
OpenGL Shader™

Features
• Real-time performance supports interactive 

shader design and application

• Compact library can easily be invoked from 
any application

• Simple interface results with minimal invasiveness

• Output of OpenGL source code can be compiled 
directly into an application

• Example applications and sample shaders included

Is It Real, or Is It Rendered?
Movie special effects deliver stunning realism, but cannot be directly 
rendered on today’s graphics systems. These effects are designed using
shaders—high-level descriptions of complex appearances—which are then
rendered over many hours on powerful computers, a process known as
offline rendering. With the advent of powerful OpenGL® graphics pipelines
such as SGI™ InfiniteReality3™, many programmers have developed complex
multipass algorithms that mimic these effects.

OpenGL Shader enables these powerful shaders to be directly rendered by
OpenGL systems much more rapidly, transforming the reach and usability of
these powerful descriptions. Every aspect of the scene is encapsulated in
these descriptions, such as material properties, fog, and other atmospher-
ics. Eliminating the synthetic feel, anisotropic and full bidirectional reflec-
tivity is an integral component of this natural environment.

See Hardware Improvements without Software Recompiles
OpenGL Shader transforms programmable shading from an offline tool 
to a central component of interactive visual computing. OpenGL Shader
accomplishes this transformation by introducing a compiler between the
application and the graphics library that translates shaders into OpenGL
rendering passes. The compiler can produce a general set of rendering
passes or use knowledge of the available hardware to select an optimized
set of passes. Applications see increased performance as the compiler and
underlying hardware evolve—without any change in the shaders. This
approach allows users to move complex effects they have developed to 
different rendering hardware without new coding effort. 

Datasheet



Output File Formats

©2000 Silicon Graphics, Inc. All rights reserved. Specifications subject to change without notice. Silicon Graphics, InfiniteReality, and OpenGL are registered trademarks, and SGI, OpenGL Shader,
InfiniteReality3, Performer, Open Inventor, Interactive Shading Language, and the SGI logo are trademarks, of Silicon Graphics, Inc. All other trademarks mentioned herein are the property of their
respective owners. 

2954 [11/00] J12018

Corporate Office North America 1(800) 800-7441
1600 Amphitheatre Pkwy. Latin America 1(650) 933-4637
Mountain View, CA 94043 Europe (44) 118.925.75.00
(650) 960-1980 Japan (81) 3.5488.1811
www.sgi.com Asia Pacific (65) 771.0290

Everything You Need in One Development Kit
OpenGL Shader is a software development kit containing tools for supporting inter-
active, programmable shading on OpenGL systems. It consists of command line
compilers and translators that can convert a set of Interactive Shading Language™
shaders into an OpenGL function call, as well as an Interactive Shading Language
Library that enables applications to access the compilers in an interactive system.
Documentation and sample source code are also included in the OpenGL Shader
software development kit. The source code examples include a stand-alone applica-
tion and an Open Inventor™ toolkit-based application.

Interactive Shading Language Library
The OpenGL Shader Interactive Shading Language Library provides a minimal inter-
face for supporting interactive, programmable shading. The Interactive Shading
Language Library consists of six classes that enable an application to:

•Define an appearance consisting of Interactive Shading Language shaders
•Compile that appearance into an OpenGL stream 
•Associate it with geometry from the application
•Render the shaded geometry to an OpenGL rendering context by the application 

Command Line Compiler
The command line compiler translates an appearance description into a description
of OpenGL passes. When converted to an OpenGL stream using a translator, this
pass description will render an object with the specified appearance. An appear-
ance is defined as one or more of the following: a list of surface shaders, a list of
ambient light shaders, and a list of direct light shaders. The shaders are written 
in an OpenGL Interactive Shading Language.

Command Line Translator
The command line translator translates a description of OpenGL passes, as output
by the command line compiler, into C code that implements the OpenGL passes
described in the input. For a given intermediate pass file, one .c file and one .h file
are generated. The .c file contains the definitions of the initialization, drawing, and
cleanup functions for the shader, while the .h file contains the prototypes for these
functions.

For more information or to download a copy, check out
www.sgi.com/software/shader.

OpenGL Shader Version 2.0 
Feature Summary

•Support of enhanced Interactive Shading
Language:

-Enables general texture coordinate 
computation

-Enables bump mapping within shaders
-Enables general bidirectional reflectivity 
distribution functions within shaders

•Interactive Shading Language command line
compiler to intermediate pass file:

-Optimized code generation beyond Version 1.0

•Command line translator from intermediate
pass file to OpenGL source code that can 
be compiled directly into an application

•Compiler library and OpenGL interpreter:
-Can invoke Interactive Shading Language
compiler from within any application

-Simple API ensures minimal invasiveness
-Supports changing shader parameters 
on the fly

-Supports interactive shader design 

•Example code:
-Example application to display generated
OpenGL source code

-Sample shaders
-Example of plugging library into a retained
mode interface

-Example shader editor

OpenGL Shader Architecture

OpenGL

Performer™

Interactive
Shading

Language
Library

Command
Line

Compiler

Command
Line

Translator


