
OpenGL Performer™
Real-Time 3D Rendering for High-Performance
and Interactive Graphics Applications

OpenGL Performer is a high-performance 3D rendering toolkit for
developers of real-time, multiprocessed, interactive graphics applications.
OpenGL Performer dramatically simplifies development of complex
applications such as visual
simulation, simulation-based design,
virtual reality, interactive
entertainment, broadcast video, CAD,
and architectural walk-through while
providing a high-performance
portability path across the entire
IRIX® and Linux® product lines
from SGI.

An OpenGL Performer application
can make automatic and optimal use
of available system features and
components on any SGI™ platform—including peak performance
rendering and use of multiple CPUs. On IRIX platforms, OpenGL
Performer also makes optimal use of multiple graphics pipelines and
real-time scheduling features.

Feature Highlights
OpenGL Performer provides all of the basic features and tools to build a complete image-generation solution, including:

• Maximum graphics performance across the entire IRIX and Linux product lines from SGI and support for
OpenGL® rendering

• Transparent multiprocessing and efficient use of multiple CPUs, video channels, and graphics pipelines, without
requiring application code or compilation changes

• Support for Digital Video Multiplexer Option (DPLEX) on InfiniteReality™ series configurations for dome distortion
correction and other high frame rate applications

• Real-time fixed frame rate operation for truly immersive simulations
• Automatic scene and load management features; view frustum culling, level of detail (LOD) evaluation, and dynamic

video resolution (DVR)
• Run-time and real-time profiling for use in debugging, tuning, and load management
• Asynchronous paging of database geometry and imagery, including fast-loading formats
• Automatic paging and management of huge textures, up to 8 million x 8 million texels in a single texture
• Active surface definition for automatic paging of terrain with continuous LOD evaluation
• Asynchronous database intersection and user database processing
• Dynamic animated geometry and general data
• Light points and calligraphic points for visual simulation
• Atmospheric effects for visual simulation, including fog and haze, and support for implementing range/angle-correct

layered fog and patchy fog
• Visual simulation effects, including rotorwash
• Double precision coordinate system support for very large databases
• Video textures
• Database interoperability with run-time linking with database loaders for loading data files of any file format or

multiple file formats
• EventView performance analysis tool
• Enhanced realism through a multipass rendering infrastructure utilizing output from OpenGL Shader™

Sample applications and viewers are provided with source code. More than a gigabyte of utility libraries, file
loaders, examples, and data, much of it contributed by third-party suppliers, is also included with the product.
Extensive programming guides and online documentation tools are also included.

Entering Data into OpenGL Performer: Database Independence Ensures Interoperability
OpenGL Performer is database-independent, supporting asynchronous loading and paging of arbitrary file formats.
A run-time look-up mechanism is used for finding loaders for arbitrary file formats that, upon loading, can be
combined into a single database. It is shipped with more than 50 different file loaders and most of the respective
sources. Included in the collection are native csb OpenGL Optimizer™ and iv Open Inventor™ loaders for easy import
of files.

Additionally, OpenGL Performer provides a fast-paging file format specifically designed to speed up the loading
and storing of scenes (usually 100 times faster than a standard loader) for use in run-time database paging.

Application Layer Architecture
The OpenGL Performer libraries extend the functionality of the SGI system-level software. OpenGL Performer supports
OpenGL/GLX™ operation through a unified application program interface (API). On IRIX, optimum performance is
achieved through REACT™ real-time extensions to the IRIX operating system. REACT is used both for real-time
scheduling control and real-time system profiling. XFS™ filesystem features are used for large database paging on
the IRIX operating system. OpenGL Performer leverages the system capabilities to provide high-level application
control while allowing for simple and efficient user access to these complex features. Applications can take advantage
of the API completely or in part while accessing any system libraries such as OpenGL, OpenGL/GLX, IRIX, and Linux
as needs dictate.

Library Architecture: Rapid Rendering and Peak Performance
OpenGL Performer was designed for seamless integration with all SGI graphics visualization systems, ensuring peak
rendering performance across the product line. The product is a layered library consisting of low-level primitives,
higher level multiprocessed scene management, and application-level utilities provided in source code. The bottom
level is the rapid-rendering layer, libpr, to which applications have complete access and which employs more than
4,500 specialized rendering loops to optimize graphics features such as lighting, multitexturing, and transparency.
Libpr also performs back-end state management. The top level is libpf, which sets up a multiprocessed environment
for full application processing—providing the high-level functionality critical to establishing real-time frame rates.

The large majority of applications work at the libpf level. There are several libraries in the application utility layer
for optimizing databases (libpfdu), loading different file formats (libpfdb), handling device input and implementing
user interfaces (libpfui) and GUIs (libpfutil), and rendering special effects (libpfutil). Finally, source code to a full-
sample application, the perfly demo program, is provided for use in the development of custom applications.

Rendering Architecture: App, Cull, and Draw
OpenGL Performer provides a multiprocessed rendering architecture. At its core lie multithreaded, parallel rendering
pipelines for per-frame scene management and image generation for output to graphics pipelines. The software
rendering pipelines are each split into three major pieces to handle critical path operations:

• App: specification of viewpoint and object positions
• Cull: LOD management, view frustum culling, and sorting (for state optimization and rendering special effects)
• Draw: the final rendering of the scene

Each software pipeline uses one graphics pipeline and can render an arbitrary number of output channels.

The user has full control over the configuration of the App, Cull, and Draw tasks, including:
• Putting the tasks in a single process
• Dividing the tasks arbitrarily between multiple processes
• Running the tasks synchronously or asynchronously

OpenGL Performer can also automatically make process configuration decisions at run time based on the run-time
hardware platform.

Additional asynchronous processes are available for user customization and for certain predefined tasks such as database
paging, intersection testing, dynamic geometry evaluation, and computation of complex light-point characteristics.

Running Real Time: IRIX REACT
In situations where a guaranteed fixed frame rate is required, OpenGL Performer uses the REACT extensions to the
IRIX operating system to control process scheduling and process priority management. REACT guarantees real-time
predictable behavior from the IRIX operating system by locking the API’s processes to specific processors and
maintaining nondegrading priority for them.

Performance Monitoring for Load Management: EventView, LOD, and DVR
OpenGL Performer provides a full suite of diagnostic statistics, including graphics pipeline hardware statistics for
extremely accurate measurements of rendering time. These statistics are used for tuning and real-time monitoring of
full system performance for load management and for direct use with other system monitoring tools, such as IRIXview™.

OpenGL Performer includes a time event analysis tool called EventView. It allows tracing time events generated by
Libpf internals as well as user-generated time events on a logic-analyzer-style display. It is useful for measuring how
the duration of various Performer execution blocks varies across time and as a function of user application events.

There are two automatic mechanisms for load management. The first mechanism, LOD management, adjusts object
complexity in accordance with scene quality and performance considerations set by the database or user. This
mechanism allows objects with low contribution to scene quality (far from the eyepoint, small in scene, or based on
custom parameters) to be rendered at a lower level of complexity—thus reducing polygonal and graphics state loads.
The second mechanism is targeted at pixel-fill or raster-load management. On the InfiniteReality series of graphics
subsystems, raster load is managed with DVR, which allows each display channel to be automatically rendered with
fewer pixels (determined on a per-frame basis based on per-channel load). The resulting image can be zoomed up to
full output resolution, using bilinear interpolation without added latency or loss of performance.

Texturing with Large Imagery: Virtual Clip Texturing
Traditionally, large geographic areas were textured with separate tiled textures. This required significant modeling
effort, complex application management of the texture paging, and a substantial amount of texture memory.

Supported by OpenGL Performer on the InfiniteReality series of graphics subsystems, cliptexturing (clipmapping)
is a superior alternative because it virtualizes the texture and allows the entire texture to be specified in a single
coordinate system. Only a small fixed amount of these virtualized textures, called clipmaps, need to be kept in hardware
texture memory. The InfiniteReality series of graphics subsystems features specialized hardware that can map texture
coordinates from the original virtual space into this “clipped” texture space. This allows texture and geometry of
large textures to be defined more independently than is possible with texture paging. With clipmapping, large-area
geospecific imagery, such as satellite and aerial photographs, can be easily mapped onto terrain geometry with
minimal database creation effort. This clipped part of the texture is actually a subset of the clipmapping pyramid
usually associated with MIPmapping and is centered at a point of interest in the virtual texture.

The size of the clipped area needs to be only as big as the number of high-resolution texels that can
fit on the screen at one time and is completely decoupled from the size of the virtual

texture. For a virtual texture of size 8 million x 8 million texels, less than
.0000003 percent (under 45MB) of the actual potential full

virtual texture is kept in hardware texture memory.
The user can choose a smaller clipped

space and thus use even less
hardware texture memory.

The virtual texture space can
also be very sparsely populated

with high-resolution insets. Lower-
resolution versions of the image data

will automatically be used where high-
resolution data is unavailable.

32,768x32,768

16,384x16,384

8,192x8,192

4,096x4,096

2,048x2,048

1,024x1,024

In hardware
texture memory.

Typically 1,024x1,024

MIP
mapping

Clip
mapping

Figure 1 Clipmapping Pyramid

OpenGL Performer manages the virtualization of clip-mapped textures, the update of the center of interest based on
viewer position, and the automatic paging of texture data to keep the clipped space up-to-date. A two-level look-
ahead caching scheme is employed in order to minimize disk paging latency and improve download bandwidth
into texture memory—thereby wasting a minimal amount of both host memory resources. Load management
controls are provided to control the texture and paging resources. OpenGL Performer also contains support for
the efficient management of multiple graphics pipelines in a system viewing a single cliptexture and management
for multiple cliptextures. Utilities are provided to convert image data to clip-mapped texture files for optimal texture
paging speed.

Rendering Large Geometric Surfaces: Active Surface Definition
The rendering of very large or heavily tessellated surfaces presents many image-quality and load-management challenges.
OpenGL Performer solves these problems using an approach called Active Surface Definition (ASD). ASD provides
an efficient, multiprocessed framework for the evaluation and paging of geometry over precomputed levels of detail
based on user-specified evaluation, quality, and load-management constraints. Transitions between different levels
of detail are made smoothly, on a per-triangle basis, with no visible spatial or temporal artifacts.

Dynamic Data Buffers: Engine and Flux
OpenGL Performer includes several features for the representation and evaluation of dynamic data. Engines allow
the description of operations, such as morphing, blending, and bounding box computation, to be performed on
specific objects or buffers of data. Fluxes are dynamic evaluated objects, the contents of which can be computed by
engines and used as geometry or transformations any place where fluxed data is allowed. Asynchronously generated
data is rendered when available in a frame-accurate manner.

Double-Precision Coordinate Systems
Standard floating-point numbers fail to provide enough precision for representing position information very far
from the origin of the database. This is a problem when rendering very large terrain models (e.g., the earth). This
problem manifests itself as a random jitter in the position of database elements. Current OpenGL hardware does not
support double-precision numbers for vertex coordinates and matrices; therefore, the solution to the precision
problem must come from a higher level layer.

OpenGL Performer solves the precision problem by providing an intermediate double precision coordinate system.
When traversing the scene graph, OpenGL Performer allows specifying double precision matrices. It allows the
application to drag the origin of the database along with the observer camera. This means that objects near the
observer camera are always close to the origin of the database; therefore, the precision problem does not exist.

Enhanced Realism through Programmable Shading
Using multiple rendering passes to compute a shading function on some
geometry is a well-known trick. However, implementing the multipass
rendering algorithms at the application level has always been a very difficult
job. OpenGL Performer provides a new infrastructure for specifying a multipass
shading algorithm on some geometry. It reads the output of OpenGL Shader, a
toolkit for converting shading specifications into a multipass specification. It
then constructs a list of passes for the geometry that it affects. At the
rendering stage, it renders the geometry multiple times as specified in the
shader description.

Figure 2 Example of Programmable Shading
Results

Rendering Features for Realistic Visual Simulation
OpenGL Performer includes special features for enabling
realistic environments and visual simulation. One of these
features is the layered atmospheric model that includes
fog, haze, and an earth/sky model with graduated sky color
and horizon glow. On all OpenGL architectures, a multipass
algorithm enables layered and patchy fog visual effects.
Additional support is provided for implementing a layered
angle and range-correct fog model using multipass rendering
on the InfiniteReality series of graphics subsystems.

OpenGL Performer also offers sophisticated lighting effects, including shadows, and local projected lights such as
landing lights and headlights.

OpenGL Performer 2.4 introduces support for a rotorwash effect for visual simulation applications. The effect
is generated on any scene-graph geometry and may vary depending on the material properties of the geometry.
By automatically detecting the underlying material properties and geometry, the rotorwash effect adjusts the color
and appearance of the dynamic texture to achieve the appropriate visual effect.

OpenGL Performer incorporates wide support for visible, nonilluminating light points—essential for accurate renderings
of a given view that might include such lights as stars, runway lights, visual approach slope indicators, precision
approach path indicators, and even street lights when viewed from a great distance. The computation for these
lights can be done in a separate process in parallel with the main
rendering process, which can be multithreaded. OpenGL
Performer contains full support for calligraphic light points and
the management of calligraphic hardware, available from
Electronic Image Systems, Inc., for the entire InfiniteReality
family of graphics subsystems.

Increasing Frame Rate by Using DPLEX
On InfiniteReality systems with multiple rendering pipes and a
DPLEX option, OpenGL Performer provides support for time-
multiplexing the output of the different pipes into a single screen.
For example, a five-pipe system that can render a complex model
at 12 Hz can now render the same model at 60 Hz. Each one of the
five pipes starts drawing its frame at a different time, and the
resulting images are multiplexed into the output screen. The final
result is that the output screen sees a new image 60 times per
second even though each one of the pipes can only produce 12
new images per second.

Figure 4 Example of Rotorwash

Figure 3 Example of Patchy Fog

Scene Graph and Basic Object Types
Libpf Node Types
ASD Active surface definition evaluates continuous level of detail of terrain
Billboard Rotates geometry to face eyepoint for efficient rendering of symmetric geometry
DCS Dynamic coordinate system—applies changeable transformation to the coordinate system

of its children
FCS For asynchronous (fluxed) evaluation of coordinate system transformation
Geode Contains geometry described with GeoSets and GeoStates
Group Groups with zero or more children
Layer Renders co-planar geometry (e.g., pictures on a wall)
LightSource Invisible but illuminating light source
LOD Level of detail—selects one or more children based on distance from eyepoint, viewport

pixel size, and field of view
Partition Spatially partitions geometry beneath it into an efficient data structure
Scene Root node of a visual database
SCS Static coordinate system—applies static transformation to the coordinate system of its children
Sequence Sequences through its children for sequenced animation effects
Switch Enables/disables traversal of children nodes in a group

Additional Libpf Object Types
FrameStats Holds per-frame timing, computation, and rendering statistics
LODState Represents custom LOD parameters and priority classes for individual objects or arbitrary

groups of objects
MPClipTexture Manages the paging of a cliptexture for a gfx pipe
Pipe Software rendering pipeline to hardware gfx pipe
PipeVideoChannel A video output channel of the gfx pipe
PipeWindow A window on a gfx pipe
Rotorwash Enables the vis-sim specific rotorwash effect
ShaderManager, Containers for multipass rendering specifications
Shader
VolFog Encapsulates layered and patchy fog rendering algorithms

Libpr Objects
Calligraphic Configures/manages a calligraphic channel for rendering calligraphic light points
Engine Encodes a standard or custom user-defined operation on a fluxable object
Flux An object or buffer for dynamic and optionally asynchronous update
GeoSets Hold geometric primitives: points, lines, line strips, triangles, triangle strips,

triangle fans, and quadrilaterals
GeoStates Hold state description for geometry: texture, material, lighting, transparency, and fog
LpointState Holds description of light-point illumination behavior

Release and Compatibility Information
Compatible with all platform releases of OpenGL Performer. Requires IRIX 6.2 or a later IRIX release.

• Supports OpenGL on all platforms
• Supports all ABIs: O32, N32, N64

Includes compatibility execution environments for previous releases:
• 2.0.7—binary-compatible upgrade for 2.0
• 2.1.5—binary-compatible upgrade for 2.1

All execution environments are included in IRIX 6.5.

Further Information
For additional information on OpenGL Performer, visit the Web site at www.sgi.com/software/performer/.

©2001 Silicon Graphics, Inc. All rights reserved. Specifications subject to change without notice. The contents of this document may not be copied or duplicated in any form, in whole or in part,
without the prior written permission of Silicon Graphics, Inc. Silicon Graphics, IRIS, IRIX, and OpenGL are registered trademarks and SGI, the SGI logo, OpenGL Performer, Open Inventor,
InfiniteReality, OpenGL Optimizer, REACT, OpenGL Shader, IRIXview, OpenGL Multipipe, GLX, and XFS are trademarks of Silicon Graphics, Inc. Linux is a registered trademark of Linus Torvalds.
All other trademarks mentioned herein are the property of their respective owners. Image credits: (page 1) Image courtesy of the Air Force Research Laboratory, (page 7) Image courtesy of 2000
American Museum of Natural History, San Diego Supercomputer Center—UCSD.
3061 (4/01) J12484

Corporate Office North America 1(800) 800-7441
1600 Amphitheatre Pkwy. Latin America (52) 5267-1387
Mountain View, CA 94043 Europe (44) 118.925.75.00
(650) 960-1980 Japan (81) 3.5488.1811
www.sgi.com Asia Pacific (65) 771.0290

OS-Independent
Features
OS-Independent
Features

IRIX Specific
Features
IRIX Specific
Features

High-Performance Scene Graph
ASD

PfShader
Rotorwash

Layered and Patchy Fog
EventView

Multiprocessing
Double-Precision DCS
Multichannel Display

Cliptexture
DPLEX

Calligraphics
DVR

Multisample LOD Fading
12-Bit-per-Component Color
Sophisticated Pipe Statistics

REACT and IRIXview
Multipipe Display

Anisotropic Filtering
Multitexture

Linux Specific
Features

