
White Paper

Scalability and Performance in Modern Filesystems
By Philip Trautman

While some of the size limits of XFS may appear
excessive and those of the competitors more than
adequate, it should be noted that some SGI’ customers
already have XFS filesystems that exceed the limits of
the competitors.

XFS far exceeds the scalability of even its closest
competitors. For customers who need to maximize
performance while scaling to handle huge files and
huge data sets, there is no other choice that comes
close.

2

Executive Summary
In the early 1990’s SGI undertook the development of a
new filesystem, XFS™, to meet the needs of its customers
for filesystem scalability and I/O performance. The XFS
filesystem has been designed from scratch to scale to
previously unheard of levels in terms of filesystem capacity,
file size, number of files stored, and directory size.
Because of the pervasive use of B+ trees to speed up
traditionally linear algorithms, XFS is able to provide
tremendous scalability while delivering I/O performance
that approaches the maximum throughput of the
underlying hardware. At the same time, XFS provides
asynchronous metadata logging to ensure rapid crash
recovery without creating a bottleneck to I/O
performance.

This paper compares the XFS filesystem with three
other filesystems in widespread use today:

• the UNIX®Filesystem (UFS), still widely available from
UNIX vendors like Sun and HP

• the Veritas Filesystem (VxFS), a commercial filesystem
frequently used on UNIX platforms

• the Microsoft® Windows NT® Filesystem (NTFS)

Because of its unique second-generation design, XFS
offers superior scalability and performance in
comparison to these filesystems. The following table is a
summary of key features discussed in the paper:

Introduction
If someone had told you ten years ago that disk drive
capacity would increase to such an extent that in 1998
even the humblest desktop systems would ship with
multi-gigabyte disk drives, you scarcely would have
believed them. Yet today multi-gigabyte desktop systems
are the norm and system administrators struggle to
manage millions of files stored on servers with
capacities measured in terabytes. Many installations are
doubling their total disk storage capacity every year. At
the same time, processing power has grown
astronomically, so the average system, whether desktop
or server, must not only manage and store much more
data, it also must access and move that data much more
rapidly to meet system and/or network I/O demands.

Perhaps not surprisingly, the filesystem technology that
was adequate to manage and access the multi-megabyte
systems of the 1980s doesn’t scale to meet the demands

created when storage capacity and processing power
increase so dramatically. Algorithms that were once
sufficient often either fail to scale to the level required
or perform so slowly and inefficiently that they might as
well have failed.

In the early 1990s—when it was already clear that the
EFS filesystem was creating I/O bottlenecks for many
SGI customers-SGI set out to develop a filesystem that
would scale into the next millennium.

From direct customer experience, SGI knew that it
needed a next generation filesystem that supported:

• Filesystems of as much as a petabyte. EFS was limited
to a maximum filesystem size of 8GB. Many 32-bit
filesystems are limited to 2GB.

1.

2.

Table 1: Feature comparison of XFS with the UNIX Filesystem (UFS), The Veritas Filesystem (VxFS), and the Windows NT Filesystem (NTFS).

Feature XFS UFS VxFS NTFS

Max FS Size 18 million TB 1TB 1TB 2TB

Max File Size 9 million TB 1TB 1TB 2TB

File Space Allocation Extents Blocks Extents Extents

Max. Extent Size 4GB NA 64MB Undoc’d

Free Space Mgmt Free extents organized Bitmap per cylinder grp Bitmap per allocation unit Single bitmap

by B+ trees

Variable Block Size 512 bytes to 64KB 4KB or 8KB Undoc’d 512 bytes to 64KB

(4KB w/ compression)

Sparse File Support? Yes Yes No NT 5.0

Directory Organization B+ Tree Linear Hashed B+ tree

Inode Allocation Dynamic Static Dynamic Dynamic

Crash Recovery Asynch. Journal Fsck* Synch. Journal Synch. Journal

Maximum Performance 7GB/sec Not Available 1GB/sec Not Available

4GB/sec (single file)

3

• Large files. Many filesystems were limited to a
maximum file size of 2GB. In addition, File I/O can be
dramatically accelerated by allocating disk space
contiguously.

• Large directories. Most filesystems use linear
searches, going through a directory entry by entry, to
locate a particular file. This becomes very inefficient
when the number of files in a directory exceeds a few
thousand.

• Large numbers of files. The only way to efficiently
scale to support large numbers of files (without prior
knowledge of the number of files the filesystem would
ultimately support) is to dynamically allocate index
space for files.

• Rapid crash recovery. Many traditional filesystems
require a checking program to check filesystem
consistency after a crash. On large, active filesystems
this type of checking can take a prohibitively long
time to complete. Solving this problem must not
degrade I/O performance.

• Unparalleled performance. Performance should not
degrade as the size of the filesystem, an individual
file, or the total number of files stored grows. The
ideal filesystem should provide performance that
approaches the maximum performance of the
underlying hardware.

From surveying available filesystems, it was clear there
was no single existing technology that met all these
requirements. In response, SGI developed the XFS
filesystem, a filesystem that could manage the huge data

sets of supercomputers while at the same time meeting
the needs of the desktop workstation.

XFS benefits from tight integration with the IRIX(r)
operating system to take full advantage of the
underlying hardware. IRIX has been a full 64-bit
operating system since 1994. By comparison, HP began
shipping its first full 64-bit operating system in 1997
and Sun’s 64-bit version of Solaris was released in 1999.
A 64-bit version of Windows NT is still far in the future.

XFS also complements the ccNUMA architecture of the
SGI (tm)Origin(tm) line of servers. The ccNUMA
architecture provides high performance and extreme
scalability through its unique interconnect technology,
allowing the system to scale from two to 128 processors.
This unprecedented and seamless scalability addresses
exponential data growth and rapidly evolving business
needs, allowing companies to meet the growing
demands of changing environments.

This paper examines in detail how XFS satisfies the
scalability, performance, and crash recovery
requirements of even the most demanding applications,
comparing XFS to other widely available filesystem
technologies:

UFS: The archetypal UNIX filesystem still widely
available from UNIX vendors such as Sun and HP

VxFS: The Veritas Filesystem, a commercially developed
filesystem available on a number of UNIX platforms
including Sun and HP

NTFS: The filesystem designed by Microsoft for
Windows NT

of performance is contained in a later section.)
The scalability of a filesystem depends in part on how it
stores information about files. For instance, if file size
is stored as a 32-bit number, then no file in the
filesystem can usefully exceed 232 bytes (4 GB).

Scalability also depends on the methods used to
organize and access data within the filesystem. As an
example, if directories are stored as a simple list of file
names in no particular order, then to look up a
particular file each entry must be searched one by one
until the desired entry is found. This works fine for
small directories but not so well for large ones.

XFS is a filesystem that was designed to scale to meet
the most demanding storage capacity and I/O needs.
XFS achieves this through extensive use of B+ trees in
place of traditional linear filesystem structures and by
ensuring that all data structures are appropriately sized.
B+ trees provide an efficient indexing method that is
used to rapidly locate free space, to index directory
entries, to manage file extents, and to keep track of the
locations of file index information within the filesystem.
The B+ tree structure takes the form of an inverted
tree, in some ways analogous in form to a directory

Filesystem Scalability
Simply put, a filesystem is the software used to organize
and manage the data stored on disk drives. The
filesystem ensures the integrity of the data. Anytime
data is written to disk, it should be identical when it is
read back. In addition to storing the data contained in
files, a filesystem also stores and manages important
information about the files and about the filesystem
itself. This information is commonly referred to as
metadata.

File metadata includes date and time stamps,
ownership, access permissions, other security
information such as access control lists (ACLs) if they
exist, the file’s size, and the storage location or
locations on disk.

In addition, the filesystem must also keep track of free
versus allocated space and provide mechanisms for
creating and deleting files and allocating and freeing
disk space as files grow, shrink, or are deleted.

For this discussion, filesystem scalability is defined as
the ability to support very large filesystems, large files,
large directories, and large numbers of files while still
providing I/O performance. (A more detailed discussion

3.

4

hierarchy. The tree can be efficiently searched by
descending from the root, making simple comparisons
between the desired value and the values stored in the
tree. The B+ tree is particularly well suited to paged
files because it supports random or sequential access to
data stored within the tree.

By comparison, the UFS filesystem was designed at UC
Berkeley in the early 1980s when the scalability
requirements were much different than they are today.
Filesystems at that time were designed as much to
conserve the limited available disk space as to maximize
performance. This filesystem is also frequently referred
to as FFS or the “fast” filesystem. While numerous
enhancements have been made to UFS over the years to
overcome limitations that appeared as technology
marched on, the fundamental design still limits its
scalability in many areas.

The Veritas filesystem was designed in the mid-1980s
and draws heavily from the UFS design but with
substantial changes to improve scalability over UFS.
However, as you will see, VxFS lacks many of the key
scalability enhancements of XFS, and in many respects
represents an intermediate point between first
generation filesystems like UFS and a true second
generation filesystem like XFS.

The design of NTFS began in the late 1980s as the
Microsoft Windows NT operating system was first being
developed, and design work is still ongoing. NTFS was
designed primarily for the desktop PC with some
thought for the PC server. At the time development
began, the typical desktop PC would have had disk
capacities in the tens to hundreds of megabytes and a
server would have been no more than 1GB. While some
thought was given to scaling beyond 32-bit limits, no
mechanisms are apparent to manage data effectively in
large disk volumes. NTFS seems to have ignored some
of the important scalability lessons that could have been
learned from first-generation UNIX filesystems.

The terminology that Microsoft uses to describe NTFS
(and filesystems in general) is almost completely
different, and in many cases the same term is used with
a different meaning. This terminology will be explained
as the discussion progresses. (A glossary of terms is
included at the end of this document.)

This section examines the scalability of these four
filesystems based on the way they organize data and the
algorithms they use.

3.1 Support for Large Filesystems
Not only have individual disk drives gotten bigger, but
most operating systems have the ability to create even
bigger volumes by joining partitions from multiple
drives together. RAID devices are also commonly
available, each RAID array appearing as a single large
device. Data storage needs at many sites are doubling
every year, making larger filesystems a necessity.
The minimum requirement to allow a filesystem to scale
beyond 4GB in size is support for sizes beyond 32-bits.

In addition, to be effective, a filesystem must also
provide the appropriate algorithms and internal
organization to meet the demands created by the much
greater amount of I/O that is likely in a large filesystem.

UFS
The UFS filesystem was designed at a time when 32-bit
computing was the norm. As such, it originally
supported filesystems of up to 231 or 2GB. (The number
is 231 bytes rather than 232 bytes because the size was
stored as a signed integer in which one bit is needed for
the sign.) Because of the practical limitations this
imposes, most current implementations have been
extended to support larger filesystems. For instance,
Sun extended UFS in Solaris 2.6 to support filesystems
of up to 1TB in size.

UFS divides its filesystems into cylinder groups. Each
cylinder group contains bookkeeping information
including inodes (file index information) and bitmaps
for managing free space. The major purpose of cylinder
groups is to reduce disk head movement by keeping
inodes closer to their associated disk blocks.

XFS
XFS includes a fully integrated volume manager, XLV,
which is capable of concatenating, plexing (mirroring),
or striping across up to 128 volume elements. Each
volume element can consist of up to 100 disk partitions
or RAID arrays so that single volumes can scale to
hundreds of terabytes of capacity. The EFS filesystem
was only capable of supporting filesystems up to 8 GB
in size, which was inadequate for many purposes. (EFS
is the first-generation SGI filesystem that took the place
of UFS in early versions of the IRIX operating system.)

XFS is a 64-bit filesystem. All of the global counters in
the system are 64 bits in length, as are the addresses
used for each disk block and the unique number
assigned to each file (the inode number). A single
filesystem can theoretically be as large as 18 million
terabytes.

To avoid requiring all data structures in the filesystem
to be 64 bits in length, the filesystem is partitioned into
regions called allocation groups (AGs). Like UFS
cylinder groups, each AG manages its own free space
and inodes. However, the primary purpose of allocation
groups is to provide scalability and parallelism within
the filesystem. This partitioning also limits the size of
the structures needed to track this information and
allows the internal pointers to be 32 bits. AGs typically
range in size from 0.5 to 4GB. Files and directories are
not limited to allocating space within a single AG.

The free space and inodes within each AG are managed
independently and in parallel so multiple processes can
allocate free space throughout the filesystem
simultaneously. This is in sharp contrast to other
filesystems such as UFS, which are single-threaded,
requiring space and inode allocation to occur one
process at a time, resulting in a big bottleneck in large
active filesystems.

5

VxFS
The maximum filesystem size supported by VxFS
depends on the operating system on which it is running.
For instance, in HP-UX 10.x the maximum filesystem
size is 128 GB. This increases to 1 TB in HP-UX 11.
Internally, VxFS volumes are divided into allocation
units of about 32MB in size. Like UFS, these allocation
units are intended to keep inodes and associated file
data in proximity but do not provide greater parallelism
within the filesystem as allocation groups do for XFS.

NTFS
NTFS provides a full 64-bit filesystem, theoretically
capable of scaling to large sizes. However, other
limitations result in a practical limit of 2TB for a single
filesystem. NTFS provides no internal organization
analogous to XFS allocation groups or even to UFS
cylinder groups. In practice, this will severely limit
NTFS’s ability to efficiently use the underlying disk
volume when it is very large.

In summary, XFS, because of its full 64-bit
implementation and large allocation groups that operate
independently from one another, is most able to take
advantage of the throughput of large disk volumes.

3.2 Support for Large Files
Most traditional filesystems support files no larger than
231 or 232 bytes (2GB or 4GB) in length. In other words,
they use no more than 32 bits to store the length of the
file. At a minimum then, a filesystem must use more
bits to represent the length of the file in order to
support larger files. In addition, a filesystem must be
able to allocate and track the disk space used by the
file, even when the file is very large, and do so
efficiently.
File I/O performance can often be dramatically
increased if the blocks of a file are allocated
contiguously. So the method by which disk space is
allocated and tracked is critical. There are two general
disk allocation methods used by the filesystems in this
discussion.

• Block Allocation: Blocks are allocated one at a time
and a pointer is kept to each block in the file.

• Extent Allocation: Large numbers of contiguous
blocks-called extents-are allocated to the file and
tracked as a unit. A pointer need only be maintained
to the beginning of the extent. Because a single
pointer is used to track a large number of blocks, the
bookkeeping for large files is much more efficient.

The method by which free space within the filesystem is
tracked and managed becomes important because it
directly impacts the ability to quickly locate and allocate
free blocks or extents of appropriate size. Most
filesystems use linear bitmap structures to map free
versus allocated space. Each bit in the bitmap
represents a block in the filesystem. However, it is
extremely inefficient to search through a bitmap to find
large chunks of free space, particularly when the
filesystem is large.

It is also advantageous to control the block size used by
the filesystem. This is the minimum-sized unit that can
be allocated within the filesystem. It is important to
distinguish here between the physical block size used by disk
hardware (typically fixed at 512 bytes) and the block size
used by the filesystem, often called the logical block size.

If a system administrator knows the filesystem is going
to be used to store large files it would make sense to
use the largest possible logical block size, thereby
reducing external fragmentation. (External
Fragmentation is the term used to describe the
condition when files are spread in small pieces
throughout the filesystem. In the worst case in some
implementations, disk space may be unallocated but
unusable.)

Conversely, if the filesystem is used for small files (such
as news) a small block size makes sense, and helps to
reduce internal fragmentation. (Internal Fragmentation
is the term used to describe disk space that is allocated
to a file but unused because the file is smaller than the
allocated space).

UFS
UFS, having been designed in an era when 64-bit
computing was nonexistent, was designed with file size
limited to 231 bytes or 2GB. Disk space is allocated by
block with the inode storing 12 direct block pointers.
For files larger than 12 blocks, three indirect block
pointers are provided. The first indirect block pointer
designates a disk block that contains additional pointers
to file blocks. The second pointer, called the double
indirect block pointer, designates a block that contains
pointers to blocks that contains pointers to file blocks.
The third pointer, the triple indirect block pointer,
simply extends this same concept one more level. In
practice, it has rarely been used. You can see that, for
very large files, this method becomes extremely
inefficient. To support a full 64-bit address space yet
another level of indirection would be required.

Figure 1. Illustration of UFS direct and indirect block pointers

UFS uses traditional bitmaps to keep track of free
space, and in general the block size used is fixed by the
implementation. (For example, Sun’s UFS

Disk Blocks

Block Address 0

Block Address 1
...

Block Address 11

Single Ind. Block

Double Ind. Block

Triple Ind. Block

Single Indirect Block

Inode Block Addresses

Block Address 12

Block Address 13
...

Block Address 12

Double Indirect Block

Block Address 13
...

6

implementation allows block sizes of 4 or 8KB only.)
Little or no attempt is made to keep file blocks
contiguous, so reading and writing large files can have
a tremendous amount of overhead.

In summary, traditional UFS is limited to files no larger
than 2GB, block allocation is used rather than extent
allocation, and its algorithms are inefficient when
managing very large files and large amounts of free
space. Because these restrictions would be almost
unacceptable today, most vendors that use UFS have
made some changes. For instance, in the early 1990s
Sun implemented a new algorithm called clustering that
allows for more extent-like behavior by gathering up to
56KB of data in memory and then trying to allocate disk
space contiguously. Sun also extended the maximum file
size to 1TB in Solaris 2.6. However, despite these
enhancements, the more fundamental inefficiencies in
block allocation and free space management remain.

XFS
By comparison, given its scalability goals, it is not
surprising that large file support is a major area of
innovation within XFS. XFS is a full 64-bit filesystem.
All data structures are designed to support files as large
as 263 bytes (9 exabytes).

XFS uses variable-length extent allocation to allow files
to allocate the largest possible chunks of contiguous
space. Each extent is described by its block offset
within the file, its length in blocks, and its starting
block in the filesystem. A single extent can consist of up
to two million contiguous blocks or a maximum of 4GB
of disk space. (The limit that applies depends on the
logical block size.)

Figure 2. Illustration of XFS extent descriptors.

Despite the ability to allocate very large extents, files in
XFS may still consist of a large number of extents of
varying sizes, depending on the way a file grows over
time. XFS inodes contain 9 or more entries that point to
extents. (Inode size is tunable in XFS. The default size of
256 bytes allows for 9 direct entries.) If a given file
contains more extents than that, the file’s extents are
mapped by a B+ tree to enhance the speed with which
any given block in the file can be located.

As mentioned previously, free space in XFS is managed
on a per allocation group basis. Two B+ trees are
maintained for each AG that describe its free extents.
One tree is indexed by the starting block of the free
extents and the other by the length of the free extents.

Depending on the type of allocation, the filesystem can
quickly locate either the closest extent to a given
location or rapidly find an extent of a given size. XFS
also allows the logical block size to range from 512 bytes
to 64KB on a per-filesystem basis.

VxFS
The maximum file size supported by VxFS depends on
the version. For HP-UX 11 it is 1TB. Like XFS, VxFS uses
extent based allocation. The maximum extent size is
64MB for VxFS (versus 4GB for XFS). Each VxFS inode
stores 10 direct pointers. Each extent is described by its
starting block within the disk volume and length. When
a file stored by VxFS requires more than 10 extents,
indirect blocks are used in a manner analogous to UFS,
except that the indirect blocks store extent descriptors
rather than pointers to individual blocks.

Unlike XFS, VxFS does not index the extent maps for
large files, and so locating individual blocks in a file
requires a linear search through the extents. Free space
is managed through linear bitmaps like UFS and the
logical block size for the filesystem is not tunable. In
summary, VxFS has some enhancements that make it
more scalable than UFS, but lacks corollaries to the key
enhancements that make XFS so effective at managing
extremely large files.

NTFS
NTFS support full 64-bit file sizes. The disk space
allocation mechanism in NTFS is extent-based, but
Microsoft typically refers to extents as runs in its
literature. Despite the use of extent-based allocation,
NTFS doesn’t appear to have the same concern with
contiguous allocation that XFS or VxFS has. Available
information suggests that fragmentation rapidly
becomes a problem. Each file in NTFS is mapped by an
entry in the master file table or MFT.

The MFT entry for a file contains a simple linear list of
the extents or runs in the file. Since each MFT entry is
only 1024 bytes long and that space is also used for
other file attributes, a large file with many extents will
exceed the space in a single MFT entry. In that case, a
separate MFT entry is created to continue the list. It is
also important to note that the MFT itself is a linear
data structure, so the operation to locate the MFT entry
for any given file requires a linear search.

NTFS manages free space using bitmaps like UFS and
VxFS. However, unlike those filesystems, NTFS uses a
single bitmap to map the entire volume. Again, this
would be grossly inefficient on a large volume,
especially as it becomes full, and provides no
opportunities for parallelism.

The NTFS literature refers to logical blocks as clusters.
Allowable cluster sizes range from 512 bytes to 64KB.
(The maximum size drops to 4KB for a filesystem where
compression will be allowed.) The default used by NTFS
is adjusted based on the size of the underlying volume.

Offset LengthStarting Block

0

0 2 3 4 5 6 7 8 9 10 11

250 251 252 253 254 1000 1001 1002 1003 1004 1005 1006

5 250

Offset LengthStarting Block

5 7 1000

Extent 1 Extent2

Block Offset
Within File

Corresponding
Logical block #

1

7

3.2.1 Sparse Files

Some applications create files with large amounts of
blank space within them. A significant amount of disk
space can be saved if the filesystem can avoid allocating
disk space until this blank space is actually filled.

UFS, designed in a time when each disk block was
precious, supports sparse files. Mapping sparse files is
relatively straightforward for filesystems that use block
allocation, although large sparse files still require a
large number of block pointers and thus still experience
the inefficiencies of multiple layers of indirection.

XFS provides a 64-bit, sparse address space for each
file. Support for sparse files allows files to have holes in
them for which no disk space is allocated. Support for
64-bit files means that there are potentially a very large
number of blocks to be indexed for every file. The
methods that XFS uses to allocate and manage extents
make this efficient, since XFS stores the block offset
within the file as part of the extent descriptor.
Therefore, extents can be discontinuous.

Figure 3. XFS extent descriptors mapping a sparse file.

VxFS does not support sparse files. Since VxFS extent
descriptors only include the starting block within the
filesystem and the extent length (no offset within the
file), there is no easy way to skip holes.
Sparse file support is planned for NTFS in Windows NT
5.0 (Windows 2000), which will soon be released.

3.3 Large Directories
Large software builds and applications such as
sendmail, netnews, and digital media creation often
result in single directories containing thousands of
files. Looking up a file name in such a directory can
take a significant amount of time using linear search
techniques. UFS directories are unordered, consisting
only of pairings of file names and associated inode
numbers. Thus, to locate any particular entry, the
directory is read from the beginning until the desired
entry is found.

XFS uses an on-disk B+ tree structure for its
directories. File names in the directory are first
converted to 4-byte hash values that are used to index
the B+ tree. The B+ tree structure makes lookup,
create, and remove operations in directories with
millions of entries practical. However, listing the
contents of a directory with millions of entries remains
impractical due to the size of the resulting output.

In contrast, VxFS uses a hashing mechanism to organize
the entries in its directories. This involves performing a
mathematical operation on the file name to generate a
key. This key is then used to order the file within the
directory. However, the keys generated by any hashing
mechanism are unlikely to be unique, particularly in a
large directory. So for a particular key value, a large
number of file names might still need to be searched,
and this search process is linear. In practice, the file
naming conventions of some programs that generate
large numbers of files can render hashing alone
ineffective.

NTFS uses B+ trees to index its directories in a manner
similar to XFS. A number of popular PC applications
create large numbers of files in single directories, so
this was a filesystem problem that was recognized by
NTFS designers.

3.4 Large Numbers of Files
In order to support a large number of files efficiently, a
filesystem should dynamically allocate the inodes that
are used to keep track of files. In traditional filesystems
like UFS, the number of inodes is fixed at the time the
filesystem is created. Choosing a large number up front
consumes a significant amount of disk space that may
never be put to use. On the other hand, if the number
created is too low, the filesystem must be backed up, re-
created with a larger number of inodes, and then
restored.

With a very large number of files, it is also reasonable
to expect that file accesses, creations, and deletions will
in many cases be more numerous. Therefore, to handle
a large number of files efficiently the filesystem should
also allow multiple file operations to proceed in parallel.

In XFS, the number of files in a filesystem is limited
only by the amount of space available to hold them. XFS
dynamically allocates inodes as needed. Inodes are
managed within the confines of each allocation group.
Inodes are allocated 64 at a time and a B+ tree in each
allocation group keeps track of the location of each
group of inodes and records which inodes are in use.
XFS allows each allocation group to function in parallel,
allowing for a greater number of simultaneous file
operations. (This is described in greater detail in
section 3.1.)

VxFS allocates inodes dynamically in each allocation
unit. The mechanism used to track their location is
undocumented.

All files in NTFS are accessed through the master file
table (MFT). Because the MFT is a substantially
different approach to managing file information than
the other filesystems use, it requires a brief
introduction. Everything within NTFS, including
metadata, is stored as a file accessible in the filesystem
namespace and described by entries in the MFT.

Offset LengthStarting Block

0

0 2 3 4 ... 100 101 102 103 104 105 106

5 250

Offset LengthStarting Block

100 ? 1000

Extent 1 Extent2

Block Offset
Within File

Unallocated Blank Space

1

8

When an NTFS volume is created, the MFT is initialized
with the first entry in the MFT describing the MFT
itself. The next several files in the MFT describe other
metadata files such as the bitmap file that maps free
versus allocated space and the log file for logging
filesystem transactions. When a file or directory is
created in NTFS, an MFT record is allocated to store the
file and point to its data. Because this changes the MFT
itself, the MFT entry must also be updated. The MFT is
allocated space throughout the disk volume as needed.
As the MFT grows or shrinks, it may become highly
fragmented. Note that this may pose a significant
problem since the MFT is a linear structure. While the
remainder of the filesystem can be defragmented by
third party utilities, the MFT itself cannot be
defragmented. The MFT can therefore become highly
fragmented in a filesystem subject to a large number of
file creations and deletions, resulting in inefficient
operation. Access to the MFT is single-threaded, so
NTFS lacks the inherent parallelism of XFS.

3.4.1 Small Files
Since applications that create large numbers of files
frequently create very small files, it seems appropriate
to discuss small files at this point. If the smallest unit of
disk allocation is a block (as large as 64KB in some
filesystem implementations) then disk space is wasted
any time a file smaller than 64KB is stored in that
block. This is frequently referred to in the literature as

internal fragmentation. Various approaches exist to
handle small files more efficiently.

UFS, which was developed when disk space was
comparatively limited and expensive, provides a
mechanism to break blocks into smaller units
(fragments or frags) for the storage of small files. This
process is used until the file exceeds the size that can
be stored in direct block pointers. Beyond that size, only
whole blocks are allocated.

XFS was designed with large and relatively inexpensive
storage devices in mind. Nevertheless, it allows very
small files like symbolic links and directories to be
stored directly in the inode to conserve space. This also
accelerates access to such files since no further disk
accesses are needed once the inode is read. The default
inode size is 256 bytes, but this can be made larger
when the filesystem is created, allowing for more space
to store small files. XFS also allows the logical block size
of the filesystem to be set on a per-filesystem basis. The
allowable sizes range from 512 bytes to 64KB. Smaller
sizes are ideal for filesystems used by applications like
news that typically store a large number of small files.

VxFS has a 96-byte “immediate area” in each inode that
can be used to store symbolic links and small
directories. NTFS also allows small files and directories
to be stored directly in the MFT record for the file.

Rapid Crash Recovery
The slowest part of the I/O system is the disk drive
since its performance depends in part on mechanical
rather than electronic components. To reduce the
bottleneck created by disk drives to overall I/O
performance, filesystems cache important information
in memory from the disk image of the filesystem. This
information is periodically flushed to disk to
synchronize it.

While caching is essential to system performance, an
unexpected system disruption can have serious
consequences. Since the latest updates to the filesystem
may not have been transferred from memory to disk,
the filesystem will not be in a consistent state.
Traditional filesystems use a checking program to
examine the filesystem structures and return them to
consistency.

As filesystems have grown larger and servers have
grown to support more and more of them, the time
taken by traditional filesystems to run these checking
programs and recover from a crash has become
significant. On the largest servers, the process can take
many hours. Filesystems that depend on these checking
programs also must keep their internal data structures
simple to preserve the efficiency of those programs. But
as the previous section demonstrates, simple data
structures and algorithms may be inefficient for large
filesystems.

Most modern filesystems use journaling techniques
borrowed from the database world to improve crash
recovery. Disk transactions are written sequentially to
an area of disk called the journal or transaction log
before being written to their final locations within the
filesystem. These writes are generally performed
synchronously, but gain some acceleration because they
are performed sequentially and written contiguously. If
a failure occurs, these transactions are replayed from
the journal to ensure the filesystem is up to date.
Implementations vary in terms of what data is written
to the log. Some implementations log only filesystem
metadata changes, while others log all filesystem writes.
The journaling filesystems discussed in this paper log
only metadata during normal operation. (The Veritas
filesystem adds the ability to log small synchronous
writes to accelerate database operations.) Depending on
the implementation, logging may have significant
consequences for I/O performance.

It is also important to note that using a transaction log
does not make the use of filesystem checking programs
entirely obsolete. Hardware and software errors that
corrupt random blocks in the filesystem are not
generally recoverable with the transaction log, yet these
errors can make the contents of the filesystem
inaccessible. This type of event is relatively rare, but
still important.

4.

9

This section examines the implementations used by the
various filesystems and discusses the implications of
those methods.

UFS
Traditionally, UFS did not provide journaling. In case of
a system failure, the program fsck is used by UFS to
check the filesystem. This program scans through all
the inodes, the directories, and the free block lists to
restore consistency. The key point is that everything
must be checked whether it has been changed recently
or not.

Numerous enhancements have been implemented
within UFS over the years to try to overcome this
problem. Some implementations have clean flags that
are set every time the filesystem is synced and then
unset every time it is altered. In practice, this can have
a dramatic effect on the reboot time of systems with
many filesystems, although recovery time is
unpredictable. If the clean flag is set, the filesystem
does not have to be checked. A further enhancement
along this same line adds clean flags for each cylinder
group in the filesystem, further reducing the amount of
filesystem data that has to be checked.

Sun implemented a journal for the UFS filesystem
several years ago as part of its optional DiskSuite
product. This technology was bundled in the Enterprise
Server Edition of Solaris 2.7, which was announced in
October 1998 and released in 1999. The journal is
implemented as a separate log-structured write cache
for the filesystem. After logging, blocks of metadata are
not maintained in the in-memory cache. Therefore,
under load when the log fills and needs to be flushed,
blocks actually have to be reread from the log and then
written to the filesystem. This filesystem is generally
recommended for use in situations where availability,
not performance, is the primary concern.

XFS
XFS logs all updates to the filesystem metadata before
user data is committed to disk. This includes inodes,
directory blocks, free extent tree blocks, inode
allocation tree blocks, file extent map blocks, AG header
blocks, and the super block. XFS does not write user
data to the log. Logging new copies of the modified
items makes recovering the XFS log independent of both
the size and the complexity of the filesystem.
Recovering the data structures from the log requires
nothing but moving the block and inode images in the
log to the appropriate locations in the filesystem. The
log recovery process does not know that it is recovering
a B+ tree. It only knows that it is restoring the latest
images of some filesystem blocks.

Traditional write ahead logging schemes write the
journal synchronously to disk before declaring a
transaction committed and unlocking its resources.
While this provides concrete guarantees about the
permanence of an update, it restricts the update rate of
the filesystem to the rate at which it can write the
journal. While XFS provides a mode for making
synchronous journal updates for use when the
filesystem is exported via NFS(tm), the normal mode of
operation for XFS is to use asynchronous logging. XFS
still ensures that the write ahead logging protocol is
followed in that modified data cannot be flushed to disk
until after the metadata is committed to the journal.
Rather than keep the modified resources locked until
the transaction is committed to disk, the resources are
instead unlocked and pinned in memory until the
transaction is fully committed. The resources can be
unlocked once the transaction is committed to the in-
memory log buffers, because the log itself preserves the
order of the updates to the filesystem.

XFS gains two advantages by writing the log
asynchronously. First, multiple updates can be batched
into a single log write. This increases the efficiency of
the log writes with respect to the underlying disk.
Second, the performance of metadata updates is
normally made independent of the speed of the
underlying drives. This independence is limited by the
amount of buffering dedicated to the log, but it is far
better than the synchronous updates of older
filesystems.

In situations where metadata updates are very intense,
the log can be stored on a separate device such as a
dedicated disk or a nonvolatile memory device. This is
particularly useful when a filesystem is exported via
NFS, which requires that all transactions be synchronous.

VxFS
VxFS employs a metadata journaling scheme in many
respects similar to that used by XFS. The VxFS journal
is updated synchronously, so it lacks the performance
benefits of the XFS implementation. In addition to
metadata logging, VxFS allows small synchronous writes
to be logged as well. This may be advantageous for
databases running within the filesystem; however, most
database vendors recommend running their products in
raw disk volumes rather than filesystems. VxFS does
allow the log to be placed on a separate device if
desired.

NTFS
NTFS also uses a synchronous metadata journal that is
typically a few megabytes in size. The journal is
embedded in the MFT, and therefore cannot be allocated
on a device separate from the rest of the filesystem.

Filesystem Performance
Most of the issues discussed in sections 3 and 4
contribute to performance by alleviating or avoiding
potential bottlenecks. However, they are not the whole
story when it comes to maximizing the I/O performance

of the underlying hardware. This section describes the
performance characteristics of the various filesystems
in more detail and discusses performance as measured
by the various vendors.

5.

10

5.1 Factors Contributing to I/O Throughput

Modern servers typically use large, striped disk arrays
capable of providing an aggregate bandwidth of tens to
hundreds of megabytes per second. The keys to
optimizing the performance from these arrays are I/O
request size and I/O request parallelism. Modern disk
drives have much higher bandwidth when requests are
made in large chunks. With a disk array, this need for
large requests is increased as individual requests are
broken up into smaller requests to the individual drives.
Many requests must be issued in parallel to keep all of
the drives in an array busy.

Large I/O requests to a file can only be made if the file
is allocated contiguously, because the number of
contiguous blocks in the file being read or written
limits the size of a request to the underlying drives.
UFS uses block allocation and in general does not
attempt to allocate files in a contiguous fashion so is
therefore limited in this regard.

XFS has the most advanced features for allocating files
contiguously. XFS can allocate single extents of up to 2
million blocks and uses B+ trees to manage free space
so that appropriately sized extents can be found rapidly
(see section 3.2). In addition, XFS uses delayed
allocation to ensure that the largest possible extents are
allocated.

Rather than allocating specific blocks to a file as it is
written in the buffer cache, XFS simply reserves blocks
in the filesystem for the data buffered in memory. A
virtual extent is built up in memory for the reserved
blocks. Only when the buffered data is flushed to disk
are real blocks allocated for the virtual extent. Delaying
the decision of which and how many blocks to allocate
to a file as it is written provides the allocator with
much better knowledge of the eventual size of the file
when it makes its decision. When the entire file can be
buffered in memory, the entire file can usually be
allocated in a single extent if the contiguous space to
hold it is available. For files that cannot be entirely
buffered in memory, delayed allocation allows the files
to be allocated in much larger extents than would
otherwise be possible.

Delayed allocation often prevents short-lived files from
ever having any real disk blocks allocated to contain
them. Even files that are written randomly, such as
memory mapped files, can often be written contiguously
because of delayed allocation.

It is the job of the XFS I/O manager to read and write a
file in requests large enough to drive the underlying
disk drives at full speed. XFS uses a combination of
clustering, read ahead, write behind, and request
parallelism in order to exploit the underlying disk array.

To obtain the best possible sequential read performance,
XFS uses large read buffers and multiple read ahead
buffers. For sequential reads, a large minimum I/O
buffer size (typically 64KB) is used. The size of the
buffers is reduced to match the file for files smaller

than the minimum buffer size. Using a large minimum
I/O size ensures that, even when applications issue
reads in small units, the filesystem feeds the disk array
requests that are large enough for high I/O
performance. For larger application reads, XFS
increases the read buffer size to match the application’s
request.

XFS uses multiple read ahead buffers to increase I/O
parallelism. Traditional UNIX systems use only a single
read ahead buffer. For sequential reads, XFS keeps
outstanding two to three requests of the same size as
the primary I/O buffer. Multiple read ahead requests
keep the drives in the array busy while the application
processes the data being read. A large number of read
ahead buffers ensures a large number of underlying
drives are kept busy at once.

To improve write performance, XFS uses aggressive
write clustering. Modified file data is buffered in
memory in chunks of 64KB, and when a chunk is
chosen to be flushed from memory it is clustered with
other contiguous chunks to form a larger I/O request.
These I/O clusters are written to disk asynchronously,
so as data is written into the file cache many such
clusters will be sent to the underlying disk array
concurrently. This keeps the underlying disk array busy
with a stream of large write requests.

The write behind used by XFS is tightly integrated with
the delayed allocation mechanism described earlier. The
more data buffered in memory for a newly written file,
the better the allocation for that file will be. This is
balanced with the need to keep memory from being
flooded with modified data waiting to be written and
the need to keep I/O requests streaming out to the
underlying disk array.

Various UFS implementations take advantage of read
and write clustering in a manner analogous to XFS, but
none goes to the extreme degree that XFS does to
ensure I/O throughput. Since VxFS lacks the tight
integration with the host operating system that XFS has,
it is difficult for VxFS to provide these optimizations.
While Windows NT and NTFS have the necessary
integration, so far Microsoft has not chosen to
implement any of the optimizations discussed here to
any significant extent, most likely because the need has
not yet arisen in typical Windows NT environments.

For very large file I/O-when the file size nears or
exceeds the size of physical memory-caching file data in
memory can actually impede performance. In such
situations, it may be desirable to use Direct I/O which
bypasses the buffer cache and reads and writes data
directly to and from disk. The XFS implementation of
Direct I/O supports preallocation, allowing an
application to request that contiguous space be
allocated before it is needed. By enhancing contiguous
allocation for applications using Direct I/O,
preallocation can substantially improve throughput.
Direct I/O is discussed further in section 6.

11

5.2 Measured Performance

Unfortunately, it is impossible to do direct performance
comparisons of the filesystems under discussion since
they are not all available on the same platform. Further,
since available data is necessarily from differing
hardware platforms, it is difficult to distinguish the
performance characteristics of the filesystem from that
of the hardware platform on which it is running.
However, some conclusions can be drawn from the
available information.

If we look simply at measured system throughput, there
is no question that XFS is the hands-down winner. SGI
recently announced total throughput of 7.32GB/sec on a
single filesystem. The system was an SGI Origin 2000
configured with 32 processors and 897 9GB fibre
channel disks. Single file numbers were 4.03GB/s read
performance and 4.47GB/sec write performance. These
numbers were obtained using Direct I/O, which
bypasses the buffer cache.

The next closest measured system throughput number
was achieved using VxFS on an 8-processor Sun
UltraSPARC 6000 configured with 4+ Terabytes of disk.
With this configuration a maximum throughput of 1.049
GB/sec was also achieved using Direct I/O, which
bypasses the system’s buffer cache.

No similar measurements have been reported with UFS
or NTFS. In more modest comparison tests, however,
Veritas has found that VxFS generally outperforms UFS
in most situations. Because of the differences in typical
system configurations, there are no valid comparisons
that can be drawn between NTFS throughput tests and
the tests described above. Typical NTFS test systems
have relatively few disks and throughput is generally in
the range of tens rather than hundreds or thousands of
megabytes per second.

Another way of examining filesystem performance and
efficiency is by comparing the number of operations per
drive achieved using the SPECnfs benchmark. This
benchmark is the standard benchmark for testing NFS
file server performance. The comparisons discussed
here are based on tests performed with the
SPECnfs_A93 benchmark, which uses NFS version 2
only. Again, there is no way to control for performance
differences based on underlying hardware differences.
Where possible, results have been chosen that reflect
approximately the same level of performance from
roughly comparable systems.

In a test performed in April 1997 a single processor
Origin 200 system with 256MB of memory and 30 disk
drives demonstrated 2,822 SPECnfs operations per
second using XFS as the filesystem. This corresponds to
94 SPECnfs operations per disk.

A similar test was performed in April 1996 on a single
processor Sun Enterprise 3000 with 1GB of memory and
37 disks. That system achieved a maximum of 2,004
SPECnfs operations per second using UFS or 54
SPECnfs operations per disk.

The above two tests were chosen because of the
approximately similar system configurations (although note
that the Sun system had four times more memory) and
because these are among the smallest system
configurations tested. This allows for a limited comparison
with tests performed by Veritas using VxFS. The system
Veritas used for its testing was a dual-processor
SPARCstation 10 with 64 MB of memory and 6 disk drives.
This system was tested using VxFS, UFS, and UFS with
journaling. VxFS achieved 76 SPECnfs operations per disk
while UFS demonstrated 64 SPECnfs operations per disk
without journaling and 20 SPECnfs operations per disk
with journaling enabled. To date no SPECnfs results have
been reported for machines using NTFS.

Other Features
In addition to the features already described, each of
the filesystems discussed here offers a number of other
features that may be important for some applications.
This section discusses some of the more unique
features briefly.

UFS
Because of its long life span, UFS has been enhanced in
many areas. However, none of its incarnations has any
single unique feature that all the others lack. This is
perhaps not surprising since UFS is in many senses a
precursor of XFS and VxFS.

XFS
The most unique feature of XFS is its support for
Guaranteed Rate I/O (GRIO), which allows applications
to reserve bandwidth to or from the filesystem. XFS
calculates the performance available and guarantees
that the requested level of performance is met for a
specified time. This frees the programmer from having
to predict performance, which can be complex and

variable. This functionality is required for full rate,
high-resolution media delivery systems such as video-
on-demand or satellite systems that need to process
information at a certain rate. By default, XFS provides
four GRIO streams (concurrent uses of GRIO). The
number of streams can be increased to 40 or more
using the High-Performance Guaranteed-Rate I/O-5-40
option or the Unlimited Streams option.

XFS provides full real-time support through the optional
use of a real-time subvolume. This feature is used by
GRIO, but a programming interface exists independent
of GRIO that allows application developers to provide
real-time access for applications that require it.

The XFS inode also provides support for user-mode
attributes-the ability to store user-defined data about
the file. SGI makes use of this feature to provide Access
Control Lists (ACLs) for secure IRIX, and it is also used
to support DMAPI, the Data Migration API (DMAPI).
Using this API, storage management applications such

6.

12

as Silicon Graphic’s Data Migration Facility (DMF) can
take advantage of advanced hierarchical storage
management. Data can be easily migrated from online
disk storage to near-line and off-line storage media. This
allows for easy management of data sets much larger
than the capacity of online storage. Using this
technology, some customers are already managing over
300 Terabytes of data with plans to scale up to a
Petabyte or more. With data storage doubling every year,
it quickly becomes clear why a full 64-bit filesystem like
XFS will soon be essential. VxFS also has DMAPI
support, but lacks the extreme scalability of XFS as
discussed in section 3.

VxFS
Veritas promotes the online administration features of
VxFS and its support for databases. On-line features
include the ability to grow or shrink a filesystem,
snapshot backup, and defragmentation. In this regard,
XFS offers the ability to grow (but not shrink) a
filesystem and online consistent backup, but no
snapshots. XFS does not currently offer online
defragmentation because in practice, given the delayed
allocation algorithms used by XFS and the large size of
typical XFS filesystems, fragmentation has not been a
big problem. Defragmentation will be added in the
future.

The database support features in VxFS allow
applications to avoid having their data cached in system
memory by the operating system. Operating systems
typically try to cache recently used or likely to be
requested blocks in memory to speed up access in the
event that the data is needed again. Each block read or
written passes through this buffer cache. However, the

algorithms used can actually be detrimental to certain
types of applications such as databases and/or other
applications that manipulate files larger than system
memory. Database vendors frequently choose to use raw
I/O to unformatted disk volumes to avoid the penalty
created by the buffer cache, but this requires the
application to deal with the underlying complexities of
managing raw disk devices.

Direct I/O allows an application to specify that its data
not be cached in the buffer cache. This allows the
application to take advantage of filesystem features and
backup programs. Typically, a mechanism is also
provided to allow multiple readers and writers to access
a file at one time. Both XFS and VxFS support Direct
I/O. Sun added support for Direct I/O to its version of
UFS in Solaris 2.6. In practice most databases prefer to
be installed on raw disk volumes, so it is not clear that
this feature provides any great advantage to databases
although other large I/O applications might take
advantage of it.

NTFS
Perhaps the sole unique feature of NTFS is its support
for compression, which allows files to be compressed
individually, by folder or by volume. Of course, the
utilities to perform similar tasks have existed in the
UNIX operating system for a long time. In terms of
performance, making compression the task of the
operating system is probably counter-productive, and it
is likely that future generations of disk drives will
provide hardware-based compression. The next version
of NTFS will support encryption, but again, the utilities
already exist in UNIX for those who need encryption.

Conclusion
It is clear that XFS is unrivaled in the management of
large filesystems, large files, large directories, large
numbers of files and overall filesystem performance.
Based on its from-scratch design and use of advanced
data structures, XFS is able to scale where other
filesystems would simply fail to perform. At the same
time, XFS provides enhanced reliability and rapid crash
recovery without hampering performance through its
use of asynchronous journaling.

Each of the filesystems discussed here has its strengths.
UFS has been in use for years, so many system

Glossary
Allocation Group—The subunit into which XFS divides
its disk volumes. Each allocation group is responsible
for managing its own inodes and free space and can
function in parallel with other allocation groups in the
filesystem.

B+ tree—The B+ tree is a data structure that is used
throughout XFS to index and accelerate access to

administrators are familiar and comfortable with it.
VxFS provides modest improvements over UFS and
probably works well in many environments. NTFS is the
only advanced filesystem currently available for
Windows NT, and therefore has a captive audience.
However, if your application requires the manipulation
of huge data files with the fastest possible I/O
performance, XFS is the only solution. XFS offers
unparalleled performance and data security. Because
XFS enables SGI computer systems to do more work
faster, it offers significant time-to-market advantages to
those who deploy it.

important filesystem data. The B+ tree structure takes
the form of an inverted tree, in some ways analogous in
form to a directory hierarchy. The tree can be efficiently
searched by descending from the root, making simple
comparisons between the desired value and values
stored in the tree. The B+ tree is particularly well
suited to paged files because it supports random or
sequential access to data stored within the tree.

7.

8.

13

Bitmap—Bitmaps are often used to keep track of
allocated versus free space in filesystems. Each block in
the filesystem is represented by a bit in the bitmap. In
place of bitmaps, XFS maintains two b-trees: one which
indexes free extents by size, and another that indexes
free extents by starting block.

Block Allocation—A disk space allocation method in
which a single block is allocated at a time and a pointer
is maintained to each block.

Cylinder Group—The subunit into which UFS divides its
disk volumes. Each cylinder group contains inodes,
bitmaps of free space and data blocks. Typically about
4MB in size, cylinder groups are used primarily to keep
an inode and its associated data blocks close together
and thereby to reduce disk head movement and
decrease latency.

Cluster (Windows NT)—In Windows NT parlance, the
term cluster is defined as a number of physical disk
blocks allocated as a unit. This is analogous to the term
logical block size that is generally used in UNIX
environments.

Clustering (UNIX)—A technique that is used in UFS to
make its block allocation mechanism provide more
extent-like allocation. Disk writes are gathered in
memory until 56KB has accumulated. The allocator then
attempts to find contiguous space and if successful
performs the write sequentially.

Direct Block Pointer—Inodes in the UNIX Filesystem
(UFS) store up to 12 addresses that point directly to file
blocks. For files larger than 12 blocks, indirect block
pointers are used.

Indirect Block Pointer—Inodes in the UNIX filesystem
(UFS) store 12 addresses for direct block pointers and 3
addresses for indirect block pointers. The first indirect
block pointer, called the single indirect block pointer,
points to a block that stores pointers to file blocks. The
second, called the double indirect block pointer, points
to a block that stores pointers to blocks that store
pointers to file blocks. The third address, the triple
indirect block pointer, extends the same concept one
more level.

Extent—An extent is a contiguous range of disk blocks
allocated to a single file and managed as a unit. The
minimum information needed to describe an extent is
its starting block and length. An extent descriptor can
therefore map a large region of disk space very
efficiently.

Extent Allocation—A disk space allocation method in
which extents of variable size are allocated to a file.
Each extent is tracked as a unit using an extent
descriptor that minimally consists of the starting block
in the filesystem and the length. This method allows
large amounts of disk space to be allocated and tracked
efficiently.

External Fragmentation—The condition where files are
spread in small pieces throughout the filesystem. In
some filesystem implementations, this may result in
unallocated disk space becoming unusable.

Filesystem—The software used to organize and manage
the data stored on disk drives. In addition to storing the
data contained in files, a filesystem also stores and
manages important information about the files and
about the filesystem itself. This information is
commonly referred to as metadata. See also metadata.

Fragment—Also frag. The smallest unit of allocation in
the UFS filesystem. UFS can break a logical block into
up to 8 frags and allocate the frags individually.

Inode—Index node. In many filesystem implementations
an inode is maintained for each file. The inode stores
important information about the file such as ownership,
size, access permissions, and time-stamps (typically for
creation, last modification and last access), and stores
the location or locations where the file’s blocks may be
found. Directory entries typically map file names to
inode numbers.

Internal Fragmentation—Disk space that is allocated to
a file but not actually used by that file. For instance, if a
file is 2KB in size, but the logical block size is 4KB, then
the smallest unit of disk space that can be allocated for
that file is 4KB and thus 2KB is wasted.

Journal—An area of disk (sometimes a separate device)
where filesystem transactions are recorded prior to
committing data to disk. The journal ensures that the
filesystem can be rapidly recovered in a consistent state
should a power failure or other catastrophic failure
occur.

Log—See journal.

Logical Block Size—The smallest unit of allocation in a
filesystem. Physical disk blocks typically 512 bytes in
size. Most filesystems use a logical block size that is a
multiple of this number; 4KB and 8KB are common.
Using a larger logical block size increases the minimum
I/O size and thus improves efficiency. See also cluster
(Windows NT).

Master File Table—The table that keeps track of all
allocated files in NTFS. The Master File Table (MFT)
takes the place of the inodes typically used in UNIX
filesystem implementations.

Metadata—Information about the files stored in the
filesystem. Metadata typically includes date and time
stamps, ownership, access permissions, other security
information such as access control lists (ACLs) if they
exist, the file’s size, and the storage location or
locations on disk.

MFT—See Master File Table.

RAID—Redundant Array of Independent Disks. RAID is
a means of providing for redundancy in the face of a
disk drive failure to ensure higher availability. RAID 0
provides striping for increased disk performance but no
redundancy.

Run—(Windows NT) The Windows NT literature
generally refers to chunks of disk space allocated and
tracked as a single unit as Runs. These are more
commonly referred to in the general literature as
extents. See also extent.

Volume—A span of disk space on which a filesystem
can be built, consisting of one or more partitions on
one or more disks. See also Volume Manager.

Volume Manager—Software that creates and manages
disk volumes. Typical volume managers provide the
ability to join individual disks or disk partitions in
various ways such as concatenation, striping, and
mirroring. Concatenation simply joins multiple
partitions into a single large logical partition. Striping
is similar to concatenation, but data is striped across
each disk. Blocks are numbered such that a small
number are used from each disk or partition in
succession. This spreads I/O more evenly across
multiple disks. Mirroring provides for two identical
copies of all data written to the filesystem to be
maintained and thereby protects against disk failure.

©2000 Silicon Graphics, Inc. All rights reserved. Specifications subject to change without notice. All other trademarks mentioned herein are the property of their respective owners.

2668(1/00) J10786

Corporate Office North America 1(800) 800-7441
1600 Amphitheatre Pkwy. Latin America 1(650) 933-4637
Mountain View, CA 94043 Europe (44) 118.925.75.00
(650) 960-1980 Japan (81) 3.5488.1811
www.sgi.com Asia Pacific (65) 771.0290

