by a typical volume rendering application using
the TMRenderAction.

Manage/
unmanage

shapes

Sort shapes/
set OpenGL

state

Draw
shapes

Fig. 9. Pipeline used by a volume-rendering application using the TMRenderAction

6

The application first computes the number of shapes it
needs to keep resident in texture memory for the given
frame. The list of shapes might be the outcome of visi-
bility culling in an immersive application, the current
frame index of a time-varying simulation, etc. Once the
application is done manage’ing and unmanage’ing
the shapes for the current frame, it is ready to draw
them.

The TMRenderAction does not perform any visibility
sorting of the rendered shapes; hence, it is the appli-
cation’s responsibility to sort them in the correct order.
After the sort, the application sets the appropriate
OpenGL state for performing volume rendering, such as
enabling blending and setting the appropriate blending
functions. The TMRenderAction renders the polygonal
geometry in a back-to-front sorted order. The blending
function for the most common volume-rendering
application is the over operator glBlendFunc
(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_

ALPHA) [McReynolds, 1998].

The flexibility in choosing the blending function allows
the application writer to implement other techniques
by setting the appropriate blending equations. For
example, maximum intensity projection can be imple-
mented by using glBlendEquation(GL_MAX)
[McReynolds, 1998].

Once the above is done, the application lets the render
action know that it is ready to start drawing the shapes
by calling beginDraw. The beginDraw method
marks the end of the texture-management phase and
the beginning of the rendering phase. Inside the
method, the render action:
• Computes the total resources required for the list of

managed shapes
• Performs the OpenGL state management (push

application’s OpenGL state, store transformation
matrices, etc.)

• Performs the OpenGL resource management (creates
and downloads texture objects, lookup tables, etc.)

Then, the application draws all of the shapes in the
visibility-sorted order computed above. Inside each
draw method, the render action:
• Invokes the shader’s initialization routine, which sets

the appropriate OpenGL state (bind texture objects,
enable lookup tables, etc.)

• Polygonizes the volumetric geometry using the trans-
formation matrices

• Draws the polygonized geometry in a back-to-front
order

Note that the polygonized geometry is always parallel
to the viewport unless the application has set slicing
planes on the volumetric geometry. The transformation
matrices are queried directly from OpenGL in the
beginDraw. These matrices are stored and used for
all the subsequent draws before the next endDraw.
Finally, in the endDraw, the render action restores
all of the OpenGL states that it modified, including
texture-related settings, lookup tables, and pixel store.

Understanding the OpenGL state management in the
TMRenderAction can be used to implement alternative
functionality not supported by the render action. For
example, application developers can render arbitrary
polygonal geometry with the shape’s volume texture
applied to it. Since the draw method does not restore
any OpenGL state, if the previously rendered shape’s
appearance used the vzTMSimpleShader or
vzTMLUTShader, the corresponding volume texture
will still be bound along with the appropriate texgen
settings. Also, applications can implement the spherical
sampling technique described earlier by rendering the
appropriate tessellated shells after the corresponding
draw. This method necessitates caveats. For example,
the technique would not work correctly with multipass
shaders like vzTMTangentSpaceShader and
shapes that have been bricked internally by the render
action (if their textures do not fit in texture memory).
You can make sure that the render action does not
draw any polygons either by setting the volumetric
geometry to be degenerate or by using slicing planes
with all the planes disabled.

Understanding the texture management can help you
improve the performance of the rendering by the render
action in many common cases. The TMRenderAction
computes the total amount of resources required to
render the given set of managed shapes in the
beginDraw and compares it to the amount available
on the graphics pipe. Depending on the outcome of the
comparison, the render action uses different texture-
management schemes. One optimization common to all
the schemes is that the render action tries to reuse
OpenGL texture objects whenever possible. Consider
the sequence of frames in figure 10.

Manage
shape 3

Unmanage
shape 2

Manage
shape 1

Manage
shape 2

Manage
shape 1Frame 1

Frame 2

Fig. 10. Shapes managed and unmanaged in a sequence of two frames

7

In the first frame, the render action would allocate
OpenGL texture objects for shape 1 and shape 2. In the
second frame, even though shape 2 is not managed,
the render action does not delete the texture objects
for it. Instead, it reuses the texture objects for down-
loading and binding the textures in shape 3. This
scheme has two advantages. First, reusing texture
objects prevents fragmentation of texture memory,
since not all texture managers do garbage collection
immediately after the texture object has been deleted.
Also, for downloading the textures in shape 3, the
render action uses glTexSubImage3D calls, which
are considerably faster than the corresponding
glTexImage3D calls.

The above discussion assumes that the textures in the
shapes fit in texture memory and have the same data
ROI and internal texture formats. Hence, if your appli-
cation uses multiple shapes and needs to constantly
manage and unmanage them in order to improve
the download performance of your application, you
should try to divide the whole scene into multiple
shapes such that the textures in the shapes are all of
equal sizes. Typical examples of such applications are
volume roaming, multiresolution volume rendering,
and time-varying volumes.

The sampling rate used to polygonize the volumetric
geometry controls the number of slices that are used
to render the shape. Theoretically, the minimum data-
slice spacing is computed by finding the longest ray
cast through the volume in the view direction, then
finding the highest frequency component of the texel
values and using twice that number for the minimum
number of data slices for that view direction. Practically,
the rendering process tends to be pixel-fill limited and,
in many cases, choosing the number of data slices to
be equal to the volume’s dimensions, measured in
texels, works well. An application can differentiate
itself by trading off performance and image quality.

Integration with Other Toolkits
OpenGL Volumizer is an API designed to handle the
volume-rendering aspect of an application. You can
use other toolkits, such as OpenGL Performer and
Open Inventor™, to structure the other elements of
your application. The API allows seamless integration
with other scene-graph-based APIs, since the shape
node can be used as the leaf nodes of such a scene
graph. Figure 11 illustrates a hypothetical scene graph
that contains polygonal data mixed with volumetric
data. In this case, the vzShape nodes are used to
represent the volumetric components of the scene,
whereas the other PolyNode is used to represent
polygonal geometry.

Mixing geometric objects with volume-rendered data is
a useful technique for many applications. For opaque
objects, the geometry is rendered first using depth
buffering, and then the volume data is rendered with
depth testing enabled. When using APIs like OpenGL
Performer or Open Inventor, the scene-graph traversal
should be done in the appropriate order to ensure
correct alpha compositing. The application can ensure
this by marking the volumetric nodes as transparent
so that the scene traverser renders it after the opaque
geometry. In the case of OpenGL Performer, this can
be accomplished by creating the appropriate
pfGeoState and attaching it to the volume node.
Figure 12 shows a volumetric data set rendered along
with opaque geometry using this technique.

Using Multiple Graphics Pipes
Thread safety allows applications the ability to run on
large platforms for large immersive displays or scale
the graphics performance and resources use by sharing
the scene graph among multiple rendering threads/
processes. Typically used with the OpenGL Multipipe
SDK, the application will be scalable and able to run in
an SGI® Reality Center™ environment. Applications can
scale the rendering performance of the system by
compositing the intermediate results from different
pipes to get the final image. Figure 13 shows n pipes
rendering the same scene using one thread/process
per pipe.

vzShape 1

RootNode

HybridNode

VolumeNode PolyNode

vzShape 2vzShape 2

Fig. 11. A complex scene graph

Fig. 12. Volume and opaque geometry integrated
in a single scene

8

Rendering performance can be scaled using multiple
compositing schemes. Figure 14 shows an example of
DPLEX decomposition, where consecutive frames are
rendered over different pipes. This example shows a
sequence of frames as the user modifies the transfer
function for this seismic data set. The even frames are
rendered on pipe 1 (red) and the odd frames on pipe 2
(blue). This technique effectively doubles the frame
rate with minimal application effort.

Visualizing Large Data
As the power of computing platforms or acquisition-
device capabilities increase, applications using
numeric simulations or data-acquisition techniques
give more and more data. Some examples of these
applications are in the scientific and energy domain.
Here, by large data we mean data larger than what the
local resources can handle. This data-resource con-
straint means that the data to be visualized will reside
on slower and larger storage peripherals like main
memory, disks, or others instead of on local graphics
resources. This data will have to migrate from one
peripheral to others within the frame rate constraint.
From this point of view, data migration becomes the
main bottleneck for visualization.

Pipe nPipe 2

Screne
graph

Pipe 1

Draw

D
raw

Draw

Fig. 13. Multipipe architecture

Fig. 14. DPLEX decomposition

Main memory S

S
S = Shape

Texture memory

S
S

Manage

Unmanage

S S

Fig. 15. Large data and resource management across multiple devices

To handle these issues, OpenGL Volumizer can benefit
from the SGI® Onyx® 3000 series architecture by
exploiting the high bandwidths and low latencies of
such systems. The data transfer process can be sup-
ported by dividing the whole volumetric data into
smaller components called bricks, not to be confused
with the various hardware bricks that comprise an SGI
Onyx 3000 series system. In this context, a brick repre-

sents one volume shape. The application controls the
frame rate by moving these data bricks to the local
texture memory from the various storage devices. This
control gives applications the capability to visualize
huge data located in memory or on high-performance
disks by paging them into texture memory using intel-
ligent schemes. In addition, the TMRenderAction
automatically bricks textures too big to fit in texture

9

memory, allowing them to be rendered using OpenGL.
That is, the TMRenderAction handles all texture-
memory-management processes hiding all hardware-
specific details and therefore making this task
transparent to the application. The following section
briefly mentions two techniques that can be used by
large data visualization applications for interactive
rendering of the data.

Volume Roaming
Volume roaming is an efficiency technique that allows
the user to explore large volumetric data using a volu-
metric probe, which can be interactively moved inside
the volume. The probe allows the user to have a viewing
window and helps the user concentrate on a specific
section of the whole data set. Such a technique can
achieve improved performance by using:
• Intelligent texture-management techniques that use

predictive texture downloads to maintain near-
constant frame rates during user motion

• Intelligent memory-management techniques that
allow roaming through a data set that might not even
fit in main memory

• The concepts of toroidal mapping from clip textures
for volume roaming; the granularity of the texture
element is a volume brick here rather than a texel

Multiresolution Volume Rendering
Multiresolution volume rendering allows applications
to interactively render huge volume data by assigning
varying levels of detail (LOD), thus making a trade-off
between performance and image quality [LaMar, 1999;
Weiler, 2000]. Lower resolutions help improve perfor-
mance, since they limit the texture memory and fill-
rate consumption of the application. Many researchers
have worked on multiresolution techniques for interac-
tive volume rendering, typically using an octree
decomposition of the whole volume. The following
techniques can be used to improve the performance
while maintaining acceptable image quality:
• Coupling texture management with LOD switching in

order to ensure near-constant frame rates
• Using the sorted order of texture bricks to determine

the LOD to be rendered
• Using clipping geometries to optimize the use of

texture memory available on the graphics subsystem
• Rendering higher resolutions during stages of less or

no user interaction

In addition, time-varying techniques allow users to run
a volume movie and can be easily implemented with
the same techniques. Such techniques can be imple-
mented for visualizing animated fluid dynamics or
crash analysis data.

Fig. 16. Volume roaming with a 3D probe Fig. 17. Multiresolution volume rendering

11

A Simple Volume Rendering Example
The following example creates a shape node and renders it using the TMRenderAction.

// Create a loader for the volume data.
IFLLoader *loader = IFLLoader::open(fileName);

// Load the volume data
vzParameterVolumeTexture *volume =

loader->loadVolume();

// Create a shader for the appearance
vzShader *shader =

new vzTMSimpleShader();

// Create the shape's appearance
vzAppearance *appearance =

new vzAppearance(shader);

// Add the volume texture as a parameter to the appearance
appearance->setParameter("volume", volume);

// Initialize the geometry
vzGeometry *geometry = new vzBlock();

// Initialize the shape node. Gathering geometry and appearance
shape = new vzShape(geometry, appearance);

// Create a 3D-Texture-based render action
vzTMRenderAction renderAction =

new vzTMRenderAction(0);

// Manage the shape
renderAction->manage(shape);

// Render the shape node
renderAction->

beginDraw(VZ_RESTORE_GL_STATE_BIT);

renderAction->draw(shape);

renderAction->endDraw();

// Unmanage the shape
renderAction->unmanage(shape);

// Delete the render action
delete renderAction;

Download and Try It
The latest version of OpenGL Volumizer 2.x is available free via download, providing application developers with
the necessary tools for implementing interactive, scalable, high-quality volume-visualization applications. The pack-
age can be downloaded from www.sgi.com/software/volumizer. Please find complete documentation and resources
from this page.

10

11

References
Cabral, B.; Cam, N.; and Foran, J.; “Accelerated Volume
Rendering and Tomographic Reconstruction using
Texture Mapping Hardware,” Symposium on Volume
Visualization, 1994.

Drebin, R.A; Carpenter, L.; and Hanrahan, P.;Volume
rendering. In John Dill, editor, Computer Graphics
(SIGGRAPH ‘88 Proceedings), volume 22, pages 65-74,
August 1988.

Hall, P.M.; and Watt, A.H.; Rapid volume rendering
using a boundary-fill guided ray cast algorithm. In
N. M. Patrikalakis, editor, Scientific Visualization of
Physical Phenomena (Proceedings of CG International
‘91), pages 235-249. Springer-Verlag, 1991.

LaMar, E; Hamann, B; and Joy, K.I.; Multiresolution
Techniques for Interactive Texture-Based Volume
Visualization. Proceedings of IEEE Visualization, 1999.

Levoy, M.; Efficient ray tracing of volume data, ACM
Transactions on Graphics (TOG), Volume 9 Issue 3,
July 1990.

McReynolds, T.; and Blythe, D.; Advanced Graphics
Programming Techniques Using OpenGL, SIGGRAPH
‘98 Course Notes, Orlando, FL, 1998.

Weiler, M.; Westermann, R.; Chuck Hansen, C.;
Zimmermann, K.; and Ertl, T.; Level-Of-Detail Volume
Rendering via 3D Textures. Volume Visualization &
Graphics Symposium, 2000.

OpenGL Volumizer 2.1 Programmer’s Guide,
http://www.sgi.com/software/volumizer/documents.
html

OpenGL Volumizer 2.1 Reference Manual,
http://www.sgi.com/software/volumizer/documents.
html

OpenGL Volumizer 2.1 Release Notes,
http://www.sgi.com/software/volumizer/documents.
html

© 2001 Silicon Graphics, Inc. All rights reserved. Specifications subject to change without notice. Silicon Graphics, SGI, OpenGL, Onyx, and the SGI logo are registered trademarks, and OpenGL
Volumizer, OpenGL Multipipe, OpenGL Performer, Open Inventor, and Reality Center are trademarks of Silicon Graphics, Inc. All other trademarks mentioned herein are the property of their
respective owners.

3176 (12/01) J13204

Corporate Office North America 1(800) 800-7441
1600 Amphitheatre Pkwy. Latin America (52) 5267-1387
Mountain View, CA 94043 Europe (44) 118.925.75.00
(650) 960-1980 Japan (81) 3.5488.1811
www.sgi.com Asia Pacific (65) 771.0290

